用户名: 密码: 验证码:
脑—机接口的特征提取和分类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑-机接口(brain computer interface, BCI)是指在人脑和计算机或其它电子设备之间建立的直接的交流和控制通道,它不依赖于脑的正常生理输出通路(外周神经系统及肌肉组织)。脑-机接口是一种全新的人机接口方式,是近年来脑功能研究的热点课题。脑-机接口技术可以恢复有严重运动障碍患者的正常运动功能,提高其生活质量。脑-机接口是一门多学科交叉的新兴技术,正成为脑科学、康复工程、生物医学工程及人机交互领域的前沿研究热点。
     脑电(EEG)的特征提取和分类是脑-机接口技术的关键。本文对脑-机接口中脑电信号的特征提取方法进行了深入的探讨,主要包括现代功率谱估计和小波分析等。进而,深入地研究了脑-机接口系统所采用的分类方法,包括Fisher线性判别分析、神经网络(学习矢量量化网络和概率神经网络)和支持向量机等。本文利用这些特征提取方法和分类方法,对一些典型的脑-机接口数据集进行了离线分析,并建立了基于Alpha波的异步脑-机接口系统。本文的主要成果有:
     1)对一个典型的采用慢皮层电位的脑-机接口系统进行了离线分析,对慢皮层电位进行了特征提取,并采用线性判别分析进行分类。该方法分类速度较快,稳定性好,取得了很好的分类效果。该实验证明,一定时间的训练对实验者掌握实验技巧,提高分类准确率有很大帮助。同时,利用Simulink建立了一个仿真模型,该模型具有很强的灵活性,可广泛用于采用慢皮层电位的脑-机接口系统。
     2)提出了一种采用相对小波能量的脑电信号特征提取方法,并将该方法用于采用想象左手或右手运动的脑-机接口系统。采用分类正确率和互信息作为脑-机接口系统的评价标准,并给出了互信息的详细计算方法。分类方法采用线性判别分析和支持向量机,并对两者进行了比较分析。结果表明,相对小波能量具有比自适应AR模型系数更好的可分性;互信息具有比分类准确率更高的可靠性。
     3)提出了一种采用MUSIC算法功率谱估计进行脑电特征提取的方法,并采用学习矢量量化网络进行分类。该方法比AR模型功率谱估计具有更好的可分性和稳定性。结果表明,该方法为脑-机接口的研究提供了新的思路。
     4)将相对小波能量用于采用皮层脑电图的脑-机接口系统的特征提取。对采用相对小波能量得到的特征矢量,采用主分量分析进行降维。分类方法采用概率神经网络,并详细地分析了径向基函数分布密度对分类结果的影响。结果表明,该方法在分类准确率上有很大地提高。
     5)建立了采用Alpha波的异步脑-机接口系统开发平台,并进行了实时在线分析。该系统的基本原理是Alpha波阻断现象,主要包括:实时脑电采集、特征提取和分类。提出了一种适合脑-机接口系统的异步工作模式,实验者可以任意选择何时启动系统,并随意的选择四个命令中的一个进行输出,是一种更加自然的人机交互方式。该系统准确率高、稳定性好、具有很高的实用性。
Brain-computer interface (BCI) is a direct communication and control channel between human brain and computer or other electronic device. It does not depend on the brain's normal output pathways of peripheral nerves and muscles. The BCI is a novel kind of human computer interface and recently it is an active topic in brain function research. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. BCI research is a multidisciplinary field and has been a hot focus in brain science, rehabilitation engineering, biomedical engineering and human computer interaction.
     Feature selection and classification methods of EEG signals are two key points of BCI technology. Feature extraction methods of EEG signals using in BCI systems are discussed in this paper, mainly including modern power spectral density (PSD) and wavelet analysis. Then classification methods used in BCI systems are investigated thoroughly, mainly including Fisher linear discriminant analysis (LDA), neural network (learning vector quantization neural network and probabilistic neural network) and support vector machine. In this paper, these feature selection and classification methods are used in the off-line analysis of some typical BCI dataset, and an asynchronous BCI system based on Alpha wave is built. Main contributions of this paper include:
     (1) A typical BCI system using slow cortical potential (SCP) is off-line analysed. Features are got from the SCP, and LDA is used for classification. This method has got good classification accuracy, fast speed and good stability. The result of the experiment shows that training can give much help for the subject to master skill and improve classification accuracy. At the same time, a simulation model based on Simulink is built, which is very flexible and can be widely used in SCP-based BCI system.
