用户名: 密码: 验证码:
潮河流域土地利用/气候变化的水文响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化加剧以及人类活动增强对华北地区水环境和水资源的影响越来越大。在气候变化背景下,探索土地利用和覆被变化的生态水文响应,构建合理的土地利用方式,对科学开展流域水土资源利用、生态恢复和适应性流域管理具有重要意义。该研究以密云水库以上潮河流域为研究对象,通过研究流域土地利用变化和气候变异下的水文响应特性,旨在为改善华北地区水量与水体的适应性流域管理提供理论依据。该研究应用非参数秩检验法对研究流域的1961-2009年水文气象数据进行趋势分析和突变检验;结合流域不同时期土地利用数据,分别应用水量平衡原理与线性回归分析方法,定量评价土地利用和气候变化对径流量和输沙量变化的贡献;采用SWAT分布式水文模型模拟计算不同土地利用和气候变化情景下的流域径流量和输沙量的变化。主要结果如下:
     (1)流域内1979-2009年间土地利用变化主要特征为:有林地、灌木林地持续增加;草地面积持续减少;建筑面积增加,耕地面积减少。土地利用的主要转移趋势为草地转为灌木林和有林地,灌木林地转为有林地,耕地转为草地。流域内政策因素及剧烈的人类活动如退耕还林和生态修复措施等的实施是推动流域内土地利用变化的关键因素。
     (2)1961-2009年流域气候因素和产流产沙变化趋势分析和突变检验表明:该流域年、汛期和非汛期径流在1961-2009年间均呈显著减少趋势,并都在1999年发生突变,但年与汛期降水和潜在蒸散发在此期间没有显著变化,而非汛期的降水和潜在蒸散发均显著增加,并分别在1979年和1987年发生突变。年和汛期产沙量都显著减少,并且均于2004年发生突变。分析表明该流域气候和土地利用变化对年径流减少的贡献率分别为43.9%和56.1%,而对年产沙量减少的贡献分别是4.2%和95.8%。土地利用变化是导致该流域年径流量减少,特别是年产沙量减少的重要原因。
     (3)用SWAT模型模拟潮河流域径流和产沙具有良好的适用性。SWAT模型模拟结果表明,研究流域内径流深的空间分布呈现从东南向西北逐次减少分布,并随海拔的升高逐次减少,这主要由降雨的空间分布规律决定。另外土地利用方式不同也是导致流域径流深空间分布差异的重要因素。输沙率的空间分布较为复杂,主要受到降水、地形和土地利用方式影响。
     (4)极端土地利用情景分析结果表明:不同极端土地利用情景下的径流量曲线变化趋势一致,但值的大小差异显著,具体表现为灌木林地>草地>林地>耕地。与1999年土地利用的结果相比较,灌木林地情景下径流增加了158.2%,草地情景下径流增加了4.1%。耕地和林地情景下径流分别减少41.7%和23.7%。不同极端土地利用情景下的年产沙量大小表现为:耕地>草地>灌木林地>林地。对比1999年土地利用的年产沙量,耕地情景下年均产沙量增加85.9%,而草地、灌木林地和林地极端情景下年均产沙量分别减少32.1%、45.4%和57.0%。
     (5)不同的气候变异情景模拟结果显示,径流对降水的变化敏感性高于对温度变化的敏感性。降水每增加10%,径流平均增加23.9%。温度每增加1℃,径流平均减少6%。输沙对降水的敏感度高于径流对降水变化的敏感性。降水每增加10%,输沙量平均增加44%。
     (6)潮河流域作为北京地表水资源密云水库的的主要来源地,增加流域产流且和减少流域产沙是潮流流域管理的目标。结合极端土地利用情景模拟结果和流域土地利用地形分异规律,设计流域内土地利用空间优化情景并模拟其径流和产沙,结果表明:空间优化配置情景下,流域内的耕地和有林地面积减少,灌木林和草地面积增加;相对于1999年原地类,流域的年均径流深增加了34.54%,输沙模数减少了14.16%。空间优化配置情境下,年均径流深空间分布除受到降水的空间分布影响外,局部微地形和土地利用变化对其影响增加。输沙模数的空间分布表明径流是输沙模数变化最敏感的因素。
Intensive climate changes and human activities have increasing effects on water environment and water resource in Northern China. Going with climate changes, it is important to carry on reasonable land use for utilization of water and soil resource, ecological restoration and adaptive watershed management. In this study, we analyzed hydrological responses of land use change and climate variability in Chaohe watershed located in up Miyun Reservoir. Results of the study can be theoretical basis for improving water quantity and quality by using adaptive watershed management in Northern China. The trend of the time series (1961-2009) and change points of climate in terms of precipitation and potential evapotranspiration (PET) and annual, wet season, and dry season streamflow of Chaohe watershed were examined by using the non-parametric Mann-Kendall test. In addition, we analyzed the changes of land use over the period. A method based on water balance was used to quantify the respective contribution of land use and climate changes to mean annual streamflows. Linear regression model was used to examine their effects on sediment yield reduction. Under different scenarios of climate variabilities and landuse changes, SWAT model was used to simulate and predict their effects on water yield and sediment yield. The main results are as follows:
     (1) From 1979 to 2009, the typical characters of land use changes were that woodland, shrubland and urban increased rapidly while grassland and farmland decreased in Chaohe watershed. Grasslands transferred to scrublands and woodlands; scrublands transferred to woodlands; farmlands were transferred to grasslands. Different policies and intensive human activities such as Grain for Green and ecological restoration lead to land use changes.
