用户名: 密码: 验证码:
基于矩阵变换器励磁的双馈型风力发电机并网运行控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,双馈型风力发电机普遍使用电压源型双PWM变频器作为励磁系统电源。双PWM变频器需要大电容作为直流储能元件,不仅体积大、重量重,且不易维护,同时大电解电容的电解液易于挥发,严重影响变频器的寿命。矩阵变换器不存在大电容或大电感,具有体积小,易维护等优点,因此研究矩阵变换器交流励磁系统,对减小励磁系统体积,提高功率密度,降低维护成本均有重要意义。但由于矩阵变换器本身结构复杂,控制难度大,将其应用于双馈电机交流励磁系统,还存在着并网困难、运行性能欠佳等问题。为此论文研究了基于矩阵变换器励磁的双馈型风力发电机并网运行控制策略,并通过实验和仿真验证了所提控制策略的有效性。论文的主要研究内容及创新性工作如下:
     (1)在深入分析双馈电机数学模型和矩阵变换器调制策略的基础上,根据矩阵变换器励磁的双馈电机空载、正常工况下和非正常工况下三种运行状态,提出了基于矩阵变换器励磁的双馈型风力发电机并网运行控制方案。该方案使得基于矩阵变换器励磁的双馈型风力发电机可以满足在不同工况下并网运行的要求。
     (2)针对在矩阵变换器励磁的双馈电机并网瞬时定子冲击电流较大的问题,提出了定子电压闭环控制策略。该策略是将电网电压的幅值和相位作为给定值,定子电压幅值作为反馈值,实现对矩阵变换器虚拟逆变侧的电压幅值和相位控制,使定子电压准确跟随电网电压,并简化了复杂的解耦控制。实验结果表明,减少了并网瞬时双馈电机定子冲击电流。
     (3)针对传统的矩阵变换器励磁控制策略响应时间较长、超调量较大的问题,提出了基于矩阵变换器励磁的直接功率控制策略。该策略首先由定子有功功率误差、无功功率误差、定子电压和转子所处位置直接计算得到转子电压信号,再通过矩阵变换器间接空间矢量调制策略控制转子电压。该策略实现了在一个控制周期内消除定子侧有功功率误差和无功功率误差,并省去了转子电流闭环控制环节。因此该策略能够有效提高响应速度,减少超调量。
     (4)针对传统矩阵变换器励磁控制策略在电网电压扰动和电压不平衡等非正常工况下运行效果不理想的问题,分别提出了非线性最优控制策略和电压不平衡交流励磁控制策略。仿真结果表明,非线性最优控制策略在电网电压扰动情况下减少了定子电压、有功功率和定子磁链的调节时间;电压不平衡交流励磁控制策略在电网电压不平衡情况下,根据不同控制目标,可以分别消除定子负序电流、减少有功功率脉动或无功功率脉动。
     (5)研发了矩阵变换器交流励磁实验系统。该系统以DSP控制器为核心构成主控系统和以IGBT模块为开关器件构成主电路,并使用变频器驱动异步电动机模拟风机,实现了在正常工况下双馈型风力发电机向电网输出有功功率和无功功率的并网运行。
Nowadays, Back-to-back PWM converter is widely used as power supply of excitation system in DFIG. But this converter needs a big capacitor for its DC energy storage, so it is very big and heavy, and it is difficult to maintain. Meanwhile, the electrolyte is easy to volatilize, which shortens the service life. Matrix converter has no large capacitor or large inductor. And it is small and easy for maintaining. Therefore, it is very significant to research matrix-converter-excitation in order to increase power density and decrease maintenance costs. The DFIG based on matrix-converter-excitation is difficult to cut in and lack of performance operating, because matrix converter has complicated structure and is difficult to control. Thus, the grid-connected control strategy of DFIG based on matrix-converter-excitation is studied. The effectiveness has been proved by experiments and simulation. The major achievements include:
     (1) After investigating the DFIG model and matrix converter modulation strategy, the grid-connected control strategy of DFIG based on matrix-converter-excitation is proposed for no-load condition, normal operating condition and abnormal operating condition. Thus, the strategy satisfies the grid-connected requirements under different running conditions.
