用户名: 密码: 验证码:
生化过程动态建模及优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物工程技术的迅速发展,生化工业在国民经济中的地位已越来越重要。然而由于生化过程反应机理复杂,具有非线性、时变性、模型的不确定性等特点,以及缺乏可靠的传感器用于过程变量的在线检测等原因,其自动化水平与其它工业生产过程相比还远未成熟。因此,探求合适的智能建模方法和优化控制策略,并将其应用于生化过程已成为生化工程领域一个重要的研究方向,这对于促进生化工程技术的发展,降低原材料和动力的消耗,提高经济效益有着极其重要的意义。
     本论文的资助项目(863高技术重点发展项目子课题)“基于代谢工程和智能工程的新式、集约型发酵过程控制的工程化应用研究”就是针对生化工业的迫切需要而立项的,该项目研究的主要内容包括:1)研究以代谢模型为基础的发酵过程状态预测和推定、软测量、代谢流外部调控的普遍规律和关键技术;2)以代谢网络模型为基础的发酵过程在线控制技术的应用化研究;3)基于智能模型的发酵过程控制;4)研究基于智能模型的发酵过程数据采掘、多变量解析和在线故障诊断系统的关键技术,构建基于智能模型的发酵过程在线故障诊断/早期预警系统;5)过程控制示范装置和系统(报表、实时曲线、数据库等)。本课题针对1)、3)和5)进行研究,涉及的生化过程主要是谷氨酸补料分批发酵过程,所做的主要工作如下:
     通过对生化过程建模和优化控制的国内外研究现状以及存在问题的分析,在研究常用生化模型的基础上,利用标准支持向量回归(SVR,Support Vector Regression)算法对谷氨酸发酵过程实施软测量建模,通过实验验证该模型能够完成对谷氨酸浓度、菌体浓度和残糖浓度三个不能在线测量的状态变量的预估。从预测结果可以看出尽管模型达到了一定的预测精度,但发现该模型不能在线学习,而且当数据量增大时,还存在训练时间过长的问题。
     针对SVR软测量建模存在的问题,在充分研究最小二乘支持向量回归LSSVR (Least Square Support Vector Regression)算法的基础上,对谷氨酸发酵过程建立了基于LSSVR的软测量模型。通过实验发现,该模型尽管缩短了训练时间,但模型不能在线学习的问题依然没有解决。
     针对LSSVR软测量建模存在的问题,通过研究在线最小二乘支持向量回归OLSSVR(Online LSSVR)算法,提出了带遗忘因子的MIMO-OLSSVR(Multi-input Multi-output OLSSVR)算法,并在谷氨酸发酵过程软测量建模中进行应用。为提高算法的自动化程度,采用免疫遗传算法IGA(Immune Genetic Algorithm)使MIMO-OLSSVR的参数在建模过程中能够自动选择。将所建的模型预估谷氨酸发酵过程,结果表明该模型在保证较短训练时间的情况下,通过模型在线学习,实现了谷氨酸浓度、菌体浓度和残糖浓度三个变量的在线同时预测,提高了预测精度。但以上建模方法属于黑箱建模,不能反映实际生化过程的操控特点。
     为了能进一步探索生化过程的动力学特性,本文将混杂系统理论应用于谷氨酸补料分批发酵过程中,并建立了相应的混杂动力系统模型。在分段连续空间上,从理论角度证明了系统解的存在性、唯一性及解对初值和参数的连续依赖性。然后以产量最高为优化目标,利用混沌和单纯形法搜索合适补料操作变量。通过实验室的多次实验,证明该方法达到了提高产量的目的,为进一步研究生化过程控制提供一种新的理论思路。
     针对实际生化过程一般的数学模型或软测量模型常常随着时间的推移会发生模型失效问题,合理利用离线数据和在线数据,充分利用各种模型的优点,提出了多模型融合建模方法,实现了对谷氨酸发酵过程的动态建模。通过研究标准粒子群优化算法、量子粒子群优化算法,针对项目要求的多目标优化问题,提出改进的多目标量子粒子群优化(MQDPSO)策略,并用Deb测试函数进行测试。然后结合多模型融合建模技术,对谷氨酸补料分批发酵过程实施动态优化,通过实际应用验证了该方法的可行性。
     将改进的建模技术和控制策略融入集散控制系统中,能够进行实时状态预报和监控,实现了对谷氨酸补料分批发酵过程的建模和优化控制软件的模块化设计,便于在实际控制系统中的应用。
The rapid development of biotechnology has highlighted biochemical industry in the national economy. However, its level of automation is still lower than other industrial processes because of the complex biochemical reaction mechanism, and the features of non-linearity, time variability, model uncertainty as well as the lack of reliable sensors to be used in on-line inspection of process variables. For these reasons, the studies of suitable intelligent modeling, optimization control strategy and the application to biological and chemical process have become a new trend in biochemical engineering, which may be of great profundity promoting the development of chemical and biological technology and reducing the consumption of raw materials and energy.
