用户名: 密码: 验证码:
猪场废水氮磷MAP回收工艺及其对传统厌氧—好氧处理系统的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化养猪场排放的养殖废水属于我国农业面源重大污染源之一,其污染治理已被纳入环境保护的重要议程。但目前的养猪废水处理工艺均以氮磷生物转化与去除为目的,鲜见以资源化回收利用为核心的综合处理。本文以循环经济的发展理念为指导,通过研究猪场养殖废水经磷酸铵镁(MAP)结晶沉淀法处理后的氮磷回收效率以及沉淀过程对废水后续生化处理效果的影响,初步构建了一套猪场废水“MAP沉淀+厌氧CSTR+好氧SBR"联合处理工艺。研究表明,养殖废水通过磷酸铵镁(MAP)沉淀后可大幅度降低其原液中氮磷污染物含量,实现氮磷资源的高效回收;经MAP沉淀处理后的养殖废水再通过常规厌氧/好氧耦合工艺处理时,其厌氧段产甲烷效能可得到有效提升,并且最终经过好氧处理后COD、NH4+-N. PO43--P均可达到《畜禽养殖业污染物排放标准》(GBI8596-2001).研究成果为我国规模化养猪场养殖废水的资源回收和处理处置提出了一条新的技术模式。具体研究结论如下:
     1.养殖废水利用MAP沉淀预处理后可以高效回收其中氮磷资源,并显著降低和控制沉淀后尾水中NH4+-N、悬浮物和P043-P浓度,并通过全面分析得到pH值和P/Mg/N摩尔比对废水MAP沉淀处理效果的影响规律。将废水pH和P/Mg/N摩尔比调节为9.0和1/1.4/1.2时,MAP沉淀法可使养殖废水NH4+-N去除率达到87%,出水P043--P浓度降低至1.35mg/L;并且废水中COD、TOC、TC都得到一定程度地去除,去除率分别为22.3%、18.5%、23.1%;同时,废水中悬浮物的去除率均在80%以上。MAP沉淀产物的XRD检测结果表明,沉淀物中MgNH4PO4·6H2O的含量达到81.5%。
     2.猪场养殖废水经MAP沉淀处理后尾水C/N比和厌氧产沼效能都得到明显提高。MAP沉淀后尾水C/N比由原液的2.8提高到6.6。沉淀尾水与原废水的批式厌氧发酵对比实验表明,MAP沉淀后尾水TOC浓度降解速率明显加快,相同发酵时间内,可使废水COD、TOC和TC降解率分别提高11.7%、4%和8%,沼气和甲烷产量分别较原液提升0.307L/(g-VS)和0.295L-CH4/(g-VS)。CSTR连续流厌氧发酵实验结果表明,MAP沉淀后尾水与原液的COD容积负荷分别为2.2kg-COD/(m3-d)和1.5kg-COD/(m3-d),产气率分别为0.462m3/(kg-COD)和0.393m3/(kg-COD),气体中甲烷含量分别为67.9%和61.5%。
     3.采用SBR工艺分别处理CSTR厌氧后的MAP沉淀尾水和养殖废水原液,结果表明,在相同的操作模式下,MAP沉淀后尾水的COD. NH4+-N和P043--p的处理效果明显高于原液,平均去除率分别为82.8%、95.3%、94%和75.5%、74.5%、62%。且出水中NO2--N、NO3--N浓度低于原液,平均分别为48.6mg/L和8.6mg/L。
     4.养殖废水“MAP沉淀+厌氧CSTR+好氧SBR”工艺可以实现氮磷资源回收与污染物同时去除的目的。在稳态条件下运行“MAP沉淀+厌氧CSTR+好氧SBR”工艺结果表明,出水COD、NH4+-N和PO43--P浓度平均值分别为258mg/L,13mg/L和1.3mg/L,均达到《畜禽养殖业污染物排放标准》(GBI8596-2001),明显优于没有经过"MAP沉淀预处理”的“厌氧CSTR+好氧SBR”工艺的处理效果(其出水COD、NH4+-N和PO43--P浓度分别为424mg/L,256mg/L和25.67mg/L).对于C/N比相对较低的养殖废水处理,"MAP沉淀预处理”法实现了氮磷资源回收,达到显著改善废水的C/N比,更利于后续生化处理的目的。
Swine wastewater is one of the major agricultural non-point source pollutants. In China, the treatment technology must meet the environmental protection standards. However, the existing processes of the treatments only aim to degrade or remove the NH4+-N and PO43--P without their recycling. This research utilized the new technique, MAP precipitation, as the pretreatment of the raw swine wastewater to precipitate the NH4+-N and PO43--P with MgNH4PO4·6H2O as struvite being a slow release fertilizer. In order to know the detailed influence on the subsequent process, various pollutants such as NH4+-N, PO43--P, COD, TOC and TC were monitored in the CSTR-SBR system with and without the MAP pretreatment. The results showed it is feasible to pretreat the swine wastewater with MAP technique, in which the NH4+-N and PO43--P were recycled. It improves the quality and quantity of biogas generation, and also the finally draining effluents easily meet the Chinese wastewater discharge standards. This paper offers a new idea in swine wastewater treatment. The main achievements in this research are as follows:
     1. The MAP technique can effectively lower down the NH4+-N and PO43--P concentrations in the supernatant of the swine wastewater after the precipitation; the removal efficiency of NH4+-N and the residual PO43--P were84.7%and1.35mg/L, and furtherly the COD, TOC and TC were also removed partly, the removal efficiency were22.3%,18.5%,23.1%, respectively, and the removal efficiency of SS all beyond80%seemed not to be influenced by the chemical dosage, the MAP contents MgNH4PO4·6H2O were maximum81.5%at pH9.0as tested by the XRD.