     (2) Relative wavelet energy (RWE) used for feature selection of EEG is proposed. This method is utilized in BCI system using imaged left or right hand movement. Classification accuracy and mutual information (MI) are used for evaluation criteria of BCI system. LDA and SVM are respectively utilized for classification and compared with each other. The results of the experiment show that RWE is a good feature selection method, comparing with AAR. And MI is more reliable than classification accuracy.
     (3) PSD using multiple signal classification (MUSIC) method for feature selection of EEG is proposed, and learning vector quantization (LVQ) neural network is used for classification. Comparing with AR model, the PSD using MUSIC method has better separability and stability. The experiment result shows that this method provides a new way for BCI research.
     4) For BCI system using electrocorticography (ECoG) signals, feature selection method using RWE is proposed. Principal components analysis (PCA) is used to reduce the dimension of the feature vector which gets from RWE. Probabilistic neural network (PNN) is used for classification, and the influence of the spread of radial basis functions to the classification accuracy is investigated. The result of the experiment shows that this algorithm has got significant improvement on classification accuracy.
     5) An asynchronous BCI system platform based on Alpha wave is built, and it is real-time analysed. The basic theory of this BCI system is alpha wave-block phenomenon. It mainly includes:real-time EEG acquisition, preprocessing, feature selection and classification. An asynchronous working mode which is suitable for BCI system is proposed. The subject can decide freely when he or she wishes to run the BCI system and chooses anyone of four commands as output. It is a more natural human computer interaction method. This system has got high classification accuracy, good stability and practicability.
引文
1. Wolpaw J R, Birbaumer N, Heetderks W, et al. Brain-computer interface technology:a review of the first international meeting[J], IEEE Trans. Rehab. Eng.,2000,8(2): 164-173.
    2. Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control[J], Clinical Neurophysiology,2002,113(6):767-791.
    3. Mason S G, Birch G E. A general framework for describing brain-computer interface design[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11(1):72-87.
    4. Lecuyer A, Lotte F, Reilly R B, et al. Brain-computer interfaces, virtual reality, and videogames [J], Computer,2008,41(10):66-72.
    5. Daly J, Wolpaw J R. Brain-computer interfaces in neurological rehabilitation[J], The Lancet Neurology,2008,7(11):1032-1043.
    6. Moritz C T, Perlmutter S I, and Fetz E E. Direct control of paralysed muscles by cortical neurons[J], Nature,2008,456(7222):639-642.
    7. Leuthardt E C, Schalk G, Wolpaw J R, Ojemann J G, Moran D W, A brain-computer interface using electrocorticographic signals in humans [J], Journal of Neural Engineering, 2004,1(2):63-71.
    8. Pfurtscheller G, Muller-Putz G R, Schlogl A, Graimann B, Scherer R, Leeb R, et al.15 years of BCI research at Graz University of Technology:current projects[J], IEEE Trans. Neu. Sys. Eng.,2006,14(2):205-210.
    9. Vaughan T M. Guest editorial brain-computer interface technology:a review of the second international meeting[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003, 11(2):94-109.
    10. Vaughan T M, Wolpaw J R. Guest editorial the third international meeting on brain-computer interface technology [J], IEEE Trans. Neu. Sys. Rehab. Eng.,2006, 14(2):126-127.
    11. Wolpaw J R, Loeb G E, Allison B Z, Donchin E, Nascimento O F, Heetderks W J, et al. BCI meeting 2005—workshop on signals and recording methods[J], IEEE Trans. Rehab. Eng.,2006,14(2):138-141.
    12. McFarland D J, Anderson C W, Muller K R, Schlogl A, Krusienski D J. BCI meeting 2005—workshop on BCI signal processing:feature extraction and translation[J], IEEE Trans. Rehab. Eng.,2006,14(2):135-138.
    13. Kubler A, Mushahwar V K, Hochberg L R, Donoghue J P. BCI meeting 2005—workshop on clinical issues and applications [J], IEEE Trans. Rehab. Eng.,2006,14(2):131-134.
