用户名: 密码: 验证码:
基于CPR的混合动力挖掘机液压节能系统及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染现象的持续加重,已经逐渐成为制约人类社会健康发展的关键问题。尤其对于具有用量大、效率低、排放差特点的挖掘机,对其进行节能研究不但有利于缓解能源压力、保护环境而且对其他类型的工程机械具备指导意义。由于液压混合动力技术具备功率密度大、全充和全放能力强和可以回收能量的优点,所以是最具产业化应用前景的先进技术之一。但迄今为止,对于液压混合动力挖掘机的研究还大多局限于某个子回路,尤其缺少从宏观上对于整机的系统设计以及所衍生出的能量控制策略、执行元件控制性能等问题的研究,导致这种技术的实际应用受到很大限制。本文以国家自然科学基金项目“节能型静液传动混合动力系统的理论基础及相关技术研究”等为依托,以基于CPR的混合动力挖掘机液压系统为研究对象,从整机液压系统的分析设计到实际实施过程中的关键技术进行了全面深入的研究。
     结合着国内外混合动力挖掘机的发展现状,分别横向比较了液压混合动力和电动混合动力的特点以及纵向比较了采用各自技术的具体机型。选定基于CPR的液压混合动力技术作为深入研究对象,并综述了该技术的发展现状和趋势。提出切换控制的基于CPR的混合动力挖掘机液压系统结构并阐述了工作原理。采用结合理论分析和关键元件单独测试的方法建立了整机的数学模型,并对新系统中新增的元件提出了选型方法。通过动力学分析的方法对例如液压缸摩擦系数以及机械臂转动惯量等无法直接获得但又对仿真分析具备较大影响的参数进行了机械臂单独运动情况下的辨识分析,并利用机械臂复合工况试验结果对其进行了验证。然后,利用获得的整机参数,以标准工况下发动机油耗最小为优化目标,利用离散动态规划算法对挖掘机的关键元件参数进行了优化匹配分析,从而降低了整机油耗。
     通过对比量化分析了基于LUDV原理的原挖掘机和本文提出的新型液混挖掘机在相同工况下的能耗情况,结果表明新系统可节能37%,而且结合着新型液混挖掘机的能耗分布情况,提出了通过降低控制油路溢流压力来进一步节能的方法。设计了适用于新型液混挖掘机的分层控制系统结构,明确了每层的任务并以中间层即控制策略设计为主要研究内容,研制了三种具备工程实践价值的基于规则的控制策略,其中可调单点准恒压控制策略综合效果最好。
     针对提出的可降低油耗的控制策略可能降低执行元件控制性能的问题,对控制油路的先导机构设计了增加积分项的前向补偿的滑模控制器,能够在降低控制油路压力的前提下实现不损失控制性能的目的。对于新增的传感器容易受到干扰的问题,尤其是首次引入的陀螺仪的抗干扰能力较差,开发了基于新型观测器的速度控制系统,保证在传感器非正常工作条件下仍能获得较好的控制性能。最后,针对液压变压器控制液压缸系统具有耦合和强非线性问题,设计了结合动压反馈和模糊控制的控制器,从而不需要关注系统模型的内部结构,提高了液压缸速度控制的鲁棒性。
     本文最后进行了实机实验和台架模拟实验。首先,对一台基于LUDV原理的5t级挖掘机增加了数据采集系统,并进行了标准工况的测试,利用试验数据进行了能耗分析,验证所建模型的准确性。然后,采用发动机直接驱动液压泵/马达且以溢流阀模拟负载的方式对提出的增加积分项的前向补偿滑模控制器进行了实验,结果表明了该算法可有效的提高变量(变压)机构位置控制系统的准确性和鲁棒性。对回转装置进行了基于CPR原理的改造,通过空载和重载的实验证明了提出方案的可行性。然后,搭建了液压变压器控制液压缸的模拟实验平台,分别进行了液压变压器配流盘转角控制和液压缸的位置控制实验,实验结果表明该控制方式可以完成预设任务,虽然精度不高,但适用于挖掘机这种对于准确性要求较低的工程机械领域。
The increasing energy crisis and environmental deterioration phenomenon is becoming the key problem for preventing the healthy development of the world. The energy saving research for excavators is not only benefit for reducing the energy consumption, but also making an example for other type construction machines. Moreover, the hydraulic hybrid technique is promising because the high power density and the energy recuperation potential. However, the state of the art about this technique is mostly constrained with the sub system, esplecially lack of the control strategy or the performance research from the whole aspect. Hence this technique is not popular until now. Based on the project of “key technological research on the energy-efficient hydrostatic hybrid system” supported by National Natural Science Foundation of China, this paper focuses on the hydraulic hybrid excavator based on CPR and invistages the whole machine design and the key problems during the practical process.