     (2) By using Mann-Kendll test and change point test for climate, streamflow and sediment yield in Chaohe watershed, results showed that:there were no significant changes in annual and wet season precipitation and PET from 1961 to 2009. In contrast, the annual and wet season streamflow decreased significantly from 1961 to 2009 with the change points occurred in 1999. In dry season, streamflow declined significantly going with precipitation and PET increasing significantly, and change points happened in 1999,1979 and 1987 respectively. Annual and wet season sediment yield both declined significantly and changed point occurred in 2004. It was estimated the land use/cover change contributed for 56.1% reduction in mean annual streamflow, while the rest was explained by climate variability. Land use changes overtook 95.8% of reduction for the declining of annual sediment yield. We concluded that the effect of land use change on reduction of water resources and sediment yield outweighed that from climate variability.
     (3) SWAT model can be suitable for use in Chaohe watershed. The simulated results of SWAT model showed that runoff depth gradually declined from southeast to northwest, meantime higher elevation, less runoff. Spatial distribution of runoff depth was mainly decided by spatial distribution of precipitation. In addition, land use played an important role on spatial distribution of runoff depth. Spatial distribution of sediment yield mainly has been affected by precipitation, terrain and land use.
     (4) Under extreme scenarios of land use, the value of runoff of different land use followed the order of shrub land>grassland>woodland>farmland. Compared with land use in 1999, shrub land and grassland could increase 158.2% and 4.1% runoff, respectively, when farmland and woodland declined runoff 41.7% and 23.7%, respectively. Under extreme scenarios of land use, annual sediment yield followed the order of farmland>grassland>shrub land> woodland. Compared with land use of 1999, farmland increased sediment yield 85.9%, while grassland, shrubland and woodland decreased sediment yield 32.1%,45.4% and 57.0%, respectively.
     (5) The simulated results of scenarios of climate variability on water and sediment yield showed that runoff was more sensitive to precipitation than to temperature. Precipitation increased 10% while runoff increased 23.9%. But 1℃increase of temperature lead to 6% reduction of runoff. Sediment yield was more sensitive to precipitation than runoff to precipitation. Precipitation increased 10% while sediment yield increased 44%。
     (6)The aim of watershed management is to supply more water and control soil erosion in Chaohe watershed as a water resource field for Miyun Reservoir, so we designed spatial optimized land use scenario based on extreme scenarios and characters of land use with different terrain. Compared with landuse of 1999, both farmland area and woodland area decreased in optimized scenario, when shrubland and grassland increased. Results of runoff depth and sediment concentration in optimized scenario showed that runoff depth increased 34.54% while sediment concentration declined 14.16%. Besides precipitation, both land use and terrain affected the distribution of runoff depth. Runoff played a domain effect on the distribution of sediment concentration in research watershed.
引文
1.白爱娟,翟盘茂.中国近百年气候变化的自然原因讨论[J].气象科学,2007,(05):584-590.
    2.白薇,刘国强,董一威,等SWAT模型参数自动率定的改进与应用[J].中国农业气象,2009,(S2):271-275.
    3.蔡强国,刘纪根,刘前进.岔巴沟流域次暴雨产沙统计模型[J].地理研究,2004,(04):433-439.
    4.蔡永明,张科利,李双才.不同粒径制间土壤质地资料的转换问题研究[J].土壤学报,2003,(04):511-517.
    5.陈建,梁川,陈梁SWAT模型的参数灵敏度分析——以贡嘎山海螺沟不同植被类型流域为例[J].南水北调与水利科技,2011,(02):41-45.
    6.陈军锋,陈秀万SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版),2004a,40(2):265-270.
    7.陈军锋,李秀彬.土地覆被变化的水文响应模拟研究[J].应用生态学报,2004b,(05):833-836.
    8.陈腊娇,朱阿兴,秦承志,等.流域生态水文模型研究进展[J].地理科学进展,2011,30(5):535-544.
    9.陈利群,刘昌明,郝芳华,等.黄河源区基流变化及影响因子分析[J].冰川冻土,2006a,(02):141-148.
    10.陈利群,刘昌明,李发东.基流研究综述[J].地理科学进展,2006b,(01):1-15.
    11.陈玲飞,王红亚.中国小流域径流对气候变化的敏感性分析[J].资源科学,2004,(06):62-68.
    12.陈强,苟思,秦大庸,等.一种高效的SWAT模型参数自动率定方法[J].水利学报,2010,(01):113-119.
    13.陈洋波,朱德华.小流域洪水预报新安江模型参数优选方法及应用研究[J].中山大学学报(自然科学版),2005,(03):93-96.
    14.程国栋,赵传燕,王瑶.内陆河流域森林生态系统生态水文过程研究[J].地球科学进展,2011,(11):1125-1130.
    15.程江,杨凯,徐启新.高度城市化区域汇水域尺度LUCC的降雨径流调蓄效应——以上海城市绿地系统为例[J].生态学报,2008,(07):2972-2980.
    16.程磊,徐宗学,罗睿,等.SWAT在干旱半干旱地区的应用——以窟野河流域为例[J].地理研究,2009,28(1):65-73.
    17.崔国发,刑韶华,赵勃.北京山地植物和植被保护研究[M].北京:中国林业出版社,2008:98-113.
    18.褚健婷,夏军,许崇育,等.海河流域气象和水文降水资料对比分析及时空变异[J].地理学报,2009,(09):1083-1092.
    19.戴健男,李致家,黄鹏年,等.新安江模型参数不确定性分析[J].河海大学学报(自然科学版),2011,(06):618-622.
    20.戴仕宝,杨世伦.近50年来长江水资源特征变化分析[J].自然资源学报,2006,(04):501-506.
    21.邓鹏,李致家,谢帆TOPMODEL在珠江流域布柳河流域的应用及其与新安江模型的比较[J].湖泊科学,2009,(03):441-444.
    22.丁‘宝永,孙继华.红松人工林生态系统生物生产力及养分循环研究[J].东北林业大学学报,1989,(S2):1-98.
    23.丁一汇,任国玉,石广玉,等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,(01):3-8.
    24.董晓红,于澎涛,王彦辉,等.分布式生态水文模型TOPOG在温带山地小流域的应用——以祁连山排露沟小流域为例[J].林业科学研究,2007,(04):477-484.