     The funding program for this paper (863 program focusing on the development of high-tech sub-topic) " The Applied Engineering Research of Modern, Intensive Fermentation Process Control Based on Metabolic Engineering and Intelligent Works " is intended to solve the urgent problems for biochemical industry, which includes: 1) the study of the state prediction and presumption, soft sensor, the universal law of external regulation of metabolic flow and key technologies of the fermentation process based on the metabolic model; 2) the study of application research of online controlling technology of fermentation process based on the metabolic network model; 3) the study of controlling for fermentation process based on the intelligent model; 4) the study of critical technologies for data mining, multivariable analysis and online fault diagnosis in the process of fermentation based on intelligent model to construct an on-line fault diagnosis or early warning systems;5) the study of methods to construct demonstration devices and systems (reporting, real-time curve, databases, etc.) for the process controlling. Of the 5 aspects of the study, my research focuses on 1), 3) and 5), of which the biochemical processes involved is mainly about glutamic acid fed-batch fermentation process. The main done work goes as the follows:
     A soft model of glutamic acid fermentation process is constructed by using the standard support vector regression (SVR) on the basis of common biochemical models and analyzing current domestic and international researches of biochemical process modeling and optimization controlling. The experiments verify that this model can effectively measure 3 state variables, namely, glutamic acid concentration, biomass concentration and residual sugar concentration, which can not be done on-line. However, although the forecast model has a certain degree of accuracy, but somen problems are still existed, such as the model can not be training online, and the training is more time-consuming with the increasing sampling number.
     To solve the problem of the soft-sensor model using the SVR, another soft modeling based on least square support vector regression(LSSVR) algorithm for glutamic acid fermentation process is constructed. The experiments indicate that the model despite shortened training time the prediction accuracy declines, the problem that the model can not be training online still remain.
     For the problems with the soft-sensor modeling using LSSVR, an improved multi-input and output online LSSVR (MIMO-OLSSVR) with a forgetting factor is designed and applied. To improve the automation degree of the algorithm, an immune genetic algorithm (IGA) is adopted to achieve automatic selection of MIMO-OLSSVR parameters. Using the MIMO-OLSSVR model to estimate glutamic acid fermentation process, the experiments show that the model can simultaneously predict the three state variables and improve the accuracy while reducing time consumption by training online. However, this modeling is a black box in nature and does not reveal the operational characteristics of the actual biochemical process.
     To further explore the dynamics of biochemical process, the theory of hybrid systems is adopted for glutamic acid fed-batch fermentation process, and a hybrid kinetics system model is accordingly constructed. The research has proved the existence of systematic solution, uniqueness and the continuous solution dependence on the initial values and parameters in the space of continuous segmentation. Taking the highest production as the optimization target, and searching for the suitable feeding operation variables by utilizing the chaos and simplex method, the experiments prove that the model can achieve the purpose, which may provide a new theoretical for the research of biochemical process control.
     This study proposes a dynamic multi-model fusion modeling method for glutamic acid fermentation process by using online data and offline data on the basis of various models to solve problems from weakness of the mathematical model or the soft-sensing model, which may often fail in actual biological changes with the time advance. For the multi-objective optimization as the program requires, an improved multi-objective quantum delta-potential-well-based particle swarm optimization (MQDPSO) strategy is presented on the basis of standard particle swarm optimization algorithm and is tested by the Deb test functions. Then combined with the techniques of multi-model fusion modeling, dynamic optimizing for glutamic acid fed-batch fermentation process is achieved and the feasibility of the optimization method is proved.
     The improved modeling techniques and the control strategies integrated into the distributed control system can achieve the purposes of real-time status of forecasting, monitoring and modularizing modeling and optimizing the glutamic acid fed-batch fermentation process, which can bring much convenience to the application in real control systems.
引文
1. Zhao Y. Studies on modeling and control of continuous biotechnical processes[D], Norway : Norwegian University of Science and Technology, 1996.
    2.于乃功,阮晓钢.基于细胞自动机模型的青霉素发酵过程优化控制策略[J]北京工业大学学报, 2007, 33(2):150-154
    3. Chengyan Zhang, Zhongping Shi, Pei Gao, Zuoying Duan, Zhonggui Mao. On-line prediction of products concentrations in glutamate fermentation using metabolic network model and linear programming[J]. Biochemical Engineering Journal, 2005, 25(2): 99-108
    4. Pinchuk R J, Brown W A, Hughes S M, et. Modelling of biological processes using the SCF and genetic algorithms [J]. Biotechnology and Bioengineering, 2000, 67(1):19-24.