     Firstly, the characteristics between the hydraulic and the electric hybrid excavators are analyzied by introducing the exact model based on the state of the art of the hybrid excavators. Then, the hydraulic hybrid excavator based on CPR is chosen as the research object and the development of the technique is stated. Furthermore, the Hydraulic Hybrid Excavator based on Common Pressure Rail combined Switched Function is presented and the principle is explained. The whole machine model is constructed by using the theory analysis combined with the test rig testing method for the critical components. And the matching process of the new elements is finised. Then, some critical parameters are necessary for simulation but hard to get, such as the friction coefficient and the rotational inertia, are identified by using the single testing of the arm, and the compound control action is used to prove the result. Moreover, the optimal mataching for the critical elements is analyzied by using the dynamic programming algothim under the minimum fuel consumption object during the standard cycle.
     The new system can save the oil consumption as37%by comparing the original LUDV excavator. Furthermore, the method by using lower relief pressure is presented after analyzing the energy distribution of the new excavator. Moreover, the hierarchical controller combined with control strategy and control method is designed, especially three kinds of practical control strategies are studied for the middle layer and the ASPS is the best one.
     The FSMI controller is designed to enhance the performance under the lower pilot control pressu caused by adopting the energy saving control stragety. For the new sensor which is easy to disturb, especially for the gyro, the observe-based controller is investigated and the result shows that the control performace is acceptable even under the condition while the sensor fails. Finally, because the cylinder controlled by the hydraulic transformer has the strong coupling and nonlinear problem, the controller combined the active pressure feedback and fuzzy principle is presented to enhance the robust performance without concering the interior structure.
     In the end of the thesis, both the test rig and the prototype machine experiments are conducted. Firstly, the original5t excavator is modified by adding the data acquisition system and the standard working cycle is tested to prove the simulation result for the energy distribution analysis. Moreover, the swash plate position experiment by using the method, that the engine drives the pump/motor and the relief valve is simulated as the load, is finised to test the effictiveness of the control algorithm. Then, the swing is modified according to the CPR theory and the feasibility is tested under the conditions of light load and overload respectively. Furthermore, the test rig for the cylinder controlled by the hydraulic transformer is constructed. The experiment including angle control of the port plate and the position control of the cylinder is tested, the result shows the method can complete the task in spite of the accuracy is low, however, it is appropriate for the construction machine such as excavators because this kind of machines does not require the high accuracy.
引文
[1] Sthel, M.S, Tostes, J.G.R, Tavares, J.R. Current energy crisis and its economicand environmental consequences: intense human cooperation[J]. NaturalScience,2013,(5):244–252.
    [2] Eoin Driscoll, Garret Donnell. Industrial power and energy metering: A stateof the art review[J]. Journal of Cleaner Production,2013,(41):53-64.
    [3] Armaroli N, Balzani V. Energy for a sustainable world[M]. Wiley-VCH,Weinheim,2011.
    [4]陈晋市,刘昕晖,王同建等.平衡阀对起重机起升系统抖动现象的影响因素[J].中国工程机械学报,2010(1):46-50.
    [5]张慧明.节能环保—中日经贸关系发展新动力[J].国际经贸探索,2012,(8):56-61.
    [6] Griffin PW, Hammond GP, Ng KR, Norman JB. Impact review of past UKpublic industrial energy efficiency[J]. Energy Conversion and Management,2012,60(8):243–250.
    [7]王书平.立足科学发展观推动我国能源可持续发展[J].生态科学,2009,(5):16-21.
    [8] Yang J, Quan L, Yang Y. Excavator energy-saving efficiency based on dieselengine cylinder deactivation technology[J]. Chinese Journal of MechanicalEngineering,2012,25(5):897-904.
    [9]宋世鹏,朱新云,赵磊.液压挖掘机功率损失分析及节能控制技术研究[J].机床与液压,2008(11):80-81.
    [10]任小青.液压挖掘机节能技术的发展综述[J].机床与液压,2009(8):248-250.