    25.董艳萍,袁晶瑄.流域水文模型的回顾与展望[J].水力发电,2008,(03):20-23.
    26.范兰,张光辉.黄河流域典型支流水土流失对全球气候变化的响应[J].水文,2010,(05):25-31.
    27.冯永玖,刘艳,韩震.不同样本方案下遗传元胞自动机的土地利用模拟及景观评价[J].应用生态学报,2011,(04):957-963.
    28.符传君,黄国如,陈永勤.用TOPMODEL模型模拟流域枯水径流[J].应用基础与工程科学学报,2007,(04):509-516.
    29.傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响--以延安市羊圈沟流域为例[J].地理学报,1999,54(3):241-246.
    30.傅伯杰,邱扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,(6):717-722.
    31.高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,(S1):60-64.
    32.高艳红,程国栋.黑河流域陆地—大气相互作用研究的几点思考[J].地球科学进展,2008,(07):779-784.
    33.高杨,张明旭,王林.晋江西溪流域气候变化下的水文响应研究[J].水资源与水工程学报,2008,(02):31-33.
    34.巩同梁,刘昌明,刘景时.拉萨河冬季径流对气候变暖和冻土退化的响应[J].地理学报,2006,(05):519-526.
    35.郭方,刘新仁,任立良.以地形为基础的流域水文模型——TOPMODEL及其拓宽应用[J].水科学进展,2000,(03):296-301.
    36.郭军庭,张志强,王盛萍,等.黄土丘陵沟壑区小流域基流特点及其影响因子分析[J].水土保持通报,2011,(01):87-92.
    37.郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,(06):1-5.
    38.郝芳华,张雪松,程红光,等.分布式水文模型亚流域合理划分水平刍议[J].水土保持学报,2006,(1).
    39.郝立生,丁一汇,闵锦忠,等.华北降水季节演变主要模态及影响因子[J].大气科学,2011,(02):217-234.
    40.郝立生,闵锦忠,刘克岩.气候变化对河北省水资源总量的影响[J].河北师范大学学报(自然科学版),2010,(04):491-496.
    41.郝立生,闵锦忠,张文宗,等.气候变暖对河北省冬小麦产量的影响[J].中国农业气象,2009,(02):204-207.
    42.郝立生,姚学祥,只德国.气候变化与海河流域地表水资源量的关系[J].海河水利,2009,(05):1-4.
    43.郝立生,张婧,姚学祥.河北省极值气温变化特征[J].气象,2010,(08):26-31.
    44.郝庆庆,陈喜.新安江模型在乌江独木河流域的应用与改进[J].河海大学学报(自然科学版),2012,(01):109-112.
    45.何春阳,史培军,陈晋,等.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学(D辑:地球科学),2005,(05):464-473.
    46.胡连伍,王学军,罗定贵,等.基于SWAT 2000模型的流域氮营养素环境自净效率模拟——以 杭埠—丰乐河流域为例[J].地理与地理信息科学,2006,(02):35-38.
    47.黄明斌,刘贤赵.黄土高原森林植被对流域径流的调节作用[J].应用生态学报,2002,(09):1057-1060.
    48.黄平,赵吉国,林少礼.山坡地分布型降雨下渗数学模型[J].中山大学学报(自然科学版),2000,(06):107-111.
    49.黄清华,张万昌.SWAT模型参数敏感性分析及应用[J].干旱区地理,2010,(1).
    50.黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报,2003,(03):580-587.
    51.贾绍凤,张士锋.海河流域水资源安全评价[J].地理科学进展,2003,,(04):379-387.
    52.金婧靓,王飞儿SWAT模型及其应用与改进的研究进展[J].东北林业大学学报,2010,(12):!!!-!14.
    53.景可,李凤新.全球气候变暖对黄土高原侵蚀产沙的影响[J].地理研究,1993,(02):1-8.
    54.康丽莉,王守荣,顾骏强.分布式水文模型DHSVM对兰江流域径流变化的模拟试验[J].热带气象学报,2008,(02):176-182.
    55.康文星,田大伦,文仕知,等.杉木人工林蒸散规律的研究及乱流扩散法应用的探讨[J].植物生态学与地植物学学报,1992,(04):336-345.
    56.孔凡哲,芮孝芳.TOPMODEL中地形指数计算方法的探讨[J].水科学进展,2003,(01):41-45.
    57.李道峰,田英,刘昌明.土地覆盖与气候变化对黄河源区径流的影响(英文)[J].Journal of Geographical Sciences,2004a,(03):75-83.
    58.李道峰,田英,刘昌明.黄河河源区变化环境下分布式水文模拟[J].地理学报,2004b,(04):565-573.
    59.李建新,朱新军,于磊.SWAT模型在海河流域水资源管理中的应用[J].海河水利,2010,(5):46-49.
    60.李抗彬,沈冰,李智录,等.Topmodel模型在黑河金盆水库流域的应用研究[J].西北农林科技大学学报(自然科学版),2011,(07):207-211.
    61.李兰,郭生练,李志永,等.流域水文数学物理耦合模型[A][D],2000.
    62.李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究进展[J].地球科学进展,2005,(01):74-80.
    63.李秀彬.全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,(06):553-558.
    64.李志,刘文兆,张勋昌,等.黄土塬区坡面土壤侵蚀对全球气候变化的响应[J].水土保持通报,2010,(01):1-6.
    65.李志,刘文兆,张勋昌,等.未来气候变化对黄土高原黑河流域水资源的影响[J].生态学报,2009,(7):3456-3464.
    66.李子君,李秀彬.近45年来降水变化和人类活动对潮河流域年径流量的影响[J].地理科学,2008,28(6):809-818.
    67.梁小军,江洪,王可,等.基于SWAT模型的岷江上游干旱河谷区水文特征情景模拟研究[J].干旱区资源与环境,2010,(08):79-84.
    68.刘昌明,曾燕.植被变化对产水量影响的研究[J].中国水利,2002,(10):112-117.