     (2) Considering the large impact of the stator current of the DFIG based on matrix-converter-excitation at the instantaneousness of cutting-in, a closed-loop control strategy for stator voltage is proposed. This control system regards the grid voltage amplitude and phase as given value, and the stator voltage as feedback to control the virtual inverter-side voltage amplitude and phase of the matrix converter, so that the DIFG stator voltage precisely follows the grid voltage and the solution of complex decoupling control is simplified. The experimental results show that the impact current of the cutting-in is little.
     (3) Considering the problem of long response time and large overshoot of traditional control strategies for matrix-converter-excitation, a direct power control method for matrix-converter-excitation is proposed. Firstly, rotor voltage signal is directly calculated using the stator active power error, the reactive power error, stator voltage, and the location of rotor in the strategy. Secondly, the rotor voltage is modulated using the matrix converter space vector modulation strategy. Then the active power error and the reactive power error are eliminated in a fixed period. Meanwhile, the rotor current loop is not needed. The strategy is able to improve the response speed and diminish the overshoot.
     (4) Regarding to the incapability of the traditional control when the grid voltage is disturbed or imbalanced, nonlinear optimal control and voltage unbalance control are proposed separately. The Simulation results show that the duration of time to modulate the stator voltage and active power under the case of the grid voltage disturbance is reduced after adopting the nonlinear optimal control strategy, and the pulses of the active power and reactive power are decreased or the stator negative sequence current is eliminated by applying the voltage unbalance control strategy when the grid voltage is imbalanced.
     (5) The experimental equipment of matrix-converter-excitation system is developed. The system consists of a DSP controller as master control system, a main circuit in which the IGBT module is the switching device, and an inverter-driven induction motor to simulate fans. It achieves that the DFIG transmits active power and reactive power to the grid under normal operating conditions.
引文
[1]中国能源结构调整http://wenku.baidu.coml,2010
    [2]杨淑英.双馈型风力发电变流器及其控制[博士学位论文].合肥:合肥工业大学,2007
    [3]中华人民共和国可再生能源法www.gov.cn,2005
    [4]中国风电发展报告2010, http://wenku.baidu.coml,2010
    [5]李建林,许洪华等.风力发电系统低电压运行技术.北京:机械工业出版社,2009
    [6]Shiyi Shao, Ehsan Abdi, Farhad Barati, et al. Stator-flux-oriented vector control for brushless doubly fed induction generator. IEEE Transactions on Industrial Electronics,2009,56(10):4220~4228
    [7]杨俊华,邹兵,王孝洪,等.矩阵变换器励磁控制的无刷双馈电机能量研究.高电压技术,2008,34(5):955~960
    [8]王琦,陈小虎,袁越,等.变速恒频无刷双馈风电机组的励磁电源研究.电力系统保护与控制,2010,38(23):26~31
    [9]Jamal A. Baroudi, Venkata Dinavahi, Andrew M. Knight. A review of power converter topologies for wind generatos. Renewable Energy,2007,32(2007): 2369~2385
    [10]王兆安,刘进军.电力电子技术第5版.北京:机械工业出版社,2009.
    [11]lireza Jahangiri, Ahmad Radan, Mehdi Haghshenas. Synchronous control of indirect matrix converter for three-phase power conditioner. Electric Power Systems Research,2010,80(7):857~868
    [12]孙凯,周大宁.矩阵式变换器技术及其应用.北京:机械工业出版社,2007.
    [13]Sangshin Kwak. Indirect matrix converter drives for unity displacement factor and minimum switching losses. Electric Power Systems Research,2007,77(5): 447~454
    [14]Sedat Sunter. Slip energy recovery of a rotor-side field oriented controlled wound rotor induction motor fed by matrix converter. Journal of the Franklin Institute,2008,345 (4):419~435
    [15]V. Talaeizadeh, R. Kianinezhad, S.G. Seyfossadat, et al. Direct torque control of six-phase induction motors using three-phase matrix converter. Energy Conversion and Management,2010,51(12):2482~2491
    [16]R. Melicio, V.M.F. Mendes, J.P.S. Catalao. Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems. Energy,2011,36(1):520~529
    [17]郭有贵.交—交矩阵变换器控制策略及提高电压传输比研究.[博士学位论文].长沙:中南大学,2005
    [18]Venturini M. A new sine wave in sine wave out conversion technique which eliminates reactive elements. Proceedings of Powercon.1980:E3-1~E3-15.