    [11]刘崇.观拉斯韦加斯博览会谈液压挖掘机发展[J].建筑机械化,2002(4):53-60.
    [12]张彦廷.基于混合动力与能量回收的液压挖掘机节能研究[D].浙江大学博士论文,2006.
    [13]赵波,刘杰,戴丽等.挖掘机液压系统的节能技术分析[J].流体传动与控制,2007(4):40-42.
    [14]刘昕晖.液压混合动力在工程机械节能中的应用[J].工程机械文摘,2010,6:19-22.
    [15]刘静,潘双夏,冯培恩.挖掘机器人虚拟样机建模策略与仿真技术研究[J].浙江大学学报(工学版),2004,38(11):1490-1495.
    [16]冯培恩,高峰,高宇.液压挖掘机节能控制方案的组合优化[J].农业机械学报,2002,33(4):5-7,4.
    [17]纪云锋.液压挖掘机动力系统的节能控制研究[D].长沙:中南大学,2004:9-18.
    [18]国香恩.液压挖掘机节能模糊控制系统研究[D].长春:吉林大学博士学位论文,2004:31-48.
    [19]李艳杰,于安才,姜继海.挖掘机节能液压控制系统分析与应用[J].液压与气动.2010(8):69-74.
    [20] Kim H, Choi J, Yi K. Development of supervisory control strategy foroptimized fuel consumption of the compound hybrid excavator. Journal ofAutomobile Engineering2012;226(12):1652-1666.
    [21] Choi J,Kim H,Yu S,et al. Development of Integrated Controller for ACompound Hybrid Excavator[J]. Journal of Mechanical Science andTechnology,2011,25(6):1557.
    [22] Wang D,Lin X,,Zhang Y. Fuzzy Logic Control for A Parallel HybridHydraulic Excavator Using Genetic Algorithm[J]. Automation inConstruction,2011,20(5):581-587.
    [23] Xiao Q,Wang Q,Zhang Y. Control Strategies of Power System in HybridHydraulic Excavator[J]. Automation in Construction,2008,17(4):361-367.
    [24]董宁宁,殷晨波,张子立等.混合动力工程机械与氢动力发动机的研究进展[J].机电工程,2011,28(11):1300-1305,1309.
    [25]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[M].吉林大学博士学位论文,2005:30-40.
    [26] Komatsu Corporate Profile2008, PC200-8hybrid hydraulic excavatorcontributes to reducing CO2Emissions[J]. Views,2008,3(2008):4-5.
    [27] Hiroakilnoue. Introduction of PC200-8Hybrid Hydraulicexcavators[J].Komatsu Technical Report,2008,(54):1-51.
    [28] M.Kagoshima,M.Komiyama,T.Nanjo,A.Tsutsui. Development of newhybrid excavator[J]. Kobelco Technology Review,2007,(27):39-42.
    [29]陈宁.住友建机将于6月推出混合动力起吊挖掘机[J].工程机械与维修,2009(5):38.
    [30] Hitachi construction machinery Co.Ltd. Development of battery drivenconstruction machinery for CO2reduction[J].Technical report fordevelopment of technical measure for global warming control,2005
    [31]张彦廷,何广利,王庆丰等.基于能量流分析的液压挖掘机节能研究[J].机床与液压,2007,35(8):134-136.
    [32] Wang D Y,Pan S X,Lin X,et al. Design of Energy Storage Unit for HybridExcavator Power Management. Conference on Vehicle Power and Propulsion,VPPC’08,IEEE,2008:1-5.
    [33]董晗,刘昕晖,王昕,等.基于AMESim的液压混合动力系统节能特性[J].吉林大学学报:工学版,2013(5):1264-1270.
    [34] Lin T, Wang Q, Hu B, Gong W. Development of hybrid powered hydraulicconstruction machinery. Automation in Construction2010,19(1):11-19.
    [35] http://www.boschrexroth.com/en/xc/products/systems-and-functional-modules/mobile-hydraulics/hydraulic-flywheel-hfw/applications/index
    [36] Karl Pettersson, Seppo Tikkanen. Secondary control in constructionmachinery-Design and evaluation of an excavator swing drive. The11thScandinavian International Conference on Fluid Power, Link ping:SICFP’09,2009.