    5. Anjana D. Nandasana, Surendra Kumar. Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1 [J]. Biochemical Engineering Journal, 2008, 38(3): 277-284
    6. M. Defernez, R.J. Foxall, C.J. O’Malley, G. Montague, S.M. Ring, E.K. Kemsley. Modelling beer fermentation variability [J]. Journal of Food Engineering, 2007, 83(2): 167-172
    7. Othmane Benkortbi, Salah Hanini, Fatiha Bentahar. Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis [J]. Biochemical Engineering Journal, 2007, 36(1): 14-18
    8. Sophie Colombié, Sophie Malherbe, Jean-Marie Sablayrolles. Modeling of heat transfer in tanks during wine-making fermentation [J]. Food Control, 2007, 18(8): 953-960
    9. Bing H. Chen, F. Baganz, John M. Woodley. Modelling and optimisation of a transketolase-mediated carbon–carbon bond formation reaction.Chemical Engineering[J], Science, 2007, 62(12): 3178-3184
    10.隋青美,王正欧.发酵过程混合神经网络模型与仿真.系统仿真学报. 2002, 14(4): 552-558
    11.李海波,潘丰.基于FLNN的多粘菌素发酵过程建模[J].江南大学学报(自然科学版). 2004,3(3): 256-260.
    12.李运锋,袁景淇.头孢菌素C发酵过程状态变量及效益函数预报方法[J].化工学报,2005, 17(56): 1281-1283.
    13. WANG Bin, WANG Sun an, LIU Shu guang .A method for nonlinear system model in fermentation process [J].BASIC SCIENCES JOURNAL OF TEXTILE UNIVERSITIES, 2005, 1(18): 78-82.
    14.高学金等.微生物发酵过程建模与优化控制[J].控制工程, 2006, 13(2): 152-157
    15.黄丽.基于神经网络软测量的ε-聚赖氨酸发酵过程控制的研究[D]江苏大学, 2006
    16. LeiZhi Chen, Sing Kiong Nguang, Xiao Dong Chen, Xue Mei Li .Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms[J]. Biochemical Engineering Journal, 2004, 22(1): 51-61
    17. Zhihua Xiong, Jie Zhang. Modelling and optimal control of fed-batch processes using a novel control affine feed forward neural network[J]. Neurocomputing, 2004, 61(1): 317-337
    18. Zhihua Xiong, Jie Zhang. Neural network model-based on-line re-optimisation control of fed-batch processes using a modified iterative dynamic programming algorithm[J]. Chemical Engineering and Processing, 2005, 44(4): 477-484
    19. Massimo C D, Montague G A, et Towards improved penicillin fermentation via artificial neural network [J].Comput.Chen. Eng, 1992, 16(4): 283-291.
    20. Lennox B, Montague G A, Hiden H G, et.Process monitoring of an industrial fed-batch fermentation [J]. Biotechnology and Bioengineering, 2001, 74(2):125-135.
    21. McGovern A C, Broadhurst D, Taylor J, et.Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: Application to gibberellic acid production [J]. Biotechnology and Bioengineering, 2002, 78(5): 527-538.
    22. Siris ?. Laursen, Daniel Webb, W. Fred Ramirez. Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein[J]. Computers & Chemical Engineering, Volume 31, Issue 3, 19 January 2007, 31(3): 163-170
    23.冯瑞,张浩然,邵惠鹤.基于SVM的软测量建模[J].信息与控制,2002, 6(31):567-571.
    24.冯瑞,宋春林,张艳珠,邵惠鹤.基于支持向量机与RBF神经网络的软测量模型比较研究[J].上海交通大学学报, 2003.37(sup):122-125.
    25. Feng R, Shen W, Shao H. A soft sensor modeling approach using support vector machines [A]. Proceedings of the American Control Conference [C]. Piscataway, NJ, USA:IEEE, 2003: 3702-3707.
    26.刘毅,王海清.采用最小二乘支持向量机的青霉素发酵过程建模研究[J].生物工程学报, 2006,22(1): 144-148
    27.桑海峰.基于支持向量机与遗传算法的发酵过程软测量建模[J],东北大学学报(自然科学版), 2007,28(6): 781-784
    28. Jianlin WANG, Tao YU, Cuiyun JIN On-line Estimation of Biomass in Fermentation Process Using Support Vector Machine[J]. Chinese Journal of ChemicalEngineering, 2006,14(3): 83-388
    29. Yunfeng LI, Zhifeng WANG, Jingqi YUAN. On-line Fault Detection Using SVM-based Dynamic MPLS for Batch Processes[J]. Chinese Journal of Chemical Engineering, 2006,14(6): 754-758
    30.张泉灵,金晓明,王树青等.基于主元分析和模糊模型的链霉素发酵过程建模[J].无锡轻工大学学报, 2000,19(5):447- 451.
    31. Yuan Z ,Bogaert H ,Devisscher M,et On-line estimation of the maximum specific growth rate of nitrifiers in activated sludge systems[J]. Biotechnology and Bioengineering, 1999,65(3): 265-273.
    32.钱积新,赵钧,徐祖华.预测控制[M].化学工业出版社, 2007
    33.谢磊,张泉灵,王树青等.基于多模型的自适应预测函数控制[J].浙江大学学报(工学版), 2003, 37(2): 190-193.
    34. Simon L, Karim M N. Identification and control of dissolved oxygen in hybridoma cell culture in a shear sensitive environment[J]. Biotechnology Progress,2001,17(4): 634-642.