    [19]Alesina A, Venturini M. The generalized transformer:a new bi-directional sinusoidal waveform frequency converter with continuous variable adjustable input power factor. Proceedings of IEEE pesc'30,1980.242~252
    [20]Rodriguez J. A new control technique for AC-AC converter. Proceedings of IFAC control in Power Electronics and Electrical Drives Conference.1983. 203~208
    [21]Stefan Muller, Ulrich Ammann, Stephan Rees. New Time-Discrete Modulation Scheme for Matrix Converters. IEEE Transactions on Industrial Electronics, 2005,52(6):1607~1615
    [22]Burany N. Safe control of four-quadrant swithes. Industry Applications Society Annual Meeting, San Diego,1989.1190~1194
    [23]Ziegler M, Hoffman W. Semi natural two steps commutation strategy for matrix converters. Proceedings of Power Electronics Specialists,1998, 727~731
    [24]Ziegler M, Hoffman W. Implementation of a two steps commutated matrix converters.Proceedings of Power Electronics Specialists.1999.175~180
    [25]Mahlein J, Igney J, Weigold J, et al. Matrix converter commutation strategies with and without explicit input voltage sign measurement. IEEE Transactions on Industrial Electronics,2002,49(2):407~414
    [26]Wei L X, Lipo T A, Chan H. Robust voltage commutation of the conventional matrix converter. Proceedings of IEEE PESC'03.2003.717~722
    [27]Kyo-Beum Lee, Frede Blaabjerg. A Nonlinearity Compensation Method for a Matrix Converter Drive. IEEE Power Electronics Letters,2005,3:19~22
    [28]Antoni Arias, Lee Empringham, Greg M. Asher. Elimination of waveform distortions in matrix converters using a new dual compensation method. IEEE Transactions. on Industrial Electronics.2007,21(5):2079~2087
    [29]A. Alesina, Frede Blaabjerg, Tae-Woong Yoon, Speed-sensorless DTC-SVM for matrix converter drives with simple nonlinearity compensation, IEEE Transactions. on Industrial Electronics.,2007,43(6):1639~1647
    [30]Kyo-Beum Lee, M. G. B. Venturini, J.W. Kolar, F. Schafmeister, et al. Novel three-phase AC-AC sparse matrix converters. IEEE Transactions. Power Electron,2007,22(5):101~112
    [31]邓文浪,杨欣荣,朱建林,等.18开关双级矩阵变换器的空间矢量调制策略及其仿真研究.中国电机工程学报,2005,25(15):84~90
    [32]朱建林,岳舟,张小平,等.具有高电压传输比的BMC和BMC矩阵变换器研究.中国电机工程学报,2007,27(16):85~91
    [33]T. Wijekoon, C. Klumpner, P. Wheeler. Implementation of a hybrid AC-AC direct power converter with unity voltage transfer ratio, Applied Power Electronics Conference and Exposition, Dallas:2006:pp1478-1485
    [34]Meng Yeong Lee, Patrick Wheeler, Christian Klumpner.Space-vector modulated multilevel matrix converter. IEEE Transactions on Industrial Electronics,2010,57(10):3385~3393
    [35]Domenico Casadei, Giovanni Serra, Angelo Tani. Theoretical and experimental investigation on the stability of matrix converters. IEEE Transactions Industrial Electronics.2005,52(5):1409~1418
    [36]粟梅,覃恒思,孙尧,等.矩阵变换器系统的稳定性分析.中国电机工程学报,2005,25(8):62~69.