     2. The batch experiment in bottles of anaerobic fermentation was carried out after the MAP precipitation pretreatment. The results showed that NH4+-N concentration can be effectively controlled in the supernatants in the anaerobic process.the C/N ratio was enhanced from2.8to6.6. The amount of TOC remained130mg/L lesser than in the raw wastewater; while COD, TOC and TC degraded11.7%,4%and8%more than that in the raw wastewater, respectively. So, better performance of anaerobic treatment was gas yield rate and methane production at0.307L/(g-VS) against0.295L-CH4/(g-VS) higher than in the raw wastewater. The dynamics of anaerobic treatment with CSTR technology was studied in the supernatant and the raw swine wastewater. There was better performance in the supernatant and2or3days in advance in the supernatant at the same level degradation. The volume loading rate of the supernatant increased to2.2kg-COD/m3-d, but only1.5kg-COD/m3-d of the volume loading rate to the raw wastewater. At the same time, the gas rate between the supernatant and the raw were0.462and0.393m3/kg-COD, and the CH4contents were67.9and61.5%, respectively.
     3. Aerobic SBR technology was chosen for subsequent treatment of the effluents from the anaerobic digesters, the average removal efficiencies of COD, NH/-N and PO43--P of the effluents with and without pretreatment of MAP technique were82.8%,95.3%,94%and75.5%,74.5%,62%, respectively. The concentrations of NO2--N and NO3--N in the effluent of supernatants were48.6mg/L and8.6mg/L
     4. When the CSTR and SBR technology were combined together, the concentrations of NH4+-N, PO43--P and COD from the effluents of the supernatants pretreated with MAP technique were13.5,1.3and258mg/L, respectively, which met the Chinese discharge standard (GBI8596-2001).These values were256.1,25.67and424.4mg/L in the raw wastewater without MAP technique.
引文
陈瑞蕊,王一明,胡君利.畜禽粪便管理系统中甲烷的产排特征及减排对策[J],土壤学报,2012,49(4):816-822.
    程旭艳,王定美,乔玉辉.中国商品有机肥重金属分析[J],环境污染与防治,2012,34(2):72-76.
    陈云增,杨浩,等.滇池沉积物金属污染及环境质量评价[J],湖泊科学,2008,20(4):492-499.
    陈琳.上流式厌氧生物膜与生物接触氧化耦合工艺处理猪场废水的研究[D],南昌大学,2011.
    成文,卢平,罗国维,等.养猪场废水处理工艺研究[J],环境污染与防治,2000,22(1):24-27.
    成先雄,严群.农村生活废水土地处理技术[J],四川环境,2005,25(2):39-43.
    崔喜勤,林君锋.好氧膜生物反应器处理养猪场废水[J],福建农林大学学报,2010,39(1):90-93.
    单昊书,吴瑛,徐越,等.畜禽粪便在利用现状和存在的问题探讨[J],中国家禽,2007,29(16):44-45.
    董红敏,李玉娥,陶秀萍,等.中国农业源温室气体排放与减排技术对策[J],农业工程学报,2008,24(10):269-273.
    戴敬,周学金,朱平庆,等.以沼气为纽带的生物循环生态模式研究[J],环境保护与循环经济,2009,1:78-82.
    邓良伟,陈缓.欧洲沼气工程发展现状[J],中国沼气,2007,25(3):30-32.
    丁疆华,舒强.人工湿地在处理废水中的应用[J],农业环境保护,2000,19(5):320-326.
    刁治民,王得贤.畜禽粪便再生饲料[J].中国饲料,1996,3:43-44.
    戴洪刚,唐金陵,杨志军.利用蝇蛆处理畜禽粪便污染的生物技术[J],农业环境保护,2002,1:34-35.
    邓良伟,郑平,李淑兰, 等.添加原液改善SBR工艺处理猪场废水厌氧消化液性能[J],环境科学,2005,26(6):105-109.
    付俊杰,李远.我国畜禽养殖业污染防治对策[J],中国生态农业学报,2004,1:171-173.
    冯孝善,方士.厌氧消化技术[M].杭州:浙江科学技术出版社,1989,94(106):118-119.
    方炳南,王志荣,黄武,等.SBR处理猪场沼液运行工况优化研究[J],中国沼气,2011,29(5):47-50.
    高定,陈同斌,刘斌,等.我国畜禽养殖业粪便污染风险与控制策略[J],地理研究,2006,25(6):311-315.
    郭新芳,朱跃成,郭建平.畜禽粪便综合利用与资源节约型生态农业技术研究[J],农业现代化研究,2009,3(5):603-606.