    35. Rodrigues J A D, Maciel Filho R. Production optimization with operating constraints for a fed-batch reactor with DMC predictive control[J]. Chemical Engineering Science, 1999, 54(13-14): 2745-2751.
    36. Ramaswamy S, Outright T J, Qammar H K. Control of a continuous bioreactor using model predictive control[J]. Process Biochemistry, 2005, 40(8): 2763-2770.
    37. Ben Youssef C, Guil(ou V, Olmos-Dichara A. Modelling and adaptive control strategy in a lactic fermentation process[J]. Control Engineering Practice, 2000, 8(11): 1297-1307.
    38.孙西,金以慧,方崇智.双线性系统的自适应控制及其在谷氨酸pH值控制中的应用[J].自动化学报, 1995, 21(2): 209-213.
    39. Dochain D, Bastin G. Adaptive identification and control algorithms for nonlinear bacterial growth systems[J]. Automatica, 1984, 20(5): 621-634.
    40.谢胜利,田森平,谢振东.迭代学习控制的理论与应用[M].科学出版社,2005.
    41. Zhang B S, Leigh J R. Predictive time-sequence iterative learning control with application fermentation process[C]. Proceedings of the Second IEEE Conference on Control Applications,Canada, 1993, vol.l: 439-442.
    42. Waissman V J, Youssef C B, Vazquez R G.. Iterative learning control for a fedbatch lactic acid reactor[C]. Proceedings of 2002 IEEE International Conference on Systems, Man and Cybernetics, 2002, vo1.6: 5-10.
    43. Choi J W, Choi H G, Lee K S et al. Control Acinetobacter calcoaceticus RAG-1 using a of ethanol concentration in a fed-batch cultivation of feedback-assisted iterative learningalgorithm[J]. Journal of Biotechnology, 1996, 49(1-3): 29-43.
    44.史忠科,吴方向,王蓓,阮洪宁.鲁棒控制理论[M].国防工业出版社, 2004.
    45. Renard F, Vande Wouwer A, Valentinotti S et al. A practical robust control scheme for yeast fed-batch cultures-An experimental validation[J].. Journal of Process Control, 2006, 16(8): 855-864.
    46. Georgieva P G, Feyo De Azevedo S. Robust control design of an activated sludge process[J].. International Journal of Robust and Control, 1999, 9(13): 949-967.
    47. Nguang S K, Chen X D. Robust control of a class of continuous fermentation processes[J].. Applied Mathematics Letters, 1999, 12(6): 61-69.
    48. Stoyanov S, Simeonov. Robust compensator control of continuous fermentation processes[J].. Bioprocess and Biosystems Engineering, 1996, 15(6): 295-300.
    49.诸静.模糊控制理论与系统原理[M].机械工业出版社, 2005.
    50. Horiuchi J I, Kishimoto M. Application of fuzzy control to industrial bioprocesses in Japan[J]. Fuzzy Sets and Systems, 2002, 128(1): 117-124.
    51. Karakuzu C, Turker M, Ozturk S. Modelling, on-line state estimation production scale fed-batch baker's yeast fermentation[J].. Control Engineering and fiizzy control of Practice, 2006, 14(8): 959-974.
    52. Campello R J G B, Von Zuben F J, Amaral W C et al. Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control[J]. Chemical Engineering Science, 2003, 58(18): 4259-4270.
    53.王耀南.智能控制系统[M]湖南大学出版社,1996
    54. Suteaki S, Kazuyuki S, Toshiomi Y. Knowledge-based design and operation of bioprocess systems[J].Journal of Bioscience and Bioengineering, 1999, 87(3): 261-266.
    55. Lennox B, Kipling K, Glassey J et al. Automated production support for the bioprocess industry[J]. Biotechnology Progress, 2002, 18(2): 269-275.
    56. Hrncirik P, Nahlik J, Vovsik J. The BIOGENES system for knowledge-based bioprocess control[J]. Expert Systems with Applications, 2002, 23(2): 145-153.
    57. Cimander C, Bachinger T, Mandenius C. Integration of distributed multi-analyzer monitoring and control in bioprocessing based on a real-time expert system[J]. Journal of Biotechnology, 2003, 103(3): 237-248.
    58.王永庆.人工智能原理与方法践[M].西安交通大学出版社, 1998
    59.肖应旺,徐保国.抗生素发酵补料智能控制系统[J].化工自动化及仪表, 2004,31(2): 17-20.
    60.王海霞,肖应旺,徐保国.基于SVM-IGA的补料分批发酵过程优化控制[J].计算机测量与控制, 2005,13(7): 674-676.
    61. Jayati R D,Pranab K D,Rintu B.Modeling and optimization of protease production by a newly isolated Pseudomonas sp.using a genetic algorithm[J]. Process Biochemistry, 2005,40(2): 879–884.
    62.王斌,王孙安.生物发酵过程的温度控制模型研究[J].西安交通大学学报, 2004, 38(7): 737-740.