    [37]Domenico Casadei, Jon Clare, Lee Empringham.et al. Large-signal model for the stability analysis of matrix converters. IEEE Transactions on Industrial Electronics,2007,54(2):939~950
    [38]陆晓楠,孙凯,李刚,等.双级矩阵变换器网侧功率因数的控制方法,电工技术学报,25(10):108~114
    [39]宋卫章,钟彦儒,李洁等.带相位补偿环节的双级矩阵变换器网侧电流闭环控制,电工技术学报,25(7):77~84
    [40]Hulusi Karaca, Ramazan Akkaya. Modelling and simulation of matrix converter under distorted input voltage conditions. Simulation Modelling Practice and Theory,2011,19(2):673~684
    [41]Hidenori Hara, Eiji Yamamoto Jun-Koo Kang, et al. Improvement of Output Voltage Control Performance for Low Speed Operation of Matrix Converter. Proceedings of IEEE PESC'042004.2910~2914
    [42]Itoh J, Sato I, Odaka A, et al. A novel approach to practical matrix converter motor drive system with reverse blocking IGBT. Proceedings of IEEE PESC'04. 2004.2380~2385
    [43]Wheeler P W, Clare J C, Katsis D, et al. Design and construction of a 150 KVA matrix converter induction motor driver. Proceedings of PEMD'04.2004. 719~723
    [44]孙凯,黄立培,松濑贡规.基于矩阵式变换器的异步电动机矢量控制,清华大学学报(自然科学版),2004,44(7):909~912
    [45]Shassan Nikkhajoei, Reza Iravani. Steady-State Model and Power Flow Analysis of Electronically-Coupled Distributed Resource Units. IEEE Transactions on Power Delivery,2007,22(1):721~728
    [46]葛红娟,基于矩阵变换器的永磁同步电机矢量控制系统:[博士学位论文].南京:南京航空航天大学,2006
    [47]S.M. Barakati, M. Kazerani, X. Chen. A new wind turbine generation system based on matrix converter. IEEE Power Engineering Society General Meeting, 2005, pp.2083~2089
    [48]S. M. Barakati, J.D. Aplevich, M. Kazerani, Controller design for a wind turbine system including a matrix converter. IEEE Power Engineering Society General Meeting, Tampa,2007.1-8
    [49]S. Masoud Barakati. Modeling and controller design of a wind energy conversion system including a matrix converter:[Doctor of philosophy]. Ontario:University of Waterloo,2008
    [50]Zhang L, Watthanasarn C. A matrix converter excited doubly-fed induction machines as a wind power generator.Seventh International Conference on Power Electronics and Variable Speed Drives, London,1998.906~911
    [51]Jeong. J, Ju Y, Han B. Wind power system using Doubly-Fed Induction Generator and matrix converter with simple modulation scheme. IEEE conference on Power Electronics and Machines in Wind Applications, Lincoln.2009.1~6
    [52]黄科元,贺益康,卞松江等.矩阵变换器交流励磁的变速恒频风力发电系统研究.中国电机工程学报,2002,22(11):100~105
    [53]张华强,王新生,徐殿国,等.矩阵变换器在变速恒频风力发电中的应用研究.电子器件,2006,29(3):859~863
    [54]汤宁平.矩阵变换器供电的交流励磁风力发电系统研究[博士论文].福州:福州大学,2005
    [55]宋战锋,夏长亮.基于定子磁链的双馈风力发电系统矩阵变换器调制策略. 电力科学与技术学报,2009,24(3)10~14
    [56]Sitthipong angkititrakul. Control and implementation of a multilevel matrix converter [Doctor of philosophy]. Denver:University of Colorado,2006
    [57]周丽明,邓文浪,杨钰,等.TSMC励磁的双馈风力发电系统研究.太阳能学报,2010,31(5):647~653