    高锋.厌氧消化SBR工艺处理养猪场废水及工艺最优化的研究[D],湖南大学,2005.
    黄宏坤.规模化畜禽养殖场废弃物无害化处理及资源化利用研究[D],中国农业科学院,2001.
    韩志英.分步进水序批式反应器处理猪场废水工艺研究[D],浙江大学,2007.
    韩巍.规模化养猪场废水处理的实验研究[D],华南热带农业大学,2006.
    霍守亮,席北斗,刘鸿亮,等.酸铵镁沉淀法去除与回收废水中氮磷的应用研究进展[J],化工进展,2007,26(3):371-375.
    黄稳水.以缓释肥形式回收石化废水中氨氮的研究[D],湖南大学,2004.
    何华燕.规模化猪场废水新型脱氮除磷技术研究[D],南昌大学,2011.
    霍英春.ABR与改良SBR联合处理高氨氮高有机物含量废水的研究[D],天津大学,2003.
    蒋敏.ABR+BCO+人工湿地工艺处理养猪场废水的应用研究[D],湖南农业大学,2012.
    郝凌云,周荣敏,周芳,等.磷酸铵镁沉淀法回收废水中磷的反应条件优化[J],工业用水与废水,2008,39(1):58-61.
    姜宏.养猪场废水的处理工艺研究[D],上海师范大学,2004.
    季铁军.SUFR反应器流型分析及导流参数对其脱氨除磷效果的影响研究[D],重庆大学,2007.
    刘慧颖,柳云波,徐冰,等.几种商品有机肥生产技术和发展趋势[J],杂粮作物,2004,24(3):171-173..
    刘刈,宋立,邓良伟.我国规模化养殖场粪便废水处理利用现状及对策[J],猪业科学,2011,6:30-33.
    李倩,蔡磊,蔡昌达.3MW集中式热电联产沼气工程设计与建设[J],可再生能源,2009,27(1):97-100.
    刘芳.畜牧产业发展对环境的影响[J],农业环境与发展,2000,17(1):30-33.
    李平.养猪废水中有机物厌氧生物降解机理的分子生物学解析[D],中国地质大学,2009.
    刘红.养猪场对环境的污染改善对策及处理利用技术[J],农业环境保护,2000,2:101-103.
    刘荣厚,郝元元,武丽娟.温度条件对猪粪厌氧发酵沼气产气特性的影响[J],可再生能源,2006,5(129):32-35.
    刘宇.UASB-SBR工艺处理猪场水的实验和工程实例[D],湖南农业大学,2009.
    楼晓燕,周伟列.太湖流域(余杭片)氮磷的污染现状及防治对策[J],环境污染与防治,1999,12(增刊):55-59.
    李广贺,张大奕,张旭,等.滇池流域集约化农田区氮素损失研究[J],地学前缘,2005,12(增刊):80-86.
    李俊住.中国大型规模化养猪场有多少?[J],今日畜牧兽医,2010,26(7):5.
    李晓璐.畜禽养殖废水好氧生物处理脱氮除磷效果研究[D],四川农业大学,2007.
    林代炎,翁伯琦,钱午巧.FZ-12固液分离机在规模化猪场污水处理中的应用效果[J],农业工程学报,2005,21(10):184-186.
    李燕,杨玲娥,常培育.养猪场废水的混凝沉降预处理研究[J],净水技术,2007,2:32-34.
    李少朋,王立刚,张宁,等.人工湿地中不同深层基质净化畜禽养殖废水的研究[J],中国农学通报,2009,25(9):264-267.
    李刚,杨立中,欧阳峰.厌氧消化过程控制因素及pH和Eh的影响分析[J],西南交通大学学报,2001,36(5):518-521.
    李亮,王德汉,邹璇,等.曝气在沉淀法回收沼气发酵液氮磷中的作用[J],农业工 程学报,2010,26(1):313-316.
    林冀夫.UASB-生物接触氧化-氧化塘工艺处理养猪场废水[J],环境工程,2009,27:36-38.
    梁文婷,颜丽,郝长红,等.氧化镁改性沸石处理猪场废水的研究[J],中国给水排水,2009,25(11):73-75.
    李文润.AF-BAF工艺对养猪废水处理的研究[D],西北农林科技大学,2012.
    龚丽雯,龚敏红,王成云,等.微电解/接触氧化/稳定塘处理猪场废水[J],中国给水排水,2003,19(8):92-94.
    刘志刚.养猪场废水处理技术研究[D],四川农业大学,2004
    梁美东.某万头养猪场废水处理研究[D],湖南农业大学,2008.
    刘明轩.膜生物反应器处理猪场养殖废水的研究[D],天津大学,2007.
    李淑兰.猪场废水厌氧消化及后处理技术研究[D],硕士论文,2003.
    林伟华,蔡昌达.CSTR-SBR工艺在畜禽废水处理中的应用[J],环境工程,2003,21(3):13-16.
    马彦涛,薛金凤.养猪废水处理技术进展[J],环境与可持续发展,2009,5:29-32.
    闵敏.化学沉淀法去除养猪场废水中氨氮的实验研究[D],武汉大学,2005.