    [37]张树忠,邓斌,柯坚.基于液压变压器的挖掘机动臂势能再生系统[J].中国机械工程,2010,21(10):1161-1166.
    [38]姜继海,卢红影,周瑞艳,等.液压恒压网络系统中液压变压器的发展历程[J].东南大学学报自然科学版,2006,36(5):869-874.
    [39] G. E. M. Vael, P. A. J. Achten. The Innas fork lift truck-Working underconstant pressure[C]. Proc. of1. IFK, Aachen, Germany, Vol1, March1998
    [40] S. Hiroki, I. Shigeru, K. Eitaro,“Study on hybrid vehicle using constantpressure hydraulic system with flywheel for energy storage,” SAE Paper2004-01-3064,2004
    [41] M. Hubertus, W. Edgar,“Recent developments for the control of variabledisplacement motors with impressed pressure,” The3th JHPS InternationalSymposium,1996, pp.79~84
    [42]张斌,徐兵,欧阳小平,杨华勇,翁振涛,“液压变压器CPR实验台的设计,”液压与气动,第10期,2004, pp.8~12
    [43] Wu Baolin, Qiu Lihua, and Wang Zhanlin,“Four wheels driven independentlyby one pump driving four hydraulic motors,” Chinese Journal of MechanicalEngineering, Vol.18, No.2,2005, pp.232~236
    [44] http://www.hydraulicspneumatics.com/Classes/Article/ArticleDraw.aspx?CID=38545&HBC=Issue&OAS=&NIL=False
    [45] P. A. J. Achten,“The hydrid transmission,” SAE paper2007-01-4152,2007
    [46] P. Achten, G. Vael, H. Murrenhoff, T. Kohm scher, and M. Inderelst,“Low-emission hydraulic hybrid for passenger cars,” ATZ, vol.111,2009,pp.378~384
    [47] Xiangdong Kong, Long He, Yingjie Gao, and Qin Zhang,“The controlsystems of secondary regulation and theirs coupling and decouplingcharacteristics analysis,”2007IEEE International Conference on Automationand Logistics, Ji’nan, August2007, pp.735~739
    [48] Kyoung Kwan AHN, Triet Hung HO, and Quang Truong DINH,“A study onenergy saving potential of hydraulic on energy saving potential of hydrauliccontrol system using switching type closed loop constant pressure system,”Proceedings of the7th JFPS International Symposium on Fluid Power,TOYAMA, September2008, pp.317~322
    [49] Celestine N Okoye, Jiang Jihai, Liu Yuhui,“Design and development ofsecondary controlled industrial palm kernel nut vegetable oil expeller plant forenergy saving and recuperation,” Journal of Food Engineering, Vol.87,2008,pp.578~590
    [50] Sun Hui,“Multi-objective optimization for hydraulic hybrid vehicle based onadaptive simulated annealing genetic algorithm,” Engineering Applications ofArtificial Intelligence, Vol.23,2010, pp.23~27
    [51]赵立军.基于液压恒压网络的飞机牵引车关键技术研究[D].哈尔滨工业大学博士论文,2011.
    [52] P. A. J. Achten, G. E. M. Vael and Zhao Fu,“The Innas hydraulictransformer-The Key to the Hydrostatic Common Pressure Rail,” SAE2000-01-2561
    [53] P. A. J. Achten, Zhao Fu, G. E. M. Vael,“Transforming Future Hydraulics: anew Design of a Hydraulic transformer,” The Fifth Scandinavian InternationalConference on Fluid Power, SICFP’97, Link ping University, Sweden,1997
    [54] Werndin Ronnie and J. O. Palmberg,“Controller Design for a HydraulicTransformer,” Proceedings of the Fifth International Conference on FluidPower Transmission and Control (ICFP’2001), Hangzhou, China,2001, pp.56-61.