    [58]Reyes E., Pena R., Cardenas R., et al. Control of a doubly-fed induction generator with an indirect matrix converter with changing DC voltage. IEEE International Symposium on Industrial Electronics, Bari,2010,1230~1235
    [59]Roberto Cardenas, Ruben Pena, German Tobar. et al.Stability analysis of a wind energy conversion system based on a doubly fed induction genenrator fed by a matrix converter. IEEE Transactions on Industrial Electronics,2009, 56(10):4194~4205
    [60]Zhang, S, Tseng, K.J. Modeling, simulation and analysis of conducted common-mode EMI in matrix converters for wind turbine generators. Proceedings of Power Electronics and Motion Control, Poznan,2008. 2516~2523
    [61]郭有贵.矩阵变换器双电压合成定理及其自动调节能力研究.中国电机工程学报,2006,26(21):71~75
    [62]陈希有,丛树久,陈学允.双电压合成矩阵变换器特性与电压扇区的关系分析.中国电机工程学报,2001,21(9):63~67
    [63]陈希有,陈学允.双电压合成矩阵变换器无功功率的控制与输入电流消谐.电气传动,2001,(1):11~15
    [64]王毅,陈希有,徐殿国.双电压合成矩阵变换器闭环控制的研究.中国电机工程学报,2002,22(1):74~79
    [65]粟梅,矩阵变换器—异步电动机高性能调速系统控制策略研究:[博士论文].长沙:中南大学,2005
    [66]邓文浪,朱建林,张林亭.矩阵变换器空间矢量调制法的优化策略.电气传动自动化2003,25(2):25~27
    [67]温照方,杜建生,空间矢量调制的矩阵变换器闭环控制设计,北京理工大学学报,2005,25(7):600~605
    [68]刘勇,贺益康.矩阵变换器交一交直接变换控制分析.电网技术,2002.26(2):37-40
    [69]Zwimpeer P, Stemmler H. Modulation and realization of a novel two-stage matrix converter. Proceedings of the power conversion conference electronics, Florianopolis, Brazil,2001,2:485~490
    [70]邓文浪.双极矩阵变换器及其控制策略研究:[博士论文].长沙:中南大学,2007
    [71]王俊峰,刘佑宝,Patrick W W heeler一种新颖的双桥矩阵变换器控制策略,电力电子技术,2005,27(3):110~115
    [72]P.W.Wheeler, J. Rodriguez, J.C.Clare, L.Empringham, Matrix converters:A technology review. IEEE Transactions on Industrial Electronics,2002,49(2): 276~288
    [73]M. Aten, G. Towers, C. Whitley, P. Wheeler, J. Clare et al. Reliability comparison of matrix and other converter topologies. IEEE Transactions on Aerosp Electron System,2006,42(3):867~875
    [74]徐伟,刘跃,许德志.稀疏矩阵变换器及其调制.机械与电子,2006,(5):50~53
    [75]兰志勇,朱建林.三相稀疏矩阵变换器仿真研究.湘潭大学自然科学学报,2005,27(3):110~115
    [76]A. Alesina and M. G. B. Venturini. Analysis and design of optimumamplitude nine-switch direct AC-AC converters. IEEE Transactions.on Power Electronics, 1989,4(1):101~112
    [77]张华强,王新生,徐殿国.三电平矩阵式电力变换器的开关损耗数学模型.电子器件,2005,28(2):374-377
    [78]刘红良,李利娟,朱建林.多电平矩阵变换器系统的数学模型.吉首大学学报(自然科学版),2007,28(4):55~60
    [79]Yang Xu, Shi Yong, He Qun, et al. A novel multi-level matrix converter. IEEE Applied Power Electronics Conference and Exposition,2004,2:832~835
    [80]Shi Yong, Yang Xu, He Qun, et al. Research on a Novel Capacitor Clamped Multilevel Matrix Converter. IEEE Transactions on Power Electronics,2005, 20(5):1055~1065
    [81]何群,郭海涛,石勇,等.一种新型多电平矩阵变换器及其控制策略研究.电力电子技术,2004,38(3):8-10
    [82]陈希有,陈学允.矩阵电力变换器的无功功率分析.中国电机工程学报,1999,19(11):5-9
    [83]邓文浪,杨欣荣,无功功率可控的双级矩阵变换器空间矢量调制策略.电力系统自动化,2005,29(18):33~38