    69.刘华训.我国山地植被的垂直分布规律[J].地理学报,1981,36(3):267-279.
    70.刘吉峰,霍世青,李世杰,等SWAT模型在青海湖布哈河流域径流变化成因分析中的应用[J].河海大学学报(自然科学版),2007,(2):159-163.
    71.刘青娥,夏军,陈晓宏.潮河流域TOPMODEL模型网格尺度研究[J].水文,2008,(03):29-32.
    /2.刘三超,张万昌,高懋芳,等.分布式水文模型结合遥感研究地表蒸散发[J].地理科学,2007,(03):354-358.
    73.刘世荣,王兵,温远光.中国森林生态系统水文生态功能规律[M]:中国林业出版社,1996.
    74.刘世荣,温远光.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,(04):289-298.
    75.柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报,2001,(S1):10-13.
    76.陆汝成,黄贤金,左天惠,等.基于CLUE-S和Markov复合模型的土地利用情景模拟研究——以江苏省环太湖地区为例[J].地理科学,2009,(04):577-581.
    77.罗定贵,张巍,郑一,等.基于WARMF模型的杭埠-丰乐河流域水文模拟研究[J].环境科学学报,2007,(08):1391-1401.
    78.马杏,许建初,董秀颖,等.西庄流域土地覆被变化及其水文响应模拟研究[J].水文,2008,(4):70-76.
    79.莫莉,穆兴民,王勇,等.近50多年来北洛河水沙变化特征及原因分析[J].泥沙研究,2009,(06):30-36.
    80.彭文英,张科利.不同土地利用产流产沙与降雨特征的关系[J].水土保持通报,2001,(04):25-29.
    81.秦富仓,张丽娟,余新晓,等.SWAT模型自动校准模块在云州水库流域参数率定研究【J].水土保持研究,2010,(02):86-89.
    82.饶素秋,霍世青,薛建国,等.黄河上中游水沙变化特点分析及未来趋势展望[J].泥沙研究,2001,(02):74-77.
    83.沈晓东,王腊春,谢顺平.基于栅格数据的流域降雨径流模型[J].地理学报,1995,(03):264-271.
    84.沈永平,王国亚,苏宏超,等.新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应[J].冰川冻土,2007,(06):845-854.
    85.师长兴,杜俊.长江上游输沙量阶段性变化和原因分析[J].泥沙研究,2009,(04):17-24.
    86.史学正,于东升,高鹏,等.中国土壤信息系统(SISChina)及其应用基础研究[J].土壤,2007,(03):329-333.
    87.宋现锋,段峥,牛海山,等.土壤侵蚀模型中植被管理因子的遥感估算[J].北京林业大学学报,2009,(03):58-63.
    88.石清峰.中国山地植被建设的理论与实践[M].北京:科学出版社,2008:135-202.
    89.孙立群,胡成,陈刚.TOPMODEL模型中的DEM尺度效应[J].水科学进展,2008,(05):699-706.
    90.孙宁,李秀彬,李子君,等.潮河上游土地利用/覆被变化对年径流影响模拟[J].北京林业大学学报,2008,(S2):22-30.
    91.孙儒泳,李庆芬,牛翠娟.基础生态学[M]:高等教育出版社,2002:6-14.
    92.孙永亮,徐宗学,苏保林,等.变化情景下的漳卫南运河流域水量水质模拟[J].北京师范大学学报(自然科学版),2010,(03):387-394.
    93.唐丽霞,张志强,王新杰,等.晋西黄土高原丘陵沟壑区清水河流域径流对土地利用与气候变化的响应[J].植物生态学报,2010,34(7):800-810.
    94.唐丽霞.黄土高原清水河流域土地利用/气候变异对径流泥沙的影响[D].北京:北京林业大学,2009.
    95.唐寅.运用SWAT模型研究小流域气候及土地利用变化的水文响应[D].北京:北京林业大学,2011.
    96.田大伦,何丙辉.杉木人工林土壤水分动态研究[J].西南农业大学学报,1995,(04):334-337.
    97.万荣荣,杨桂山.流域土地利用/覆被变化的水文效应及洪水响应[J].湖泊科学,2004,(03):258-264.
    98.万荣荣,杨桂山.流域土地利用/覆被对洪峰的影响研究——以太湖上游西苕溪流域为例[J].自然资源学报,2009,(02):318-327.
    99.王爱军,朱诚.黄河断流对全球气候变化的响应[J].自然灾害学报,2002,(02):103-107.
    100.王根绪,张钰,刘桂民,等.马营河流域1967-2000年土地利用变化对河流径流的影响[J].中国科学D辑,2005,35(7):671-681.
    101.王国庆,王云璋,康玲玲.黄河上中游径流对气候变化的敏感性分析[J].应用气象学报,2002,(01):117-121.
    102.王国庆,张建云,林健,等.月水量平衡模型在中国不同气候区的应用[J].水资源与水工程学报,2008,(05):34-37.
    103.王海龙,余新晓,武思宏,等.SWAT模型灵敏度分析模块在黄土高原典型流域的应用[J].北京林业大学学报,2007,(S2):238-242.
    104.王丽萍,金晓斌,杜心栋,等.基于灰色模型-元胞自动机模型的佛山市土地利用情景模拟分析[J].农业工程学报,2012,(03):237-242.
    105.王菱,谢贤群,李运生,等.中国北方地区40年来湿润指数和气候干湿带界线的变化【J].地理研究,2004,(01):45-54.
    106.王菱,谢贤群,苏文,等.中国北方地区50年来最高和最低气温变化及其影响[J1.自然资源学报,2004,(03):337-343.
    107.王盛萍,张志强,孙阁,等.黄土高原流域土地利用变化水文动态响应——以甘肃天水吕二沟流域为例[J].北京林业大学学报,2006,(01):48-54.