    14. Cincotti F, Bianchi L, Birch G, Guger C, Mellinger J, Scherer R, et al. BCI meeting 2005—workshop on technology:hardware and software[J], IEEE Trans. Rehab. Eng., 2006,14(2):128-131
    15. Sajda P, Gerson A, Muller K R, Blankertz B, Parra L. A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces [J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11(2):184-185.
    16. Blankertz B, Muller K R, Curio G, et al. The BCI competition 2003:progress and perspectives in detection and discrimination of EEG single trials[J], IEEE Trans. Biomed. Eng.,2004,51(6):1044-1051.
    17. Blankertz B, Muller K R, Krusienski D, et al. The BCI competition Ⅲ: validating alternative approaches to actual BCI problems[J], IEEE Trans. Neu. Sys. Rehab. Eng., 2006,14(2):153-159.
    18. McFarland D J, Wolpaw J R. Brain-computer interface operation of robotic and prosthetic devices[J], Computer,2008,41(10):52-56
    19. Farwell L A, Donchin E. Talking off the top of your head:toward a mental prothesis utilizing event-related brain potentials[J], Electroencephalography and clinical Neurophysiology,1988,70:510-523.
    20. Donchin E, Spencer K M, Wijesinghe R. The mental prosthesis:assessing the speed of a P300-based brain-computer interface[J], IEEE Trans. Rehab. Eng.,2000,8(2):174-179.
    21. Allison B Z, Pineda J A. ERP evoked by different matrix sizes:implication for a brain computer interface (BCI) system[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11(2): 110-113.
    22. Bayliss J D, Ballard D H. A virtual reality tested for brain-computer interface research[J], IEEE Trans. Rehab Eng.,2000,8(2):188-190.
    23. Bayliss J D. Use of the evoked potential P3 component for control in a virtual apartment [J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11 (2):113-116.
    24. Serby H, Yom-Tov E, Inbar G F. An improved P300-based brain-computer interface[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2005,13(1):89-98.
    25. Sellers E W, Donchin E. A P300-based brain-computer interface:initial tests by ALS patients[J], Clinical Neurophysiology,2006,117:538-548.
    26. Hoffmann U, Vesin J M, Ebrahimi T, Diserens K. An efficient P300-based brain-computer interface for disabled subjects[J], Journal of Neuroscience Methods,2008, 167:115-125.
    27. Sutter E E. The brain response interface:communication through visually-induced electrical brain response[J], Journal of Microcomputer Applications,1992,15:31-45.
    28. Middendorf M, McMillan G, Calhoun G, Jones K S. Brain-computer interface based on the steady-state visual-evoked response[J], IEEE Trans. Rehab Eng.,2000,8(2):211-214.
    29. Muller-Putz G R, Pfurtscheller G. Control of an electrical prosthesis with an SSVEP-based BCI[J], IEEE Trans. Biomed. Eng.,2008,55(1):361-364.
    30. Cheng M, Gao X, Gao S, Xu D. Design and implementation of a brain-computer interface with high transfer rates[J], IEEE Trans. Biomed. Eng.,2002,49(10):1181-1186.
    31. Wang Y, Zhang Z, Gao X, Gao S. Lead selection for SSVEP-based brain-computer interface[A], Proceedings of the 26th Annual International Conference of the IEEE EMBS[C], USA,2004,4507-4510.
    32. Wang Y, Wang R, Gao X, Gao S. Brain-computer interface based on the high-frequency steady-state visual evoked potentials [A], First International Conference on Neural Interface and Control Proceedings[C],2005, Wuhan, China,37-39.
    33. Wang Y, Wang R, Gao X, Hong B, Gao S. A practical VEP-based brain-computer interface[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2006,14(2):234-239.
    34. Birbaumer N, Elbert T, Canavan A, et al. Slow potentials of the cerebral cortex and behavior[J], Physiological Reviews,1990,70(1):1-41.
    35. Birbaumer N, Flor H, Ghanayim N, et al. A brain-controlled spelling device for the completely paralyzed[J], Nature,1999,398:297-298.
    36. Birbaumer N, Kubler A, Ghanayim N, et al. The thought translation device (TTD) for completely paralyzed patients[J], IEEE Trans. Rehab. Eng.,2000,8(3):190-193.
    37. Birbaumer N, Hinterberger T, Kubler A, et al. The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome[J], IEEE Trans. Neu. Sys. Rehab. Eng., 2003,11(2):120-123.