    [84]D. Casadei, G. Serra, A. Tani, L. Zarri. Matrix converter modulation strategies: A new general approach based on space-vector representationof the switch state. IEEE Transactions on Industry Electronics.2002,49(2):370~381
    [85]陆海惠,陈伯时,夏承光.矩阵式交一交变换器.电力电子技术,1997,1:105~108
    [86]王勇,李征宇.一种基于空间矢量调制的矩阵变换器死区补偿方法.中国电机工程学报,2005,25(11):42~45
    [87]吴小兰,谭国俊.矩阵变换器双电压合成策略的非线性补偿法,电机与控制学报,2008,12(2):164~168
    [88]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制.中国电机工程学报,2004,24(3):6-11
    [89]李辉,阳春华,邓文浪,等.矩阵变换器励磁的双馈型发电机软并网控制.中国电机工程学报,2010,30(15):75~79
    [90]赵栋利,许洪华,赵斌,等.变速恒频风力双馈发电机并网电压控制研究.太阳能学报,2004,25(5):587~591
    [91]赵斌,许洪华.大型风力发电机组的软并网控制系统.新能源,2000,22(12):45~47
    [92]杨淑英,张兴,张崇巍.变速恒频风力双馈发电机投切控制策略的研究.中国电机工程学报,2007,27(17):103~108
    [93]汤蕴璆.交流电机动态分析.北京:机械工业出版社,2005
    [94]高景德.交流电机及其系统的分析(第二版).北京:清华大学出版社,2009
    [95]Muller S, Deicke M, De Doncker Rik W. Doubly fedinduction generator systems for wind turbines. IEEE Industry Applications Magazine,2002,8(3): 26~33
    [96]刘其辉,贺益康.交流励磁变速恒频双馈型异步发电机的稳态功率关系.电工技术学报,2006,21(21):39-44
    [97]刘其辉,贺益康.并网型交流励磁变速恒频风力发电系统控制研究.中国电机工程学报,2006,26(23):109~114
    [98]S. Muller, M. Deicke, R. W. De Doncker. Doubly fed induction generator systems for wind turbines. IEEE Transactions. on Industrial. Application.2002, 8(3):26~33
    [99]苑国锋,李永东.1.5MW变速恒频双馈风力发电机组励磁控制系统试验研究.电工技术学报, 2009,24(2):42~47
    [100]Francois Bonnet, Paul-Etienne Vidal, Maria Pietrzak-David. Dual direct torque control of doubly fed induction machines. IEEE Transactions on Industrial Electronics,2007,54(5):2482~2490
    [101]Lie Xu, Phillip Cartwright. Direct active and reactive power control of DFIG for Wind Energy Generation. IEEE Transactions on Power Electonics,2006,21(3): 750~758
    [102]张俊峰,毛承雄,陆继明,等.双馈感应发电机的直接功率控制策略.电力自动化设备,2006,26(4):31~35
    [103]卞松江,变速恒频风力发电关键技术研究[博士论文].杭州:浙江大学,2003
    [104]Tapia A, Tapia G, Ostolaza J X et al. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Transactions on Energy Conversion,2003,18 (2):194~204
    [105]谢邦立,蒋金明,李治理.锁相环技术在三相可逆PWM整流器中的应用研究.电气传动,2008,38(10):11~13
    [106]Andreas Petersson, Lennart Harnefors, Torbjorn Thiringer. Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators. Proceeding of 35th Annual IEEE Power Electronics Specialisfs Conference, Aachen,2004.482~485
    [107]Andreas Petersson, Lennart Harnefors., Torbjorn Thiringer. Evaluation of current control methods for wind turbines using doubly-fed induction machines.IEEE Transactions on Power Electonics.2005,20(1):227-237
    [108]Dawei Zhi, Lie Xu. Direct power control of DIFG with constant switching frequency and improved transient performance. IEEE Transactions on Energy Conversion,2007,22(1):110~118
    [109]Johan Morren, Sjoerd W. H. de Haan. Ridethrough of Wind Turbines with Doubly-Fed induction generator during a voltage dip. IEEE Transactions on Energy Conversion,2005,20(2):435-441