    [55] P. A. J. Achten, Titus van den Brink, and Johan van den Oever,“DedicatedDesign of the Hydraulic Transformer,” The3rd International Fluid PowerConference, Aachen, Germany,2002, pp.233~24
    [56] P. A. J. Achten, Titus van den Brink, and Marc Schellekens,“Design of avarible displacement floating cup pump,” The Ninth ScandinavianInternational Conference on Fluid Power, SICFP’05, Link ping, Sweden,2005, pp.1~16
    [57] P. A. J. Achten,“Power Density of the Floating Cup Axial Pistion Principle,”Proceedings of2004ASME International Mechanical Engineering Congressand Expo, IMECE2004, Anaheim, USA,2004, pp.1~12
    [58] P. A. J. Achten, M. P. A. Schellekens,“Efficiency and low speed behavior ofthe floating cup pump,” SAE2004-01-2653,2004
    [59] Peter Achten, Titus van den Brink, Jeroen Potma, Marc Schellekens, andGeorges Vael,“A four-quadrant hydraulic transformer for hybrid vehicles,”The11th Scandinavian International Conference on Fluid Power, SICFP’09,June2-4, Link ping, Sweden,2009,
    [60] XiaoPing Ouyang, HuaYong Yang, Bing Xu and XiuHua Xu,“Research on thehydraulic transformer with new distribution pairs,” Science in China seriesVol.51, No.4,2008, pp.435~442
    [61]卢红影,“电控斜轴柱塞式液压变压器的理论分析与实验研究,”哈尔滨工业大学,2008:12~25
    [62]荆崇波,苑士华,胡纪滨,李雪原,魏超,彭增雄.一种旋转斜盘可调液压变压器中国发明专利CN200910244456.1
    [63] Elton Bishop,“Digital hydraulic transformer-efficiency of natural design,”7thInternational Fluid Power Conference, Aachen, Germany,2010
    [64] Simon Baseley, Christine Ehret, Edward Greif, and Markus G.Kliffken,“Hydraulic Hybrid Systems for Commercial Vehicles,” SAE Paper2007-01-4150,2007
    [65] Lindgren Andrew, and Killing Bernd,“Accumulation of knowledge enhanceshydraulic circuits,” British Plastics and Rubber, Vol.4,2005, pp.14~15
    [66] Peter Achten, Georges Vael, Mohamed Ibrahim Sokar and TorstenKohm scher,“Design and fuel economy of a series hydraulic hybrid vehicle,” Proceedings of the7th JFPS International Symposium on Fluid Power,TOYAMA, September15-18,2008, pp.47~52
    [67]刘涛,姜继海,孙辉等.静液传动混合动力汽车的研究与进展[J].汽车工程,2009,31(7):586-591.
    [68] Sgro, Sebastian; Inderelst, Martin; Murrenhoff, Hubertus: Energy efficiencyof mobile working machines. Efficiency through Fluid Power[C].,7thInternational Fluid Power Conference;22-24March2010, Aachen, Germany
    [69] Inderelst, Martin; Losse, Stephan; Sgro, Sebastian; Murrenhoff, Hubertus:Energy efficient system layout for work hydraulics of excavators[C],Proceedings of the the Twelth Scandinavian International Conference on FluidPower: SICFP'11;18-20May,2011Tampere, Finland,Vol.1,2011,pp:177-191
    [70]刘成强,姜继海.斜盘柱塞式液压变压器的流量特性[J].吉林大学学报(工学版),2012,42(01)85-90
    [71] P. A. J. Achten, Titus van den Brink, and Johan van den Oever, DedicatedDesign of the Hydraulic Transformer[C]., The3rd International Fluid PowerConference, Aachen, Germany,2002, pp.233-24
    [72] Peter Achten, Titus van den Brink, Jeroen Potma, Marc Schellekens, andGeorges Vael, A four-quadrant hydraulic transformer for hybrid vehicles[C].,The11th Scandinavian International Conference on Fluid Power, SICFP’09,June2-4, Link ping, Sweden,2009,
    [73]刘刚,宋德朝,陈海明等.并联混合动力挖掘机系统建模及控制策略仿真[J].同济大学学报(自然科学版),2010,38(7):1079-1084.
    [74] Williamson C. Power management for multi-actuator mobile machines withdisplacement controlled hydraulic actuators[D]. Purdue University2010.
    [75]孙辉.二次调节静液传动车辆的关键技术及其优化研究[D].哈尔滨工业大学,2009.
    [76] Sun H,Jiang J H,Wang X. Factors Influencing the System Efficiency ofHydrostatic Transmission Hybrid Vehicles. Conference on Vehicle Power andPropulsion,VPCC’08,IEEE,2008:1-6.
    [77] Williamson C, Ivantysynova M. The effect of pump efficiency ondisplacement-controlled actuator systems[C]//Proc. of the Tenth ScandinavianInternational Conf. on Fluid Power (SICFP’07).2007:301-326.