    108.王盛萍,张志强,孙阁,等.基于物理过程分布式流域水文模型尺度依赖性[J].水文,2008,(06):1-7.
    109.王盛萍.典型小流域土地利用与气候变异的生态水文响应研究[D].北京:北京林业大学,2007.
    110.王守荣,黄荣辉,丁一汇,等.分布式水文-土壤-植被模式的改进及气候水文Off-line模拟试验[J].气象学报,2002,(03):290-300.
    111.王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟——以密云水库北部流域为例[J].农业环境科学学报,2008,27(3):1098-1105.
    112.王云琦,王玉杰,朱金兆,等.重庆缙云山不同土地利用类型坡面产流对暴雨的响应[J].中国水土保持科学,2005,(04):19-26.
    113.王中根,朱新军,夏军,等.海河流域分布式SWAT模型的构建[J].地理科学进展,2008,27(4):1-6.
    114.王遵娅,丁一汇,何金海,等.近50年来中国气候变化特征的再分析[J].气象学报,2004,(02):228-236.
    115.吴钦孝.森林保持水土机理及功能调控技术[M]:科学出版社,2005.
    116.吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,(04):341-348.
    117.吴险峰,王中根,刘昌明,等.基于DEM的数字降水径流模型在——黄河小花间的应用[J].地理学报,2002,(06):671-678.
    118.夏军,谈戈.全球变化与水文科学新的进展与挑战[J].资源科学,2002,(03):1-7.
    119.夏军,王纲胜,谈戈,等.水文非线性系统与分布式时变增益模型[J].中国科学(D辑:地球科学),2004,(11):1062-1071.
    120.夏军,叶守泽.21世纪水文科学研究的机遇与挑战.中国科协2001年学术年会,中国长春,2001.
    121.夏军.华北水资源面临的问题与挑战.中国科协2002年学术年会,中国四川成都,2002.
    122.夏军.气候变化背景下流域水资源的脆弱性评估与适应对策研究.发挥资源科技优势保障西部创新发展——中国自然资源学会2011年学术年会,中国新疆乌鲁木齐,2011.
    123.夏智宏,周月华,许红梅.基于SWAT模型的汉江流域水资源对气候变化的响应[J].长江流域资源与环境,2010,(02):158-163.
    124.熊亚兰,张科利.全球气候变化对贵州省输沙模数影响分析[J].泥沙研究,2011,(03):23-28.
    125.徐静,任立良,程媛华,等.基于TOPMODEL的DEM空间尺度转换关系探讨[J].水利学报,2007,(S1):404-408.
    126.徐勇,田均良,刘普灵,等.黄土高原坡耕地水土流失地形分异模拟[J].水土保持学报,2005,(05):20-23.
    127.徐宗学,程磊.分布式水文模型研究与应用进展[J].水利学报,2010,(09):1009-1017.
    128.徐宗学.黑河源区径流模拟与模型不确定性分析[C].中国辽宁大连,2009.
    129.许红梅.流域水文模拟的自动参数化:SWAT2005在香溪河的应用[J].中国农业气象,2009,(S2):301-306.
    130.杨斌斌,王洪伟.新安江模型在嫩江右侧主要支流洪水预报中的应用[J].东北水利水电,2011,(03):46-48.
    131.杨武年,刘恩勤,陈宁,等.成都市土地利用遥感动态监测及驱动力分析[J].西南交通大学学报,2010,(02):185-190.
    132.杨武年,濮国梁,F Cauneau,等.长江三峡库区地质灾害遥感图像信息处理及其监测和评估[J].地质学报,2005,(03):423-430.
    133.姚长青,杨志峰,赵彦伟.分布式水文-土壤-植被模型与GIS集成研究[J].水土保持学报,2006,(01):168-171.
    134.尤联元,杨积武.环境变化对黄河下游来水来沙的影响[J].地理学报,1995,(01):25-34.
    135.于静.大清河流域土地利用/覆被变化对洪水径流影响问题的研究[D].天津:天津大学,2008.
    136.于澎涛.分布式水文模型在森林水文学中的应用[J].林业科学研究,2000,(04):431-438.
    137.于伟东.海河流域水平衡与水资源可持续开发利用分析与建议[J].水文,2008,(03):79-82.
    138.余新晓,张学霞,李建牢,等.黄土地区小流域植被覆盖和降水对侵蚀产沙过程的影响[J].生态学报,2006,(01):1-8.
    139.余新晓,赵玉涛,张志强,等.基于地形指数的TOPMODEL研究进展与热点跟踪[J].北京林业大学学报,2002,(04):117-121.
    140.喻锋,李晓兵,陈云浩,等.皇甫川流域土地利用变化与土壤侵蚀评价[J].生态学报,2006,(06):1947-1956.
    141.袁艺,史培军,刘颖慧,等.土地利用变化对城市洪涝灾害的影响[J].自然灾害学报,2003,(03):6-13.
    142.曾小凡,周建中.长江流域年平均径流对气候变化的响应及预估[J].人民长江,2010,(12):80-83.
    143.张东,贺康宁,寇中泰,等.北京市怀柔区生态用水计算研究[J].水土保持研究,2010,(01):243-247.
    144.张光辉.黄河流域降雨侵蚀力对全球变化的响应[J].山地学报,2005,(04):4420-4424.
    145.张光辉.全球气候变化对黄河流域天然径流量影响的情景分析[J].地理研究,2006,(02):268-275.
    146.张建云,王国庆,贺瑞敏,等.黄河中游水文变化趋势及其对气候变化的响应[J].水科学进展,2009,(02):153-158.
    147.张建云.气候变化与水资源的可持续利用[C].中国湖北武汉,2009.
    148.张士锋,贾绍凤.海河流域水量平衡与水资源安全问题研究[J].自然资源学报,2003,(06):684-691.
    149.张天曾.森林影响河川径流的流域因素[J].自然资源学报,1989,(01):37-45.