    38. Hinterberger T, Kubler A, Kaiser J, Neumann N, Birbaumer N. A brain-computer interface (BCI) for the locked-in:comparison of different EEG classifications for the thought translation device[J], Clinical Neurophysiology,2003,114:416-425.
    39. Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor control [J], Electroencephalography and clinical Neurophysiology, 1991,78(3):252-259.
    40. Wolpaw J R, McFarland D J. Multichannel EEG-based brain-computer communication [J], Electroencephalography and clinical Neurophysiology,1994,90(6):444-449.
    41. Wolpaw J R, McFarland D J, Vaughan T M. The Wadsworth center brain-computer interface (BCI) research and development program[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003, 11(2):204-207.
    42. McFarland D J, Wolpaw J R. Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2005,13(3):372-379.
    43. Vaughan T M, McFarland D J, Schalk G, et al. The Wadsworth BCI research and development program:at home with BCI[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2006, 14(2):229-233.
    44. Schalk G, McFarland D J, Hinterberger, Birbaumer T N, Wolpaw J R. BCI2000:a general-purpose brain-computer interface (BCI) system[J], IEEE Trans. Biomed. Eng., 2004,51(6):1034-1043.
    45. Pfurtscheller G, Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization: basic principles [J], Clinical Neurophysiology,1999,110(11): 1842-1857.
    46. Obermaier B, Neuper C, Guger C, Pfurtscheller G. Information transfer rate in a five-class brain-computer interface[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2001,9(3): 283-288.
    47. Pfurtscheller G, Neuper C, Muller G R, Obermaier B, Krausz G, Schlogl A, Scherer R, et al. Graz-BCI:state of the art and clinical applications [J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003, 11(2):177-180.
    48. Neuper C, Muller G R, Kubler A, Birbaumer N, Pfurtscheller G. Clinical application of an EEG-based brain-computer interface:a case study in a patient with severe motor impairment[J], Clinical Neurophysiology,2003,114(3):399-409.
    49. Scherer R, Lee Felix, Schlogl A, et al. Toward self-paced brain-computer communication: navigation through virtual worlds[J], IEEE Trans. Biomed. Eng.,2008,55(2):675-682.
    50. Birch G E, Mason S G. Brain-computer interface research at the Neil Squire Foundation [J], IEEE Trans. Rehab. Eng.,2000,8(2):193-195.
    51. Mason S G, Birch G E. A brain-controlled switch for asynchronous control applications [J], IEEE Trans. Biomed. Eng.,2000,47(10):1297-1306.
    52. Birch G E, Mason S G, Borisoff J F. Current trends in brain-computer interface research at the Neil Squire Foundation[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11(2): 123-126.
    53. Pfurtscheller G, Leeb R, Keinrath C, et al. Walking from thought[J], Brain Research,2006, 1071(1):145-152.
    54. Wickelgren I. Tapping the mind[J], Science,2003,299(5606):496-499.
    55.黄秉宪.脑的高级功能与神经网络[M],北京:科学出版社,2000.
    56.黄远桂,吴声伶.临床脑电图学[M],北京:人民卫生出版社,1998.
    57.谭玉玲.临床脑电图与脑电地形图学[M],北京:人民卫生出版社,1999.
    58.尧德中.脑功能探测的电学理论与方法[M],北京:科学出版社,2003.
    59.大熊辉雄.临床脑电图学(第五版)[M],北京:人民卫生出版社,2005.
    60.魏景汉,罗跃嘉.认知事件相关脑电位教程[M],北京:经济日报出版社,2002.
    61.赵仑.ERP实验教程[M],天津:天津社会科学院出版社,2004.
    62.刘曾荣,文铁桥,姚晓东.脑与非线性动力学[M],北京:科学出版社,2006.
    63. Lal T N, Hinterberger T, Widman G, et al. Methods towards invasive human brain computer interfaces [J], Advances in Neural Information Processing System (NIPS),2005, 17:737-744.
    64.杨福生,洪波.独立分量分析的原理与应用[M],北京:清华大学出版社,2006.
    65.吴小培,冯焕清,周荷琴,李晓辉.结合小波变换和独立分量分析的脑电特征提取[J],仪器仪表学报,2004,25(1):116-120.
    66.郭晓静,吴小培,张道信,孔敏,冯焕清.基于独立分量分析的脑电消噪与特征提取[J],系统仿真学报,2003,15(2):287-289.