    欧阳超,尚晓,王欣泽,等.电化学氧化法去除养猪废水中氨氮的研究[J],水处理技术,2010,36(6):111-115.
    彭武厚,胡文英.厌氧消化处理畜禽粪便的研究[J].中国沼气,1998,16(1):15-17.
    蒲贵兵.泔脚厌氧发酵产氢的研究[D],昆明理工大学,2008.
    钱靖华,田宁宁,任远.规模化猪场粪污治理存在的问题及对策[J],中国畜牧杂志。2006,42:57-59.
    钱锋,曾萍,宋晨,等.养猪废水的吸附-过滤法初级处理实验研究[J],安全与环境学报,2008,8(6):60-64.
    任南琪,王爱杰.厌氧生物技术原理与应用[M],北京:化学工业出版社,2004:164.
    孙家宾,刘田,杨章荣,等.城镇净化沼气池残渣还田[J],中国沼气,1999,17(2):37-40.
    沈巧莲.吹脱-厌氧消化工艺处理养殖场废水[J],化工时刊,2009,23(5):64-66.
    孙群荣,徐彬彬,张雁峰.氨吹脱-A2/O工艺处理高浓度养殖废水[J],给水排水,2005,31(3):55-57.
    孙国平,张从良,王岩.MAP结晶法去除猪场废水中氮磷的沉淀条件[J],生态与农村环境学报,2010,26(3):268-272.
    舒欣,丁晶,赵庆良.电化学法处理氨氮废水的实验研究[J],黑龙江大学自然科学学报,2012,29(2):246-250.
    沙文峰.慎用畜禽粪便充饲料[J].河南畜牧兽医,2001,22(6):29-31.
    沈根祥,汪雅谷,袁大伟.上海市郊农田畜禽粪便负荷机器警报与分级[J],上海农业学报,1994,10(增刊):6-11.
    沈瑾,路旭,孙瑜.规模化猪场粪废水处理固液分离工艺及设备[J],中国沼气,1999,17(4):18-20.
    邵丕红.城市废水高效厌氧处理技术研究[D],中国地质大学,2006.
    田宜水.中国规模化养殖场畜禽粪便资源沼气生产潜力评价[J],农业工程学报,2012,28(8):815-823.
    谭婧,丁丽丽,赵明宇,等.锌对磷酸铵镁和磷酸钙结晶回收磷的影响[J],环境科学与技术,2010,33(3):54-58.
    武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D],中国农业科学院,2005.
    王永强,杨国明,谢红兵.养猪场环境污染的综合防制初探[J],安徽农业科学,2006,34(2):243-244,251.
    汪雅谷,沈根祥.上海市郊畜禽粪便处理利用发展方向[J],上海农业学报,1994,10(增刊):1-5.
    王祖力,王济民.利用畜禽粪便生产有机肥潜力巨大[J],环境保护,2011,7,52-53.
    王蔚知.UASB/SBR/氧化塘工艺处理养猪废水[J],环境污染与防治,2008,30(4):103-104.
    王坤元,黄建宁.畜禽粪便再利用的研究[J],浙江农业科技,1993,4:195-197.
    万晓红,邱丹,赵小明.太湖流域规模畜禽养殖场污染特性的解析[J],农业环境与发展,2000,64(2),34-35.
    万风,王海燕,周岳溪,等.养猪废水处理技术研究进展[J],农业灾害研究,2012, 2(1):25-29.
    吴永明.新型IC-SBBR组合工艺在猪场废水处理中的应用研究[D],南昌大学,2011.
    王亮.规模化猪场养殖废水高效脱氮除磷技术研究[D],浙江大学,2013.
    熊津,丁桑岚.畜禽养殖废水脱氮除磷研究进展[J],畜牧与饲料科学,2009,30(11):128-129.
    王蔚知.UASB/SBR/氧化塘工艺处理养猪废水[J],环境污染与防治,2008,30(4):103-105.
    王建永.淹没序批式膜生物反应器反硝化除磷特性研究[D],南昌大学,2007.
    奚振邦,王寓群,杨佩珍.中国现代农业发展中的有机肥问题[J],中国农业科学,2004,37(12):1874-1878.
    相俊红,胡伟.我国畜禽粪便废弃物资源化利用现状[J],现代农用装备,2006,2:59-63.
    薛智勇,汤江武.畜禽废弃物的无害化处理和资源化利用技术进展(上)[J],浙江农业科学,2002,1:45-47.
    项爱技,鲁昭.慢速渗滤土地处理技术在处理某养猪场废水中的应用[J],吉利农业,2011,252(2):38-41.
    许惠英,朱新富,王志荣.人工湿地技术在养猪废水处理中的应用[J],浙江树人大学学报,2010,10(4):15-19.
    余华堂,张艳红.石马河流域规模化养猪场废水混凝固液分离现场实验[J],工业水处理,2006,26(3):50-52.
    杨朝晖,曾光明,高锋,等.固液分离UASB-SBR工艺处理养猪场废水的实验研究明[J],湖南大学学报(自然科学版),2002,29(6):95-99.