    150.张岩,朱清科.黄土高原侵蚀性降雨特征分析[J].干旱区资源与环境,2006,(06):99-103.
    151.张永勇,陈军锋,夏军,等.温榆河流域闸坝群对河流水量水质影响分析[J].自然资源学报,2009,(10):1697-1705.
    152.张永勇,王中根,于磊,等.SWAT水质模块的扩展及其在海河流域典型区的应用[J].资源科学,2009,(1):94-100.
    153.张志,朱金兆,朱清科,等.晋西黄土区蔡家川流域景观地形分异格局研究[J].北京林业大学学报,2005,27(002):43-48.
    154.章文波,刘宝元.北方农牧交错带降水极值变化空间特征[J].自然资源学报,2003,(03):274-280.
    155.郑江坤.潮白河流域生态水文过程对人类活动/气候变化的动态响应[D].北京:北京林业大学,2011.中国林学会考察组.华北地区森林涵养水源考察报告[J].山西林业科技动态,1982.
    156.中野秀章.森林水文学[M].李云森,译.北京:中国林业出版社1983.
    157.周玉淑,高守亭,邓国,等.青藏高原冬春季地温异常对长江中下游夏季旱涝影响的研究[J].南京气象学院学报,2002,(5):611-619.
    158.朱劲伟,史继德.小兴安岭红松阔叶林的水文效应[J].东北林学院学报,1982,(04):37-44.
    159.朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,(02):16-22.
    160.朱求安,张万昌.新安江模型在汉江江口流域的应用及适应性分析[J].水资源与水工程学报,2004,(03):19-23.
    161.朱燕君,李海萍.黄河断流的气候因子分析[J].资源科学,2003,(02):26-31.
    162.竹磊磊,李娜,常军.SWAT模型在半湿润区径流模拟中的适用性研究[J].人民黄河,2010,(12):59-61.
    163.左海凤.近50年汾河上中游流域径流对气候变化的响应分析[J].水文,2006,(05):72-75.
    164.Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system--Systeme Hydrologique Europccn[J]. Journal of hydrology,1986,87(1-2):45-59.
    165.Aber J D, Ollinger S V, Federer C A, et al. Predicting the effects of climate change on water yield and forest production in the northeastern United States[J]. Climate Research,1995,5(3):207-222.
    166.Ambroise B, Beven K, Freer J. Toward a generalization of the TOPMODEL concepts:Topographic indices of hydrological similarity [J]. Water Resources Research,1996,32(7):2135-2145.
    167.Arnell N W. Climate change and water resources in Britain[J]. Climatic Change,1998,39(1): 83-110.
    168.Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment part Ⅰ: Model developmentl[J]. JAWRA Journal of the American Water Resources Association,1998,34(1): 73-89.
    169.Bathurst J C, Wicks J M, O'Connell P E, et al. The SHE/SHESED basin scale water flow and sediment transport modelling system.[J]. Computer models of watershed hydrology.,1995:563-594.
    170.Beven K J, Kirkby M J, Schofield N, et al. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments[J]. Journal of hydrology,1984,69(1):119-143.
    171.Beven K J, Kirkby M J.A physically based, variable contributing area model of basin hydrology/Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant[J]. Hydrological Sciences Journal,1979,24(1):43-69.
    172.Beven K, Wood E F. Catchment geomorphology and the dynamics of runoff contributing areas[J]. Journal of Hydrology,1983,65(1-3):139-158.
    173.Bochet E, Rubio J L, Poesen J. Modified topsoil islands within patchy Mediterranean vegetation in SE Spain[J]. Catena,1999,38(1):23-44.
    174.Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of hydrology,1982,55(1-4):3-23.
    175.Bouraoui F, Grizzetti B, Granlund K, et al. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment[J]. Climatic Change,2004,66(1):109-126.
    176.Braun L N, Weber M, Schulz M. Consequences of climate change for runoff from Alpine regions[J]. Annals of glaciology,2000,31(1):19-25.
    177.Bronstert A, Niehoff D, Burger G. Effects of climate and land-use change on storm runoff generation:present knowledge and modelling capabilities[J]. Hydrological Processes,2002,16(2): 509-529.
    178.Brown A E, Zhang L, Mcmahon T A, et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation [J]. Journal of hydrology,2005, 310(1-4):28-61.
    179.Brown R G. EFFECTS OF PRECIPITATION AND LAND USE ON STORM RUNOFF 1[J]. JAWRA Journal of the American Water Resources Association,1988,24(2):421-426.
    180.Burn D H, Hag Elnur M A. Detection of hydrologic trends and variability[J]. Journal of Hydrology, 2002,255(1-4):107-122.
    181.Calder I R, Maidment D R. Hydrologic effects of land-use change.[M]:McGraw-Hill Inc,1992.
    182.Calder Ian R. Forests and water-Ensuring forest benefits outweigh water costs[J]. Forest Ecol Manag,2007,251:110-120.
    183.Castro N M D R, Auzet A V A, Chevallier P, et al. Land use change effects on runo and erosion from plot to catchment scale on the basaltic plateau of Southern Brazil[J]. Hydrological processes, 1999,13:1621-1628.
    184.Crossley Jr D A. Forest hydrology and ecology at Coweeta[J]. Ecological studies,1988,66: 279-294.
    185.Dawes W R, Short D L. TOPOG Series Topographic Analysis and Catchment Drainage Modelling Package, User Manual-VAX/VMS version[J]. Australian Centre for Catchment Hydrology, CSIRO Division of Water Resources, Canberra,1988,74.
    186.Dawes W R, Zhang L, Hatton T J, et al. Evaluation of a distributed parameter ecohydrological model (TOPOG-IRM) on a small cropping rotation catchment[J]. Journal of Hydrology,1997,191(1): 64-86.
    187.Dawes W, Hatton T J, Resources C D O W. TOPOG IRM.:Model Description[M]:CSIRO Division of Water Resources,1993.