    67. Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis[J], Neural Computation,1997,9:1483-1492.
    68.唐艳,柳建新,龚安栋ICA+CSSD的脑-机接口分类[J],电子科技大学学报,2008,37(3):466-469.
    69. Kachenoura A, Albera L, Senhadji L, Comon P. ICA:a potential tool for BCI systems[J], IEEE Signal Processing Magazine,2008,25(1):57-68.
    70. Cheng M, Jia W, Gao X, Gao S, Yang F. Mu rhythm-based cursor control:an offline analysis[J], Clinical Neurophysiology,2004,115:745-751.
    71. Pineda J A, Silverman D S, Vankov A, Hestenes J. Learning to control brain rhythms: making a brain-computer interface possible[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003, 11(2):181-184.
    72.高上凯.基于节律性脑电信号的脑-机接口[J],生命科学,2008,20(5):722-724.
    73. Mensh B D, Werfel J, Seung H S. BCI competition 2003—data set la: combining gamma-band power with slow cortical potentials to improve single-trial classification of Electroencephalographic signals[J], IEEE Trans. Biomed. Eng.,2004,51(6): 1052-1056.
    74. Anderson C W, Stolz E A, Sham S S. Multivariate auto regressive models for classification of spontaneous electroencephalographic signals during mental tasks [J], IEEE Trans. Biomed Eng.,1998,45(3):277-286.
    75.徐宝国,宋爱国.基于小波变换和AR参数模型的脑电信号识别方法[J],数据采集与处理,2008,23(5):580-583.
    76. Pfurtscheller G, Neuper C, Schlogl A, Lugger K. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters [J], IEEE Trans. Rehab. Eng.,1998,6(3):316-325.
    77.高湘萍,吴小培,沈谦.基于脑电的意识活动特征提取与识别[J],安徽大学学报(自然科学版),2006,30(2):33-36.
    78.王志宇,王宏,李一娜,王旭.脑-计算机接口系统中诱发脑电信号的小波分析[J],东北大学学报(自然科学版),2005,26(6):546-549.
    79.毛峡,孟庆宇.基于小波变换和神经网络的脑电信号分类方法[J],北京航空航天大学学报,2005,31(10):1140-1144.
    80.王志宇,王宏,李一娜,王旭.小波相关分析在脑-计算机接口系统中的研究[J],仪 器仪表学报,2006,27(4):358-362.
    81.杨帮华,颜国正,鄢波.基于离散小波变换提取脑机接口中脑电特征[J],中国生物医学工程学报,2006,25(5):518-522.
    82.赵海滨,王宏.利用相对小波能量和概率网络的脑-机接口[J],计算机工程与应用,2009,45(5):26-28.
    83.裴晓梅,郑崇勋,宾光宇.基于多通道脑电特征运动意识任务的分类[J],西安交通大学学报,2005,39(8):904-907.
    84.刘海龙,王珏,郑崇勋.基于非线性参数的意识任务分类[J],西安交通大学学报,2005,39(8):900-903.
    85.裴晓梅,和卫星,郑崇勋.基于脑电复杂度的意识任务的特征提取与分类[J],中国生物医学工程学报,2005,24(4):421-425.
    86. Muller K R, Anderson C W, Birch G E. Linear and non-linear methods for brain-computer interfaces [J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11(2):165-169.
    87. Lotte F, Congedo M, et al. A review of classification algorithms for EEG-based brain-computer interfaces [J], Journal of Neural Engineering,2007,4:1-13.
    88.杨立才,李佰敏.脑-机接口技术综述[J],电子学报,2005,33(7):1234-1241.
    89.程龙龙,明东,刘双迟等.脑-机接口研究中想象动作电位的特征提取与分类算法[J],仪器仪表学报,2008,29(8):1772-1778.
    90. Pfurtscheller G, Flotzinger D, Kalcher J, Brain-computer interface—a new communication device for handicapped persons[J], Journal of Microcomput. Appl.,1993, 16:293-299.
    91.伍亚舟,何庆华,黄华等.基于运动想象左右手运动脑机接口实验研究及分析[J],生物医学工程学杂志,2008,25(5):488-493.
    92.吴婷,颜国正,杨帮华等.基于有监督学习的概率神经网络的脑电信号分类方法[J],上海交通大学学报,2008,42(5):803-806.