    杨阳,闫立龙,李晶,等.磷酸铵镁沉淀法处理猪场废水的实验研究[J],东北农业大学学报,2010,41(3):65-69.
    杨虹,李道棠,朱章玉,等.集约化养猪场冲栏水的达标处理[J],上海交通大学学报,2000,34(4):558-56.
    杨明珍,包震宇,师晓春,等.乌粪石沉淀法处理沼液实验研究[J],工业安全与环保,2011,37(3):31-34.
    袁鹏,宋永会,袁芳,等.磷酸铵镁结晶法去除和回收养猪废水中营养元素的实验研究[J],环境科学学报,2007,27(7):1127-1134.
    杨洁.碱和超声波预处理技术促进污泥厌氧消化效能及机理研究[D],天津大学环境科学与工程学院,2008.
    于涛.养猪场废液厌氧发酵反应影响因素的研究[D],西华大学,2006.
    余靖,顾选仙,刘畅,等.基于CSTR和UASB工艺的沼气工程实例分析[J],安徽农业科学,2012,40(29):14550-14551.
    张福琐.中国养分资源综合管理策略和技术[M],中国农学会学术年会论文集,2006:371-374.
    张维理,冀宏杰, Kolbe,等.中国农业面源污染形势估计及控制对策[J],中国农业科学,2004,37(7):1008-1017.
    邹安华,孙体昌,邢奕,等.pH对MAP沉淀法去除废水中氨氮的影响[J],环境科学动态,2005,4:4-7.
    曾庆玲,沈春花.鸟粪石结晶法回收氨氮影响因素的研究[J],环境科学与技术,2012,35(1):80-85.
    曾凤,霍守亮,刘俊,等.猪场废水厌氧发酵液循环脱氮工艺[J],环境工程学报,2012,6(9):2941-2945.
    周洪波,Cord-Ruwisch R,陈坚,等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J],中国沼气,2000,18(4):20-23.
    周群英,环境工程微生物学[M],北京:高等教育出版社,2008,191-192.
    卓坪,牛明芬,刘知远,等.A/O工艺处理猪场厌氧发酵液研究[J],安慰农业科学,2010,38(3):1356-1358.
    赵庆,袁林江,王磊,等.碳源浓度对SBR法同步脱氮除磷影响实验研究[J],西北大学学报(自然科学版),2006,34(6):599-603.
    郑育毅.USR/一体化氧化沟处理养猪场废水[J],中国给水排水,2006,22(2)68-70.
    张翔.厌氧消化-SBR-絮凝组合工艺处理牛粪废水研究[D],郑州大学,2008.
    张柏尧,石墨正仪.利用生物转盘处理养猪场废水[J],中国畜牧兽医,1980,5:22-24.
    张玲清,田宗祥.规模化养猪场粪尿的氮磷排泄量调查[J],畜牧与兽医,2009,41(9):48-50.
    张妍妍.MAP沉淀法去除养猪场氮磷中沼液的研究[D],安徽农业大学,2012.
    钟文,文屹.改良氧化塘废水处理技术的探讨[J],广州化工,2010,38(5):217-218.
    中国畜牧业年鉴编辑委员会.中国畜牧业年鉴[M],北京:中国农业出版社,2004,184-237.
    中华人民共和国国家统计局.中国统计年鉴[M],北京:中国统计出版社,2003.
    中国环境年鉴编辑委员会.中国环境年鉴[M],北京:中国环境年鉴社,2003.
    国家环境保护总局自然生态司.全国规模化畜禽养殖业污染情况调查及防治对策[M],北京:中国环境科学出版社,2002.
    中国农业年鉴编辑委员会.中国农业年鉴[M],北京:中国农业出版社,2003.
    国家环境保护总局.水和废水监测分析方法[M],北京:中国环境科学出版社,2002.
    Andreottola G, Bortone G, Tilche A. Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors [J]. Water Science Technology,1997,35 (1):113-120.
    Anton P. W., Wu W. X, Chen Y. X, Han Z. Y.. Struvite Recovery from Swine Waste Biogas Digester Effluent through aStainless Steel Device under Constant pH Conditions [J]. Biomedical and Environmental Sciences,2009,22:201-209.
    Bernet N., Delgenes N., Akunna J. C., et al.. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater [J]. Water Research,2000,34(2):611-619.
    Bernet N., Delgenes N., Moletta R.. Denitrification by anaerobic sludge in piggery wastewater [J]. Environmental Technology,1996,17(3),293-300.
    Bernet N., Delgenes N., Akunna J. C., Delgenes J. P., Moletta R.. Combined Anaerobic+Aerobic SBR For The Treatment Of Piggery Wastewater [J], Water Research,2000,34(2):611-619.
    Booram C. V., Smith R. J., Hazen T. E.. Crystalline phosphate precipitation from anaerobic animal waste treatment lagoon liquors. Transaction American Society Civial Engeering,1975,18:340-343.
    Bernet N., Beline F.. Challenges and innovations on biological treatment of livestock effluents [J]. Bioresource Technology,2009,100:5431-5436.
    Borgerding J.. Phosphate deposits in digestion systems [J]. Water Pollution Control Feed,1972,44:813-819.