    188.D'Herbes J M, Valentin C. Land surface conditions of the Niamey region:ecological and hydrological implications[J]. Journal of Hydrology,1997,188:18-42.
    189.Dickinson R E. Modeling evapotranspiration for three-dimensional global climate models[J]. Climate Processes and Climate Sensitivity,1984:58-72.
    190.Duan J, Miller N L. A generalized power function for the subsurface transmissivity profile in TOPMODEL[J]. Water Resources Research,1997,33(11):2559-2562.
    191.Dunn S M, Mackay R. Spatial variation in evapotranspiration and the influence of land use on catchment hydrology[J]. Journal of Hydrology,1995,171(1):49-73.
    192.Eckhardt K, BreuerL, Frede H G. Parameter uncertainty and the significance of simulated land use change effects[J]. Journal of Hydrology,2003,273(1):164-176.
    193.Eckhardt K, Haverkamp S, Fohrer N, et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2002,27(9):641-644.
    194.Eckhardt K, Ulbrich U. Potential impacts of climate change on. ground water recharge and streamflow in a central European low mountain range[J]. Journal of Hydrology,2003,284(1-4): 244-252.
    195.Farley K A, Jobbagy E G, Jackson R B. Effects of afforestation on water yield:a global synthesis with implications for policy[J]. Global Change Biology,2005,11(10):1565-1576.
    196.Favis-Mortlock D T, Savabi M R, Anderson M G, et al. Shifts in rates and spatial distributions of soil erosion and deposition under climate change.[J]. Advances in hillslope processes:volume 1., 1996:529-560.
    197.Favis-Mortlock D, Boardman J. Nonlinear responses of soil erosion to climate change:a modelling study on the UK South Downs[J]. Catena,1995,25(1-4):365-387.
    198.Fontaine R. Surface Water Quality-Assurance Plan for the Hawaii District of the U. S. Geological Survey[J].2001.,2001.
    199.Freeze R A, Harlan R L. Blueprint for a physically-based, digitally-simulated hydrologic response model[J]. Journal of Hydrology,1969,9(3):237-258.
    200.Gassman P W, Arnold J G, Srinivasan R, et al. The worldwide use of the SWAT model: .Technological driver, networking impacts, and simulation trends[J]. Transactions of the ASABE, 2010a,50(4):1211.
    201.Gassman P W, Reyes M R, Green C H, et al. The Soil and Water Assessment Tool:Historical development, applications, and future research directions.[J],2007a.
    202.Gyssels G, Poesen J, Nachtergaele J, et al. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones[J]. Soil and tillage Research,2002,64(3-4): 189-201.
    203.Hall P. Europe 2000. Edited by Peter Hall[M],1977.
    204.Hasegawa I, Mitomi Y, Nakayama Y, et al. Land cover analysis using multi seasonal NOAA AVHRR mosaicked images for hydrological applications[J]. Advances in Space Research,1998, 22(5):677-680.
    205.Haverkamp S, Fohrer N, Frede H G. Assessment of the effect of land use patterns on hydrologic landscape functions:A comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation[J]. Hydrological processes,2005,19(3):715-727.
    206.Haverkamp S, Srinivasan R, Frede H G, et al. SUBWATERSHED SPATIAL ANALYSIS TOOL: DISCRETIZATION OF A DISTRIBUTED HYDROLOGIC MODEL BY STATISTICAL CRITERIA1[J]. JAWRA Journal of the American Water Resources Association,2002,38(6): 1723-1733.
    207.Hibbert A R. Water yield changes after converting a forested catchment to grass[J]. Water Resources Research,1969,5(3):634-640.
    208.Hickel K. The effect of pine afforestation on flow regime in small upland catchments[D]:Masters Thesis, University of Stuttgart,2001.
    209.Hidalgo J C, Raventos J, Echevarria M T. Comparison of sediment ratio curves for plants with different architectures[J]. Catena,1997,29(3-4):333-340.
    210.Hirsch R M, Slack J R, Smith R A. Techniques of trend analysis for monthly water quality data[J]. Water Resources Research,1982,18(1):107-121.
    211.Jha M, Pan Z, Takle E S, et al. Impacts of climate change on streamflow in the Upper Mississippi River Basin:A regional climate model perspective[J]. J. Geophys. Res,2004,109:D9105.
    212Jutras S, Plamondon A P, Hokka H, et al. Water Tab. changes following precommercial thinning on post-harvest drained wetlands[J]. Forest ecology and management,2006,235(1):252-259.
    213.K. Fraedrich F W G E. Climate shifts during the last century[J]. Climatic Change,2001,50: 405-417.
    214.Kannan N, White S M, Worrall F, et al. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000[J]. Journal of Hydrology,2007,332(3):456-466.
    215.Karen M C, Andrew R Y, Maxine D Z, et al. Flow duration curve estimation in ephemeral catchments in Portugal[J]. Hydrological sciences journal,2003,48(3):427-439.
    216.Kirkby M. Hillslope runoff processes and models[J]. Journal of Hydrology,1988,100(1-3): 315-339.
    217.Klaus Fraedrich J J E A. multiscale detection of abrupt climate changes:application to river nile flod levels[C],1997.1301-1315.
    218.Kondoh A. Vegetation/Land Cover Changes in Monsoon Asia and its influence on Areal Evaporation[J]. Proceeding IGBP/BAHC-LUCC Joint Inter-Core Project,1996:54-57.
    219.Krause P. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model[J]. Physics and Chemistry of the Earth, Parts A/B/C,2002,27(9):663-673.
    220.Krysanova V, Muller-Wohlfeil D I, Becker A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds[J]. Ecological modelling,1998,106(2): 261-289.
    221.Leung L R, Wigmosta M S. POTENTIAL CLIMATE CHANGE IMPACTS ON MOUNTAIN WATERSHEDS IN THE PACIFIC NORTHWEST1[J]. JAWRA Journal of the American Water Resources Association,1999,35(6):1463-1471.