    93. Kaper M, Meinicke P, Grossekathoefer U, et al. BCI competition 2003—data set IIb: support vector machines for the P300 speller paradigm[J], IEEE Trans. Biomed. Eng., 2004,51(6):1073-1076.
    94.徐琦,王永骥,周慧,王琬.支持向量机方法在运动意识识别中的应用[J],华中科技大学学报(自然科学版),2008,36(6):93-95.
    95. Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computer interface[J], Biomed. Technik,2002,47(1-2):3-8.
    96. Schlogl A, Keinrath C, Scherer R, Pfurtscheller G. Information transfer of an EEG-based brain computer interface[A], Proceeding of the lst International IEEE EMBS Conference on Neural Engineering[C],2003 Italy,641-644.
    97. Birbaumer N, Elbert T, Canavan AGM, et al. Slow potentials of the cerebral cortex and behaviour[J], Physiological Reviews,1990,70:1-41.
    98. Kubler A, Kotchoubey B, Ghanayim N, et al. A thought translation device for brain computer communication[J], Stud Psychol,1998,40:17-31.
    99.边肇祺,张学工.模式识别(第二版)[M],北京:清华大学出版社,2000.
    100.黄永安,马路,刘慧敏MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M],北京:清华大学出版社,2005.
    101.求是科技MATLAB 7.0从入门到精通[M],北京:人民邮电出版社,2006.
    102.杨帮华.自发脑电脑机接口技术及脑电信号识别方法研究[D],上海交通大学,2006.
    103. Neuper C, Schlogl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery[J], J. Clin. Neurophysiol.,1999, 16(4):373-382.
    104.崔锦泰.小波分析导论[M],西安:西安交通大学出版社,1995.
    105.杨建国.小波分析及其工程应用[M],北京:机械工业出版社,2005.
    106.高志,余啸海Matlab小波分析工具箱原理与应用[M],北京:国防工业出版社,2004.
    107. Mallat S G. A theory for multi-resolution signal decomposition:the wavelet representation[J], IEEE Trans Patt Anal Mach Intell,1989,11(7):674-693.
    108. Rosso O A, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, Basar E. Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J], Journal of Neuroscience Methods,2001,105(1):65-75.
    109.张学工.关于统计学习理论与支持向量机[J],自动化学报,2000,26(1):32-42.
    110. Cristianini N著,李国正等译.支持向量机导论[M],北京:电子工业出版社,2004.
    111. Wilson J A, Felton E A, Garell P C, et al. ECoG factors underlying multimodal control of a brain-computer interface[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2006,14(2):246-250.
    112. Schalk G, Miller K J, Anderson N R, et al. Two-dimensional movement control using electrocorticographic signals in humans[J], Journal of Neural Engineering,2008, 5(1):75-84.
    113. Pistohl T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C. Prediction of arm movement trajectories from ECoG-recordings in humans[J], Journal of Neuroscience Methods,2008,167(1):105-114.
    114.张旭东,陆明泉.离散随机信号处理[M],北京:清华大学出版社,2005.
    115.王旭,王宏,王文辉.人工神经元网络原理与应用[M],沈阳:东北大学出版社,2000.
    116.韩力群.人工神经网络理论、设计及实现(第二版)[M],北京:化学工业出版社,2007.
    117.周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M],北京:清华大学出版社,2005.
    118.飞思科技.神经网络理论与MATLAB7实现[M],北京:电子工业出版社,2005.
    119. Specht D F. Probabilistic Neural Networks [J], Neural Networks,1990,3:109-118.
    120. Specht D F. Probabilistic neural networks and the polynomial adaline as complementary techniques for classification [J], IEEE Trans. Neural Networks,1990,1:111-121.
    121. Dewan E M. Occipital alpha rhythm eye position and lens accommodation[J], Nature, 1967,214:975-977.
    122. Delorme A, Makeig S. EEG changes accompanying learned regulation of 12-Hz EEG activity[J], IEEE Trans. Neu. Sys. Rehab. Eng.,2003,11(2):133-137.
    123.万柏坤,綦宏志,赵丽等.基于脑电Alpha波的脑-机接口控制实验[J],天津大学学报,2006,39(8):978-984.
    124.耿丽清,赵丽,崔世刚,邵善锋.基于脑电Alpha波的便携式脑-机接口系统研究[J],系统仿真学报,2008,20(17):4748-4750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700