    63. Nagy Z K. Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks[J]. Chemical Engineering Journal, 2007, 127(1-3): 95-109.
    64.陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,2002
    65.王树青,元英进.生化过程自动化技术[M].北京:化学工业出版社,1999.
    66. Nguang S K, Chen X D. Simple state productivity of a class of substrate feeding rate control mechanism for optimizing the steady continuous fermentation processes[J]. Biotechnology Progress, 1997, 13(2): 200-204.
    67. Rolf M J,Lim H C. Experimental adaptive on-line optimization of cellular productivity of a continuous bakers' yeast culture[J]. Biotechnology and Bioengineering, 1985, 27(8): 1236-1245.
    68. Szederkényi G, Kristensen N R, Hangos K M, et a1.Nonlinear analysis and control of a continuous fermentation process[J].Computers and Chemical Engineering, 2002,26(4): 659-670.
    69. KambhamPati C, Tham MT, Montague GA,Morris AJ.Optimising control of fermentation Processes[J]. IEE proceedings part D, 1992,139(l):60-66.
    70. Shukla P K,Pushpavanam S.Optimisation of biochemical reactors an analysis of different approximations of fed-batch operation[J]. Chemical Engineering Science, 1998, 53(2): 341-352.
    71. Vassiliadis V S, Sargent, R. W. H., Pantelides C C. Solution of a class of multistage dynamic optimization problems. I. Problems without path constraints[J]. Industrial and Engineering Chemistry Research, 1994, 33(9): 2111-2122.
    72. Cuthrell J E, Biegler L T. Simultaneous optimization and solution methods for batch reactor control profiles[J]. Computers and Chemical Engineering, 1989, 13(1-2): 49-62.
    73. Sudip R,Ravindra D G,Venkatesh K V,et a1.Optimal control strategies for simultaneous saccharification and fermentation of starch process[J]. Biochemistry, 2001, 36(8-9): 713-722.
    74. Bellman R E. Dynamic Programming. Princeton, New Jersey: Princeton University Press,1957.
    75. Luus R, Rosen O. Application of dynamic programming to final state constrained optimal control problems[J]. Industrial and Engineering Chemistry Research, 1991,30(7): 1525-1530.
    76. Lee J H, Lim H C, Yoo Y J et al. Optimization of feed rate profile for the monoclonal antibody production[J]. Bioprocess and Biosystems Engineering, 1999, 20(2): 137-146.
    77. Lin J S, Hwang C. Enhancement of the global convergence of using iterative dynamic programming to solve optimal control problems[J]. Industrial and Engineering Chemistry Research, 1998, 37(6): 2469-2478.
    78. Banga J R, Alonso A A, Singh R P. Stochastic dynamic optimization of batch and semicontinuous bioprocesses[J]. Biotechnology Progress, 1997, 13(3): 326-335.
    79. Rodriguez-Acosta F, Regalado C M, Tomes N V. Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae[J]. Journal of Biotechnology, 1999, 68(1): 15-28.
    80. Sarkar D, Modak J M. Genetic algorithms with filters for optimal control problems in fed-batch bioreactors[J]. Bioprocess and Biosystems Engineering, 2004, 26(5): 295-306.
    81.张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报, 2005, 56(1): 100-104.
    82. Jayaraman V K, Kulkarni B D, Gupta K et al. Dynamic optimization of fed-batch bioreactors using the ant algorithm[J]. Biotechnology Progress, 2001, 17(1): 81-88.
    83. Kookos I K. Optimization of batch and fed-batch bioreactors using simulated annealing[J]. Biotechnology Progress, 2004, 20(4): 1285-1288.
    84. Kapadi M D, Gudi R D. Optimal control of fed-batch fermentation involving multiple feeds using differential evolution[J]. Process Biochemistry, 2004, 39(11): 1709-1721.
    85. Moonchai S, Madlhoo W, Jariyachavalit K et al. Application of a mathematical model and differential evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7[J]. Bioprocess and Biosystems Engineering, 2005, 28(1): 15-26.
    86.贺益君.多目标粒子群优化算法补料分批生化反应器的动态多目标优化[J].化工学报, 2007,58(5):1262-1270
    87.刘国海,周大为,徐海霞,梅从立.基于SVM的微生物发酵过程软测量建模研究[J].仪器与仪表学报, 2009, 31(6):1228-1232
    88.杨强大,王福利,常玉清.基于加权RBF神经网络的诺西肽发酵过程菌体浓度软测量[J].化工学报, 2009,59(10):2553-2560
    89.杨强大,王福利,常玉清,张璇.基于阶段识别的诺西肽发酵过程软测量建模[J].仪器与仪表学报, 2008, 29(8):1779-1783
    90.潘丰.生化过程智能控制研究[D].无锡:江南大学,2001.