    [78] Ivantysyn J, Ivantysynova M. Hydrostatic pumps and motors[M]. New Dehli:Academic Books International,2001.
    [79] P. A. J. Achten, G. E. M. Vael and Zhao Fu, The Innas hydraulictransformer-The key to the hydrostatic Common Pressure Rail[J]. SAE2000-01-2561
    [80] Heywood J. Internal Combustion Engine Fundamentals. McGraw-Hill BookCompany,1988:26-30.
    [81]蓄能器崔学红,孙余一,曾谢华.蓄能器在工程中的应用[J].有色金属设计,2010,(3):86-92.
    [82]王宣银,戴捷,皮阳军,等.功率回收型液压马达智能测试系统[J].液压气动与密封,2011,31(5):36-38.
    [83]刘阔,刘杰,杨克石.挖掘机器人的模型与自适应模糊滑模控制[J].中国机械工程学报,2009,(1):23-28.
    [84]孙凤,何怡刚,肖迎群. RFID射频信号的小波消噪方法[J].计算机仿真,2010,(3):35-40.
    [85]季忠,曹怡,秦树人.应用多分辨率小波变换提取脑电信号异常节律[J].重庆大学学报,2002,(7):132-137.
    [86]向峥嵘,王春芳.一类含阶跃干扰的切换系统最优控制[J].动力学与控制学报,2008,(2):98-104.
    [87] Li H, Yu J, Hilton C, Liu H. Adaptive sliding mode control for nonlinearactive suspension systems using T-S fuzzy model, IEEE Transactions onIndustrial Electronics,vol.60, no.8, pp.3328-3338,2013.
    [88] B. Wu, C. C. Lin, Z. Filipi, H. Peng and D. Assanis. Optimal powermanagement for a hydraulic hybrid delivery truck. Vehicle Systems Dynamics,2004,42(2):23-40.
    [89] A. brahma, Y. Guezennec, G. rizzoni. Optimal energy management in serieshybrid electric vehicles. Proceedings of American Control conference,2000,1(6):60-64.
    [90] C. lin, Z. Filipi, L. louca, et al. Modelling and control of a medium dutyhybrid electric truck. Heavy Vehicle Systems, International Journal of VehicleDesign,2004,11(3/4):349-370.
    [91] Z. Filipi, L. Louca, B. Daran, et al. Combined optimisation of design andpower management of the hydraulic hybrid propulsion system for the6×6mudium truck. International Journal of Heavy Vehicle Systems,2004,11(3/4)372-402.
    [92] Kim, T. J. and Filipi, Z. Series Hydraulic Hybrid Propulsion for a Light TruckOptimizing the Thermostatic Power Management.8th InternationalConference on Engines for Automobile, Capris, Italy, SAE Technical Paper2007-24-0080.
    [93] Cross, M.2011. Optimal Control: An Effective Method for DesigningHydraulic Hybrid Vehicles. M.S. thesis. Purdue University, West Lafayette, IN,USA
    [94]储锦林.连续型动态规划在投资决策中的应用[J].大学数学,2003,19(5):101-104.
    [95] Zimmerman J, Ivantysynova M. The Effect of System Pressure Level on theEnergy Consumption of Displacement Controlled Actuator Systems. The5thFPNI PhD Symposium2008:77-92.
    [96] Zimmerman J, Toward Optimal Multi-actuator Displacement ControlledMobile Hydraulic Systems. PhD Thesis. School of Mechanical Engineering,Purdue University, West Lafayette, IN, USA.2012.
    [97] Bo njak S,Panteli M,Zrni N,et al. Failure Analysis and ReconstructionDesign of the Slewing Platform Mantle of the Bucket Wheel Excavator O&KSchRs630[J]. Engineering Failure Analysis,2011,18(2):658-669.
    [98]于安才.静液传动混合动力挖掘机回转和行走机构节能技术研究[D].哈尔滨工业大学博士论文,2012:30-42.
    [99]吴剑.并联式混合动力汽车能量管理策略优化研究[D]山东大学博士论文2008,10-29.
    [100]王昕.静液传动混合动力轮边驱动车辆节能与控制特性研究[D].哈尔滨工业大学博士论文,2010.
    [101] Caratozzolo, P. and Serra. M., Riera. J.,“Energy management strategies forhybrid electric vehicles”, IEMDC’03. IEEE International Electric Machinesand Drives Conference (Cat. No.03EX679), Madison, WI, USA, Vol.1,1-4June,2003, pp.241-248.