    222.Li L J, Zhang L, Wang H, et al. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China[J]. Hydrological Processes,2007,21(25): 3485-3491.
    223.Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics,1979:239-245.
    224.Mcminn J W, Hewlett J D. First-year water yield increase after forest cutting:an alternative model[J]. Journal of Forestry,1975,73(10):654-655.
    225.Middelkoop H, Daamen K, Gellens D, et al. Impact of climate change on hydrological regimes and water resources management in the Rhine basin[J]. Climatic change,2001,49(1):105-128.
    226.Milly P C D, Dunne K A. Macroscale water fluxes 2. Water and energy supply control of their interannual variability[J]. Water Resources Research,2002,38(10).
    227.Moore I D, O'Loughlin E M, Burch G J. A contour-based topographic model for hydrological and ecological applications[J]. Earth Surface Processes and Landforms,1988,13(4):305-320.
    228.Morris M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics,1991:161-174.
    229.Muleta M K, Nicklow J W. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J]. Journal of Hydrology,2005,306(1):127-145.
    230.Nearing M A, Pruski F F, O'Neal M R. Expected climate change impacts on soil erosion rates:a review[J]. Journal of Soil and Water Conservation,2004,59(1):43-50.
    231.Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation, version 2000[J]. Texas, USA,2005.
    232.Oki T, Kanae S. Global hydrological cycles and world water resources[J]. science,2006,313(5790): 1068.
    233.O'Loughlin E M. Natural Catchments by Topographic Analysis[J]. Water Resources Research, 1986,22(5):794-804.
    234.Pachauri R K. Climate Change 2007:Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]:IPCC, 2007.
    235.Polyakov V O, Nearing M A, Nichols M H, et al. Long-term runoff and sediment yields from small semiarid watersheds in southern Arizona[J]. Water Resources Research,2010,46(9).
    236.Prieler S, Lesko A P, Anderberg S. Three scenarios for land-use change[M]:Citeseer,1998.
    237.Pruski F F, Nearing M A. Runoff and soil-loss responses to changes in precipitation:a computer simulation study[J]. Journal of Soil and Water Conservation,2002,57(1):7-16.
    238.R. C. Balling Jr R S V G. Analysis of long-term European temperature records:1751-1995[J]. climate research,1998,10:193-200.
    239.Restrepo J D, Kjerfve B, Hermelin M, et al. Factors controlling sediment yield in a major South American drainage basin:the Magdalena River, Colombia[J]. Journal of Hydrology,2006,316(1-4): 213-232.
    240.Romanowicz A A, Vanclooster M, Rounsevell M, et al. Sensitivity of the SWAT model to the soil and land use data parametrisation:a case study in the Thyle catchment, Belgium[J]. Ecological modelling,2005,187(1):27-39.
    241.Rustomji P, Zhang X P, Hairsine P B, et al. River sediment load and concentration responses to changes in hydrology and catchment management in the Loess Plateau region of China[J]. Water Resources Research,2008,44(7):W4A.
    242.Schreider S Y, Young P C, Jakeman A J. An application of the Kalman filtering technique for streamflow forecasting in the Upper Murray Basin[J]. Mathematical and computer modelling,2001, 33(6):733-743.
    243.Smakhtin V U. Estimating daily flow duration curves from monthly streamflow data[J],2000.
    244.Sneyers R. On the statistical analysis of series of observations[J]. Technical note.143.,1990.
    245.Stone M C, Hotchkiss R H, Hubbard C M, et al. IMPACTS OF CLIMATE CHANGE ON MISSOURI RWER BASIN WATER YIELD1[J]. JAWRA Journal of the American Water Resources Association,2001,37(5):1119-1129.
    246.Stonefelt M D, Fontaine T A, Hotchkiss R H. IMPACTS OF CLIMATE CHANGE ON WATER YIELD IN THE UPPER WIND RIVER BASIN1[J]. JAWRA Journal of the American Water Resources Association,2000a,36(2):321-336.
    247.Stonefelt M D, Fontaine T A, Hotchkiss R H. IMPACTS OF CLIMATE CHANGE ON WATER YIELD IN THE UPPER WIND RIVER BASIN1[J]. JAWRA Journal of the American Water Resources Association,2000b,36(2):321-336.
    248.Sun G, Zhou G, Zhang Z, et al. Potential water yield reduction due to forestation across China[J]. Journal of Hydrology,2006,328(3-4):548-558.
    249.van der Ploeg R, Schweigert P. Elbe river flood peaks and postwar agricultural land use in East Germany[J]. Naturwissenschaften,2001,88(12):522-525.
    250.Vandenberghe V, Van Griensven A, Bauwens W. Sensitivity analysis and calibration of the parameters of ESWAT:Application to the river Dender[J]. Water science and technology,2001: 295-301.
    251.Vertessy R A, Hatton T J, O'Shaughnessy P J, et al. Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model[J]. Journal of Hydrology,1993, 150(2-4):665-700.
    252.Vertessy R, O Loughlin E, Beverly E, et al. Australian experiences with the CSIRO Topog model in land and water resources management[C],1994.
    253.Watson F, Vertessy R A, Mcmahon T A, et al. The hydrologic impacts of forestry on the Maroondah catchments[J]. Cooperative research Centre for Catchment Hydrology, Melbourne, Report, 1999,99(1).
    254.Wigmosta M S, Lettenmaier D P. A comparison of simplified methods for routing topographically driven subsurface flow[J]. Water Resources Research,1999,35(1):255-264.
    255.Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water resources research,1994,30(6):1665-1680.
    256.Zhang L, Dawes W R, Hatton T J, et al. Estimation of soil moisture and groundwater recharge using the TOPOG_IRM model[J]. Water Resources Research,1999,35(1):149-161.
    257.Zhang X C, Nearing M A. Impact of climate change on soil erosion, runoff, and wheat productivity in Central Oklahoma[J]. Catena,2005,61(2):185-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700