    Buchanan J. R., Mote C. R., Robinson R. B.. The remodynamics of struvite formation. Transactions of the American Society of Agricultural Engineers,1994,37(2): 617-621.
    Barlaz M. A.. In Manual of Environmental Microbiology. Washington D C:American Society for Microbiology,1997.
    Cook K. L., Rothrock Jr M. J., Loughrin J. H., Doerner K.. Characterization of skatole-producing microbial population in enriched swine lagoon slurry [J]. FEMS Microbial ecology,2007,60(2):329-340.
    Chen X. Y., Wendell K., Zhu J., Li J. L., Yu X., Zhang Z.. Synthesis of nanozeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater [J]. Bioresource Technology,2012,110:79-85.
    Chung J., Bae W., Lee Y, Rittmann, B.. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors [J]. Process Biochemistry,2007,42(3): 320-328.
    Cristina G. F., PedroP N. D.. Solids and nutrients removals from the liquid fraction of swine slurry through screening and flocculation treatment and influence of these processes on anaerobic biodegradability [J]. Bioresource Technology,2008,99(14): 6233-6239.
    Chae K. J., Am J., Yim S. K. et al.. The efects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure [J]. Bioresource Technology,2008,99:1-6.
    Deng L. W., Zheng P., Chen Z. A.. Anaerobic digestion and post-treatment of swine wastewater using IC-SBR process with bypass of raw wastewater [J]. Process Biochemistry,2006,41(4):965-969.
    Doyle J. D., Parsons S. A.. Struvite formation, control and recovery [J]. Water Research,2002,36:3925-3940.
    Driver J., Lijmbach D., Steen I.. Why recover phosphorus for recycling, and how? [J]. Environmental Technology,1999,20(7):651-662.
    E. Maranon, L. Castrillon, L. Carcia, I. Vazquez, Y. Femandez-Nava. Three-step biological process for the treatment of the liquid fraction of cattle manure [J]. Bioresource Technology,2008,99(16):7750-7757.
    Etter B., Tilley E., Khadka R., Udert K. M.. Low-cost struvite production using source-separated urine in Nepal [J]. Water Research,2011,45(2):852-862.
    Elisabeth V., Munch K.. Controlled Struvite Crystallisation for Removing Phosphorus From Anaerobic Digester Sidestreams [J]. Water Research,2001,35(1):151-159.
    Grusenmeyer D. C., Cramer T. N.. Manure management, A systems approach [J]. Dairy Science,2002,80(10):2651-2654.
    Gaterell M. R., Gay R., Wilson R., Lester J. N.. An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertilizer markets [J]. Environmental Technology,2000,21(9):1067-1084.
    Hong-Duck R., Daekeun K., Sang-Ⅲ L.. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater [J]. Journal of Hazardous Materials,2008,156(1-3):163-169.
    Hyunhee L., Makoto S.. Removel of COD and color from livestock wastewater by Fenton method [J]. Journal of Hazardous Materials,2008,153(3):1314-1319.
    Hill D. T., Bolte J. P.. Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation [J]. Bioresource Technology, 2000,74(3):241-247.
    Hong-Duck R., Sang-Ⅲ L.. Application of struvite precipitation as a pretreatment in treating swine wastewater [J]. Process Biochemistry,2010,45(2):.663-672.
    Hammad M., Badarneh D., Tahboub K.. Evaluating Variable organic Waste to Produce Methane [J]. Energy Conversion and Management.1999,40 (13):1463-1475.
    James D Doyle, Simon A Parsons. Struvite formation, control and recovery[J]. Water Research,2002,36(16):3925-3940.
    Joo H. S., Hirai M., Shoda M.. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No.4 [J]. Journal of Bioscience and Bioengeering,2005,100(2):184-191.
    Kim B. U., Lee W. H., Lee H. J., Rim J. M.. Ammonium nitrogen removal from slurry-type swine wastewater by pretreatment using struvite crystallization for nitrogen control of anaerobic digestion [J]. Water Science and Technology,2004, 49(5-6):215-222.
    Kazuyoshi S., Miyoko W., Tomoko Y., Yasuyuki F., Kazutaka K. T. S., Naoto S., Ryoji S., Kenji M.. Distribution of phosphorus, copper and zinc in activated sludge treatment process of swine wastewater [J]. Bioresource Technology,2010,101(23), 9399-9404.
    Kazuyoshi S., Yasuo T., Takashi O., Miyoko W.. Removal of phosphate magnesium and calcium from swine wastewater through crystallization enhanced by aeration [J]. Water Research,2002,36(12):2991-2998.
    Kaan Y., Suleyman S.. Improvement of COD and color removal from UASB treated poutry manure wastewater using Fenton's oxidation [J]. Journal of Hazardous Matertials,2008,151(2-3):547-558.
    Kim J., Guo X., Park H.. Comparison study of the effects of temperature and free ammonia concentration on nitrication and nitrite accumulation [J]. Process Biochemistry,2008,43:154-60.
    Kim D., Ryu H. D., Kim M. S., Kim J., Lee S. I.. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate [J]. Journal of Hazardous Materials,2007,146(1-2):81-85.