    91. Holms H. Flux analysis and control of the central metallic pathways in Escherichia coil[J]. FEMS Microbiol Reviews,1996,19(2): 85-116
    92.李志敏,叶勤.大肠杆菌乙酸耐受株的代谢流分布[J].华东理工大学报, 2002, 28(3):248~251
    93.杨艳,曹竹安,李春.谷氨酰胺产生菌NS611的代谢流分析[J].无锡轻工大学学报, 2003, 22(2): 38-43
    94. Takac S. J Cnhk, S Mivituan. Metabolic flux distribution for the optimized production of L-glutamate[J]. Enzyme & Mi-crobial Tech, 1998, 23: 286-300
    95. N.Takiguchi, HShianzu, S. Shioin. An on-line physiological state recongnition system for the lysine fermentation process based on a metabolic reaction model[J], Biotechnol Bio-eng, 1997, 55(3):170-181
    96. Tada K, Kishimotc M, T Omisi., Constrained optimization of lysine production based metabolic flux using a mathematical pro-gramming method [J], Biosci & Bioeng, 2000, 91(6): 344~351
    97.张成燕,郜培,史仲平,毛忠贵.基于代谢网络模型的谷氨酸发酵产酸速率在线预测[J].食品与发酵工业, 2005, 31(4): 54-56
    98.张成燕.利用代谢网络模型和线性规划法在线推定谷氨酸发酵中产物浓度[D].江南大学, 2005.
    99.史仲平,潘丰.发酵过程解析、控制与检测技术[M].北京:化学工业出版社, 2005.
    100.张嗣良.发酵过程多水平问题及其生物反应器装置技术研究基于过程参数相关的发酵过程优化与放大技术[J].中国工程科学, 2001, 8(3):37-44.
    101.De Assis A J. Soft sensors development for on-line bioreactor state estimation[J]. Computer&Chemical Engineering, 2000, 24(2):1099-1103.
    102.俞金寿.软测量技术及其应用[J].自动化仪表, 2008, 29(1): 5-7.
    103.常玉清,王福利,王小刚等.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报, 2006, 27(3): 241-244.
    104.吕志军,杨建国,项前.基于支持向量机的纺纱质量预测模型研究[J].控制与决策, 2007, 22(6): 693-696.
    105.杨志民,刘广利.不确定性支持向量机原理及应用[M].科学出版社, 2007.
    106.Vapnik Vladimir N. The Nature of Statistical Learning Theory[M] Berlin, Springer, 1995:1002-1032.
    107.Vapnik V, Golowich S, Smola A. Support vector machine for function approximation, regression estimation, and signal processing [A]. In: Mozer M, Petsche T(eds). Neural Information Processing Systems, MIT Press, 1997.
    108.元英进,苗志奇等.一种用于谷氨酸发酵生产流程预测的模糊-神经网络[J].化工学报, 1997,45(6): 553-559.
    109.李允公,张金萍,吴宁祥,刘杰.基于主元分析的频谱整体识别方法[J].东北大学学报(自然科学版), 2008.29(9):1322-1325.
    110.Cristianini N.等著,李国正等译.支持向量机导论[M].北京:电子工业出版社,2004.
    111.Yan Weiwu,Shao Huihe, Wang Xiaofan. Soft sensing modeling based on support vector machine and Bayesian model selection[J]. Computers &Chemical Engineering, 2004,28(3): 1489-1498.
    112.阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报, 2003,15(10):1494-1496.
    113.SUYKENS J A K. Nonlinear modeling and support vector machine[C]. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001: 287-294.
    114.Syed N A, Liu H, Sung K K. Incremental learning with support vector machines [C]. Proc of Workshop on Support Vector Machines at the Int Joint Conf on Artificial Intelligence. Sweden, 1999: 313-321.
    115.Cauwenberghs G, Poggio T. Incremental and decremental support vector machines learning [C]. Advances in Neural Information Systems. Cambridge: MIT Press, 2001: 409-415.
    116.Xiao-hu ZHAO, Gang WANG, Ke-ke ZHAO, De-jian TAN. On-line least squares support vector machine algorithm in gas prediction. Mining Science and Technology (China), 2009,19( 2): 194-198.
    117.M. Arun Kumar, M. Gopal Least squares twin support vector machines for pattern classification[J]. Expert Systems with Applications, 2009,36(4):7535-7543.
    118.Vijayakumar S, Wu S. Sequential support vector classifiers and regression[C]. Proc Int Conf on Soft Computing. Genca, 1999: 610-619.
    119.Jyrki Kivinen, Alexander J Smola, Robert C Williamson. Online learning with kernels[J]. IEEE Trans on Signal Processing, 2004, 52(8): 2165-2176.
    120.叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报, 2005, 54(6): 2568-2573.
    121.Suykens,J.A.K.,Vandewalle,J. Multiclass least squares support vector machines [C], In: International Joint Conference on Neural Networks,Washington(1999).
    122.李言俊,张科.系统辨识理论及应用[M].北京:国防工业出版社, 2003.
    123.LI Lijuan,SU Hongye, CHU Jian.2 Modeling of Isomerization of C8 Aromatics by Online Least Squares Support Vector MachineChinese Journal of Chemical Engineering, 2009,17(3): 437-444.