    [110]朱颖,李建林,赵斌,双馈型风力发电系统低电压穿越策略仿真.电力自动化设备,2010,30(6):20~24
    [111]彭凌,李永东.电压跌落下双馈风力发电机矢量控制的改进,电气传动,2010,40(11):9-12
    [112]王宏胜,章玮,胡家兵,等.电网电压不对称故障条件下DFIG风电机组控制策略.电力系统自动化,2010,34(4):97-102
    [113]姚骏,廖勇,李辉.电网不平衡时采用串联网侧变换器的DFIG风电系统协调控制.电机与控制学报,2010,14(12):1-8
    [114]刘思佳,庄圣贤,舒鑫东.基于定子电压定向的双馈风力发电机功率控制.大电机技术,2010,4:38-41
    [115]贾俊川,刘晋,张一工.电网电压故障时双馈异步发电机定子磁链的动态特性研究.中国电机工程学报,2011,31(3):90~96
    [116]帅定新,谢运祥,王晓刚.基于状态反馈精确线性化Buck变换器的最优控制.中国电机工程学报,2008,28(33):1-5
    [117]帅定新,谢运祥,王晓刚等Boost变换器非线性电流控制方法.中国电机工程学报,2008,28(33):27~33
    [118]陈思哲,吴捷,姚国兴等.基于微分几何的风力发电机组恒功率控制.控制理论与应用,2008,25(2):336~340
    [119]Feng Wu, Xiao-Ping Zhang, Ping Ju, et al. Decentralized nonlinear control of wind turbine with doubly fed induction generator. IEEE Transactions on Power system,2008,23(2):613~621
    [120]伊西多.非线性控制系统(第三版).北京:电子工业出版社,2005
    [121]卢强,梅生伟,孙元章.电力系统非线性控制(第二版).北京:机械工业出版社,2008:1~190
    [122]J.B. Ekanayake,L. Holdsworth, N. Jenkins. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research.2003,67(3):207~215
    [123]赵阳,邹旭东,丁稳房.不平衡电网电压下并网型双馈感应发电机励磁控制策略.武汉大学学报(工学版).2009,42(1):110~113
    [124]Yi Wang, Lie Xu. Coordinated control of DFIG and FSIG-Based wind farms under unbalanced grid conditions. IEEE Transactions on Power Delivery,2010, 25(1):367~377
    [125]Peng Zhou, Yikang He, Dan Sun Improved Direct Power Control of a DFIG-Based Wind Turbine during Network Unbalance. IEEE Transactions on Power Electronics,2009,24(11):2465~2474
    [126]胡家兵,贺益康,郭晓明,等.不平衡电压下双馈异步风力发电系统的建模与控制.电力系统自动化,2008,31(4):336~340
    [127]Lie Xu, Yi Wang. Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions. IEEE Transactions on Power Systems 2007,22(1):314~323
    [128]Lie Xu. Coordinated control of DFIG's rotor and grid side converters during network unbalance. IEEE Transactions on Power Systems,2008,23(3): 1041~1049
    [129]刘天琪,邱晓燕.电力系统分析理论.北京:科学技术出版社,2004:257~289
    [130]佘宏武,林桦,王兴伟,等.矩阵变换器在非正常输入电压下的控制策略.中国电机工程学报,2009,29(33):28~33
    [131]邓文浪,杨欣荣,朱建林.不平衡负载情况下基于双序dq坐标系双级矩阵变换器的闭环控制研究.中国电机工程学报,2006,26(19):70~75
    [132]T. Kume, K. Yamada, T. Higuchi, et al. Integrated filters and their combined effects in matrix converters. IEEE Transactions on Industrial Application,2007, 43(2):571~581
    [133]粟梅,余岳,覃恒思,等.基于DSP+CPLD的双级矩阵变换器设计与实现.电力电子技术,2007,41(6):1-3
    [134]蔡灏,李志勇,朱建林,等.基于DSP的双级矩阵变换器设计.电力电子技术,2007,41(6):13~14
    [135]张龙云,张兴,杨淑英,等.基于DSP与CPLD的矩阵变换器间接SVPWM控制.合肥工业大学学报(自然科学版),2009,32(7):981~985
    [136]楼晓春,何丽莉.基于DSP28335的电能质量监测仪器设计.杭州电子科技大学学报,2010,30(4):146~152
    [137]王晓明,王玲.电动机的DSP控制:TI公司DSP应用.北京:北京航空航天大学出版社,2004
    [138]谢运祥,欧阳森.电力电子单片机控制技术.北京:机械工业出版社,2007.
    [139]李生军,李少蒙.单片机与PLC之间的串行通信实现.化工自动化及仪表,2010,37(2):78~82
    [140]周志敏,周纪海,纪爱华IGBT和IPM及其应用电路.北京:人民邮电出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700