    Lee S. I., Weon S. Y, Lee C. W., Koopman B.. Removal of nitrogen and phosphate from wastewater by addition of bittern [J]. Chemosphere,2003,51:265-271.
    Le Corre K. S., Valsami-Jones E., Hobbs P., Parsons S. A.. Impact of calcium on struvite crystal size, shape and purity [J]. Journal of Crystal Growth,2005,283(3-4): 514-522.
    Le Corre K. S., Valsami-Jones E., Hobbs P., Jefferson B., Parsonsa S. A.. Struvite crystallisation and recovery using a stainless steel structure as a seed material [J]. Water Research,2007,41(11):2449-2456.
    Li X. F., Dolores B., Chen J.. Performance of struvite precipitation during pretreatment of raw landfill leachate and its biological validation [J]. Environmental Chemistry Letters,2011,9(1):71-75.
    Liu W. T., Nakamura K., Matsuo T., Mino T.. Internal energy-based competition between polyphosphate and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio [J]. Water Research,1997, 31(6):1430-1438.
    Liu Z., Zhao Q., Lee D. J., Yang N.. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor [J]. Bioresource Technology,2008,99(14): 6488-6493.
    Labatut R. A., Angenent L. T., Scott N. R.. Biochemical methane potential and biodegradability of complex organic substrates [J]. Bioresource Technology,2011, 102(3):2255-2264.
    Lay J. J, Li Y. Y, Noike T, Endo J., Ishimoto S. Analysis of environmental-factors affecting methane production from high-solids organic waste [J]. Water Science and Technology,1997,36 (6-7):493-500.
    Lee S. I., Weon S. Y, Lee C. W, Koopman B.. Removal of nitrogen and phosphate from wastewater by addition of bittern [J]. Chemosphere,2003,51(4):265-271.
    Lettingaq. Advanced anaerobic wastewater treatment in the near future [J]. Water Science and Technology,1994,35(10):5-12.
    Miller D. N., Varel V. H.. Swine manure composition affects the biochemical origins, composition, and accumulation of odorous compounds [J]. Journal of Animal Science,2003,81(9):2131-2138.
    Munch E. V., Barr K.. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams [J]. Water Research,2001,35(1):151-159.
    Masse D.1., Masse L., Xia Y, Gilbert Y. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production [J]. Journal of Animal Science,2010,88(13):112-120.
    Maekawa T., Liao C. M., Feng X. D.. Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process [J]. Water Research,1995,29(12):2645-2650.
    Mohajit K., Bhattarai K., Taignides E. P., Yap B. C.. Struvite deposits in pipes and aerators [J]. Biological Wastes,1989,30(1):133-147.
    Momberg G A., Oellermann R. A.. The removal of phosphate by hydroxyapatite and struvite crystalisation in South Africa [J]. Water Science and Technology,1992, 26(5-6):987-996.
    Miyoko W., Hiroshi Y., Akifumi O., Kazuyoshi S., Yasuo T.. Nitrogen removal from purified swine wastewater using biogas by semi-partitioned reactor [J]. Bioresource Technology,2008,99(13):5335-5340.
    Matias B., Vanotti A., Szogi A., Patrick G. H., Patricia D., Millner F. J. H.. Development of environmentally superior treatment system to replace anaerobic swine lagoons in the USA [J]. Bioresource Technology,2007,98 (17):3184-3194.
    Maekawa T., Liao C. M., Feng X. D.. Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process [J]. Water Research,1995,29(12):2643-2650.
    Nelson N. O., Mikkelsen R. L., Hesterberg D. L.. Struvite precipitation in anaerobic swine lagoon liquid:effect of pH and Mg:P ratio and determination of rate constant [J]. Bioresource Technology,2003,89(3):229-236.
    Ohlinger K. N., Young T. M.. Sehroeder E. D. Predicting struvite formation in digestion [J].-Water Research,1998,32(12):3607-3621.
    Ozturk I., Altinbas M, Koyuncu I., Arikan O., Gomec-Yangin C.. Advanced physico-chemical treatment experiences on young municipal landfill leachates [J]. Waste Management,2003,23(5):441-446.
    Office of Research and Development, U.S EPA. Manual nitrogen control [M]. US Environmental Protection Agency, EPA/625/R-93/010, Washington D C,1993.
    Pastor L., Mangin D., Barat R., et al.. A pilot-scale study of struvite precipitation in a stirred tank reactor:conditions influencing the process [J]. Bioresource Technology, 2008,99(14):6285-6291.
    Pastor L., Mangin D., Ferrer J., Seco A.. Struvite formation from the supernatants of ananaerobic digestion pilot plant [J]. Bioresource Technology,2010,101(1): 118-125.
    Park S., Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid [J]. Process Biochemistry,2009,44(6):631-640.
    Ryu H. D., Kim D., Lee S. I.. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater [J]. Journal of Hazardous Materials,2008, 156(1-3):163-169.
    Rico C., Garcia H., Rico J. L.. Physical-anaerobic-chemical process for treatment of dairy cattle manure [J]. Bioresource Technology,2011,102 (3):2143-2150.
    Roberts T. L, Stewart W.M.. Inorganic phosphorus and potassium production and reserves [J]. Better Crops,2002,86(2):6-7.