    124.周辉仁,郑丕谔,任仙玲.最小二乘支持向量机的参数优选方法及应用[J].系统工程学报, 2009.24(2): 248-252.
    125.BAL ICKI J. Multi-criterion evolutionary algorithm with model of the immune system to handle constraints for task assignments[J]. IEEE Trans actions on System, Man and Cybernetics, 2004, 30(5): 394-399.
    126.JIAO L, WANG L. A novel genetic algorithm based on immunity IEEE Transactions on System, Man and Cybernetics, Part A, 2000, 30 (5): 552-561.
    127.刘胜,李妍妍.自适应GA-SVM参数选择算法研究[J].哈尔滨工程大学学报2007.28(4): 388-402.
    128.陈宏文,方柏山,胡宗定.遗传算法应用于分批发酵动力学模型参数估算[J].华侨大学学报. 2002, 21(1): 71.
    129.王东阳,王健,陈宁.基于遗传算法的谷氨酸发酵动力学参数估计[J].生物技术通讯. 2005,16(4): 407-408.
    130.M.Athams.Command and Control(C2)Theory:A Challenge to Control Science[J].IEEE Trans on Automatic Control. 1987, 32(4): 286-293.
    131.CAMLIBEL,MK. Popov-Belevitch-Hautus type con-trollability tests for linear complementarity systems[J]. Systems and Control Letters, 2007, 56(5): 381-387.
    132.张悦,王东风,韩璞,徐大平.一类混杂系统的推广自动机模型及其仿真[J].系统仿真学报, 2007,19(15): 3546-3549.
    133.V. Azhmyakov, V.G. Boltyanski, A. Poznyak. Optimal control of impulsive hybrid systems Nonlinear Analysis: Hybrid Systems, 2008, 2(4):1089-1097.
    134.Gino Labinaz, Martin Guay. Robust viability of hybrid systems. Nonlinear Analysis: Hybrid Systems, 2008, 2(1):184-195.
    135.Pu Han,Yue Zhang,Dong Feng Wang,Da Ping Xu.Generalized Predictive Control for Constraint Hybrid System[C].2007 IEEE International Conference on Control and Automation.Guangzhou,CHINA, 2007: 2495-2498.
    136.E.K.BOUKAS. Output feedback stabilization of sto-chastic non-linear hybrid systems[J]. IMA Journal of MathematicalControl and Information, 2006, 23(2): 137-148.
    137.郑刚,谭民,宋永华.混杂系统的研究进展[J].控制与决策, 2004,19(1): 7-12.
    138.李卫东,刘曰锋.混杂系统研究综述[J].自动化技术与应用, 2007,27(1): 1-4.
    139.廖伟志,古天龙.基于一种新型混杂Petri网的混杂系统建模与控制[J].2007, 22(4): 366-372.
    140.李秀改,高东杰,王宇红.基于混合逻辑动态模型的混杂系统预测控制[J].控制与决策, 2002,17(3): 315-319.
    141.曾锋,高东杰.基于混合逻辑动态的混杂系统研究及应用[J].控制工程, 2006,13(1): 60-65.
    142.邹涛,王昕,李少远.基于混合逻辑的非线性系统多模型预测控制[J].自动化学报, 2007,33(2):188-192.
    143.Koutsoukos X.D.,HeK.X.,Lemmon M.D. and Antsaklis P.J. Timed Petri Nets in hybrid systems:stability and supervisory control,Discrete Event Dynamic Systems: Theory and Applications, 1998.8:137-173.
    144.BLANCHINI,F. PELLEGRINO,F.A. Relatively optimal control and its linear implementation[J]. American Control,IEEE Transactions on, 2003,(12): 2151-2162.
    145.陈阳舟等.基于动态规划原理的混杂系统二次型最优控制[J],北京工业大学学报, 2004,30(3): 20-23.
    146.李凌,井元伟,袁德成.一类混杂系统的优化控制[J].东北大学学报(自然科学版), 2006,36(9): 28-31.
    147.李秀改,高东杰.混杂系统滚动时域状态反馈预测控制研究与实现[J].自动化学报, 2004,30(4): 89-93.
    148.陈坚,堵国成等.发酵工程实验技术[M],化学工业出版社,2003.5
    149.胡宗定,陶国琴.谷氨酸发酵动力学模型[J].生物工程学报, 1992, 8(3): 294-298
    150.褚玉明,李永民.解析函数与Lipschitz条件[J].大学数学, 2005, 21(6): 78-79
    151.杨彩萍. Gronwall引理的一种推广及其应用,山西大学自然科学版. 1997, 20(3): 242-245
    152.李兵,将慰孙.混沌优化方法及其应用.控制理论与应用. 1997, 14(4):613-615
    153.袁小芳,王耀南.基于混沌优化算法的支持向量机参选取方法.控制与决策. 2006. 21(1): 111-117
    154.王东阳,王健,陈宁.基于遗传算法的谷氨酸发酵动力学参数估计.生物技术通讯,2005,16(4): 407-408
    155.俞金寿.软测量技术及其应用[J].自动化仪表, 2008,29(1):1-7
    156.傅永峰.软测量建模方法及其工业应用[D],浙江大学博士学位论文, 2007
    157.Yan W W, ShaoH H, Wang X F. Soft sensing model based on support vector machine and its application [J]. Chinese Journal of Mechanical Engineering, 2004, 17(1): 55~58.