    [102] M. Shan, Modeling and control strategy for series hydraulic hybrid vehicles,Ph.D dissertation, college of engineering UT, Toledo, USA,2009
    [103] Liu, J., Peng, H., Hagena, J., Filipi, Z.,“Engine-in-the-loop study of thestochastic dynamic programming optimal control design for a hybrid electricHMMWV”, International Journal of Heavy Vehicle Systems,2008
    [104] Wakui T, Wada N, Yokoyama R. Feasibility study on combined use ofresidential SOFC cogeneration system and plug-in hybrid electric vehiclefrom energy-saving view point[J]. Energy Conversion and Management,2012,60(8):170-179.
    [105] Tomaz K. Energy conversion phenomena in plug-in hybrid-electric vehicles.Energy Conversion and Management[J].2011,52(7):2637-2650.
    [106] Fisher P, Jostins J, Hilmansen S, Kendall K. Electronic integration of fuel celland battery system in novel hybrid vehicle[J]. Journal of Power Sources,2012,220:114-121.
    [107] Rahideh, A; Shaheed, MH,“Stable model predictive control for a nonlinearsystem”, Journal of the Franklin Institute, Vol.348, Issue.8,2011,pp:1983-2004
    [108] Shi, T, Su, HY, Chu, J. An improved model predictive control for uncertainsystems with input saturation. Journal of the Franklin Institute, Vol.350,Issue.9, pp:2757-2768
    [109] H. Zhang, Y. Shi, and J. Wang,“Observer-based tracking controller design fornetworked predictive control systems with uncertain Markov delays”,International Journal of Control, Vol86, Issue10,2013, pp:1824-1836
    [110] Zimmerman J, Hippalgaonkar R, Ivantysynova M. Optimal control for theseries-paralleld displacement controlled hydraulic hybrid excavator.Proceedings of the ASME2011Dynamic Systems and Control Conference2011:1-8.
    [111] Rohit Hippalgaonkar, Monika Ivantysynova and Josh Zimmerman. Fuelsaving of mini-excavator through a hydraulic hybrid displacement controlledsystem[C].8th International Fluid Power Conference,2012, Dresden,Germany, pp:139-153
    [112] Zhang Jian, Luo Nianning, Jiang Jihai. Research Survey of Hydraulic HybridVehicles[J]. Hydromechatronics Engineering,2012,(6):67-79.
    [113] Ignaciuk, P, Bartoszewicz, A,“LQ optimal sliding-mode supply policy forperiodic-review perishable inventory systems”, Journal of the FranklinInstitute, Vol.349, Issue.4,2012, pp:1561-1582
    [114] Lee D, Kim N, Seo H, Cha SW, Lim W. Fuel consumption analysis of hybridexcavator using electric swing motor.24th International Battery, Hybrid andFuel Cell Electric Vehicle Symposium and Exhibition2009;2:879-886.
    [115] H. Zhang, J. Wang, and Y.-Y. Wang, Robust filtering for ammonia coverageestimation in Diesel engine selective catalytic reduction (SCR) Systems,ASME Transactions, Journal of Dynamic Systems, Measurement, and Control,vol.135, no.6,064504(7pages),2013.
    [116]王宣银,吴剑,吴乐彬.基于并联六自由度电液伺服机构的力控制方法[J].上海交通大学学报,2007,41(1):111-115.
    [117] Kim K K K, Braatz R D. Computational complexity of robust control: Areview of theoretical and algorithmic developments[C]//Decision and Control(CDC),2013IEEE52nd Annual Conference on. IEEE,2013:6391-6396.
    [118] Lu L, Yao B. Online constrained optimization based adaptive robust control ofa class of MIMO nonlinear systems with matched uncertainties and input/stateconstraints[J]. Automatica,2014.
    [119] Corradini M L, Cristofaro A, Orlando G, et al. Robust control of multi-inputperiodic discrete-time systems with saturating actuators[J]. InternationalJournal of Control,2013,86(7):1240-1247.
    [120] Kchaou M, Tadeo F, Chaabane M, et al. Delay-dependent robustobserver-based control for discrete-time uncertain singular systems withinterval time-varying state delay[J]. International Journal of Control,Automation and Systems,2014,12(1):12-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700