    Rawn A. M, Perry Banta A., Pomeroy R.. Multiple stage sewage digestion [J]. Transaction of the American Society of Agricultural Engeers,1939,105:93-132.
    Rodriguez A., Lomas Esteban J.M.. Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries A [J]. Biomass and Bioenergy.1999,17(6):435-443.
    Rico J. L., Garci'a H., Rico C, Tejero I.. Characterisation of solid and liquid fractions of dairy manure with regard to their component distribution and methane production [J]. Bioresource Technology,2007,98(6):971-979.
    Rim J., Han D. J.. Process development for nitrogen removal of swine waste [J]. Water Science and Technology,2000,42(3-4):239-246.
    Stratful I., Scrimshaw M. D., Lester J. N.. Conditions influencing the precipitation of magnesium ammonium phosphate [J]. Water Research,2001,35(17):4191-4199.
    Song, Y., Yuan, P., Zheng, B., Peng, J., Yuan, F., Gao, Y. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater [J]. Chemosphere,2007,69(2):319-324.
    Suzuki K., Watanabe T., Lam V.. Concentrations and crystallization of phosphate, ammonium and minerals in the effluents of bio-gas digester in the Mekong Delta, Vietnam[J]. Japan Agricultural Research Quarterly,2001,35(4):271-276.
    Shu L., Schneider P., Jegatheesan V., et al. An economic evaluation of phosphorus recovery as struvite from digester supernatant [J]. Bioresource Technology,2006, 97(17):2211-2216.
    Suzuki K., Tanaka Y., Kuroda K., Hanajima D., Fukumoto Y.. Recovery of phosphorous from swine wastewater through crystallization [J]. Bioresource Technology,2005,96(14):1544-1550.
    Suzuki K., Tanaka Y., Kuroda K., Hanajima D., Fukumoto Y., Yasuda T., Waki M.. Removal and recovery of phosphorus from swine wastewater by demonstration crystallization reactor and struvite accumulation device [J]. Bioresource Technology,2007,98(8):1573-1578.
    Sakar S., Yetilmezsoy K., Kocak-Enturk E.. Anaerobic digestion technology in poultry and livestock waste treatment--a literature review [J]. Waste Management Research,2009,27(1):3-18.
    Starkenburg W. Anaerobic treatment of wastewater:State of the art [J]. Microbiology, 1997,66:705-715.
    Uludag-Demirer S., Demirer G. N., Frear C., Chen S.. Anaerobic digestion of dairy manure with enhanced ammonia removal [J]. Journal of "Environmental Management,2008,86(1):193-200.
    Wang S. X., Liang X. Q., Chen Y. X., Luo Q. X., Liang W. S., Li S., Huang C. L., Li Z. Z., Wan L. L., Li W., Shao X. X.. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems [J]. Soil Science Society of America Journal,2012,76(1):161-167.
    Wang S. X., Liang X. Q., Luo Q. X., Fan F., Chen Y. X., Li Z. Z., Sun H. X., Dai T. F., Wan J. N., Li X. J.. Fertilization increases paddy soil organic carbon density [J]. Journal of Zhejiang University-Science B,2012,13(4):274-282.
    Wrigley T. J., Webb K. M., Venkitachalm H.. A laboratory study of struvite precipitation after anaerobic digestion of piggery wastes [J]. Bioresource Technology,1992,41(2):117-121.
    Xu H., He P., Wang G., Shao L., Lee D.. Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge [J]. Bioresource Technology,2011,102(2):667-671.
    Yetilmezsoy K., Sapci-Zengin Z.. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer [J]. Jouranal of Hazardous Materials,2009,166(1):260-269.
    Yang L., Chang H. T., Huang M. L.. Nutrient removal in gravel and soil based wetland microcosms with and without vegetation [J]. Ecological Engineering,2001,18(1): 91-105.
    Yang H., Li D. T., Zhu Z. Y., Dong H. T., Chen Y.. ABR-ICEAS system for piggery wastewater treatment [J]. Journal of Shanghai Jiaotong University,2000,34 (4): 558-560.
    Yue J. H.. Swine Wastewater Treatment with Struvite Precipitation Technology [J]. Agricultural Science and Technology,2012,13(6):1346-1349.
    Zarbual Z., Azzi M., Saib N., et al.. Contribution to the study of lectro-coagulation mechanism in basic textile effluent [J]. Jouranal of Hazardous Materials,2006, 131(1-3):73-78.
    Zhang D. M., Chen Y. X., Ghulam J., Wu W. X., Liu W. L., Han Z. Y.. Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants [J]. Bioresource Technology, 2012,116:386-395.
    Zhang Z., Zhu J., King J., et al.. A two-step fed SBR for treating swine manure [J]. Process Biochemistry,2006,41(4):892-900.
    Zhang Z.J., Lin R.C., Jin R.L.. The finial volume of draining water (the fourth edition) [M], Beijing, China Building Industry Publishing Company,2000.
    Zhu S., Chen S.. Effects of organic carbon on nitrification rate in fixed film biofilters [J]. Aquaculture Engeering,2001,25(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700