    158.常玉清,王小刚,王福利.基于多神经网络模型的软测量方法及应用[J].东北大学学报自然科学版. 2005, 26(6): 519-522
    159.徐恭贤.一类生化过程的优化及控制方法研究[D].大连理工大学博士论文. 2007
    160.金东海,桂幸民.应用多目标遗传算法的叶栅气动优化设计[J].航空动力学报, 2007, 22(02): 286-290
    161.刘攀,郭生练,李玮,林凯荣.用多目标遗传算法优化设计水库分期汛限水位[J].系统工程理论与实践, 2007,(04): 81-90
    162.宋海华,宋高鹏,宋静,宋富财.多目标遗传算法在反应精馏优化中的应用[J].化学工业与工程[J]. 2008, 25(1): 51-55
    163.赖旭芝,李爱平,吴敏,雷琪.基于多目标遗传算法的炼焦生产过程优化控制[J].计算机集成制造系统. 2009, 15(5): 991-997
    164.J. Kennedy, R. C. Eberhart. Particle Swarm Optimization [A]. Proc. IEEE Int’l Conference on Neural Networks[C], IV. Piscataway, NJ: IEEE Service Center, 1995:1942-1948.
    165.Hu X, Eberhart R C·Multiobjective optimization using dynamic neighborhood particle swarm optimization[J]. Proc IEEE Congress on Evolutionary Computation, Honolulu:HI, 2002:1677-1681
    166.Coello C A C, Pulido G T, Lechuga M S·Handling multiple objectives with particle swarm optimization[J]. IEEE Trans.Evol.Comput·, 2004,8: 256-279
    167.Huang V L, Suganthan P N, Liang J J·Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems·International Journal of Intelligent System, 2006, 21: 209-226
    168.赵江,张贵炜,齐欢.发酵过程的多模型融合建模算法[J].信息与控制2005,34(2): 172-176
    169.Richard A J, DeanW W,陆璇.实用多元统计分析(第四版) [M].北京:清华大学出版社, 2001.
    170.傅永峰.软测量建模方法建模方法研究及其工业应用[D],浙江大学博士学位论文。2007.3.
    171.Mu S., Zeng Y, Liu R., Wu P., Su H., Chu J.. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA)process [J]. Journal of Process Control, 2006, 16(6): 557-566
    172.Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[C]. Proc ACM Symp on Applied Computing 2002, Madrid The Association for Computing Machinery, 2002: 603-607
    173.Coello A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans.Evol.Comput. 2004,8(3): 256-279
    174.Hu X, Eberhart R C. Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proc IEEE Congress on Evolutionary Computation, Honolulu:HI, 2002: 1677-1681
    175.Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems[J]. International Journal of IntelligentSystem, 2006, 6(21): 209-226
    176.J.Sun, B Feng, Wenbo Xu.Particle swarm optimization with particles having quantum behavior[C]. Proceedings of the congress on Evolutionary compution, 2004:325-331
    177.J.Sun, Wenbo Xu. A global search strategy of Quantum behaved particle swarm optimization[C]. Proceedings of the congress on Cybernetics and Intelligent systems.2004: 111-116
    178.D.A.Van Veldhuizen and G.B. lamont. Multiobjective Evolutionary Algorithm Research : A history and analysis[M]. Dept. Elec.Comput.Eng.,Graduate School of Eng., Air Force Inst.Technol.,Wright-Patterson AFB, OH.Tech.Rep.TR-98-03,1998.
    179.J. Schott. Fault tolerant design using single and multicriteria genetic algorithm optimization[M]. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,1995.
    180.Kalyanmoy Deb, Amrit Pratap, and T. Meyarivan. Constrained Test Problems for Multi-objective Evolutionary Optimization[C]. In: Proceedings of the 1st International Conference on Evolutionary Multi-Criterion Optimization, Zurich, Switzerland, 2001, Springer-Verlag, p284-298
    181.孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J],计算机学报, 2008, 31(2): 228-235.
    182.东方仿真公司网站,http://www.besct.com.
    183.苏金明,黄国明,刘波. MATLAB与外部程序接口[M].北京:电子工业出版社,2004.
    184.周涛,吕伟臣,王媛红. SQL SERVER 2005数据库管理高级教程[M].北京:清华大学, 2007.
    185.隋永强,郭建明.基于VB和ActiveX技术的OPC DA客户端开发与应用[J].武汉理工大学学报(交通科学与工程版), 2007,31(3): 506-509
    186.欧金成,林德杰,彭备战.通过VB调用MATLAB实现图形和界面的相结合[J].计算机工程与设计, 2002, 23(12): 64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700