用户名: 密码: 验证码:
海洋酵母普鲁兰类酵母碱性蛋白酶发酵生产、特性研究及基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性蛋白酶是世界工业酶制剂中最重要酶制剂之一,其用途非常广泛,受到了大家的广泛关注,特别是微生物发酵产碱性蛋白酶由于其产量大、周期短、操作简单种类多等优点而在短短几十年内迅速发展。本论文主要讨论了海洋酵母普鲁兰类酵母A. pullulans 10碱性蛋白酶的发酵生产及酶的分离纯化、特性研究及基因克隆。
     优化了海洋酵母普鲁兰类酵母A. pullulans 10固体发酵生产碱性蛋白酶培养基主要成分和发酵条件。在豆饼粉和稻糠以4:1比例混合,含水量50%,添加含有2%硝酸钠溶液酶活较高。最适固体发酵条件,接种量107cells/g培养基,装量10 g/250ml三角瓶,温度28°C,最适初始pH10.0。在优化的培养基和发酵条件下,3天后酶活达到196.9U/g干培养基。
     普鲁兰类酵母10胞外蛋白酶通过分子筛SephadexTM G-75和阴离子交换柱DEAE Fast Flow分离纯化,纯化倍数和回收率分别为2.1和18.8%。纯化酶SDS- PAGE凝胶电泳显示分子量约为32kDa。纯化酶的最适反应pH和最适反应温度分别为9.5和45°C,酶对温度比较敏感,广泛pH内都有活性,确定普鲁兰类酵母10胞外蛋白酶属于碱性蛋白酶,命名为ALP1。存在Mn~(2+)和低浓度Cu~(2+)(1 mM)时,蛋白酶酶活有一定程度的增加;当存在Hg~(2+)、Fe~(2+)、Fe~(3+)、Zn~(2+)、Co~(2+)、和高浓度的Cu~(2+)时,蛋白酶酶活明显降低,纯化酶活性被苯甲基磺酰氟(PMSF)强烈抑制,因此分离纯化的碱性蛋白酶ALP1属于丝氨酸蛋白酶。蛋白酶对底物酪蛋白的Km值和Vmax分别是0.25mg/ml和0.0286μmol/min/mg蛋白。
     用纯化的碱性蛋白酶ALP1水解不同来源蛋白,能产生具有生物活性的多肽。水解海洋酵母蛋白、螺旋藻蛋白、虾蛋白、牛奶蛋白和酪蛋白,所得到的水解产物都具有抑制ACE活性和抗氧化活性,但来自虾蛋白的水解产物抑制ACE活性最高,达85.3%,来自螺旋藻蛋白的水解产物的抗氧化活性最高,达40.6%。没有观察到蛋白水解产物的抗菌活性。
     简并引物法扩增了编码普鲁兰类酵母10碱性蛋白酶ALP1的部分基因,片段长度为576bp。反向PCR法扩增得到ALP1全长及两侧部分基因序列,共2562bp。推导出了碱性蛋白酶基因ALP1 ORF框,共1349bp。RT-PCR得到碱性蛋白酶基因ALP1 cDNA,共1245bp,包括3个外显子,分别为311bp、364bp、588bp。根据cDNA推导出普鲁兰类酵母碱性蛋白酶ALP1前体肽的氨基酸序列,共415个氨基酸,分子量为42887Da。分析碱性蛋白酶基因ALP1及其上下游碱性序列,推导出其启动子位置、终止子结构特点等。分析碱性蛋白酶ALP1前体氨基酸序列,推测出它具有枯草蛋白酶N端特性和肽酶S8家族序列特征;含有丝氨酸蛋白酶枯草杆菌蛋白酶家族丝氨酸活性位点和丝氨酸蛋白酶枯草杆菌蛋白酶家族组氨酸活性位点两个蛋白模块;氮端有18个氨基酸残基的信号肽;含有3个N-糖基化位点。分析了碱性蛋白酶ALP1前体肽氨基酸序列与其它碱性蛋白酶氨基酸序列的同源性,建立了碱性蛋白酶ALP1系统发育树。
Alkaline protease is one of the most important commercial enzymes. Microorganisms represent an attractive source of proteases as they can be cultured in large quantities in a relatively short time by established fermentation methods, and they produce an abundant, regular supply of the desired product. Furthermore, proteases from microorganism have a longer shelf life and can be stored under less than ideal conditions for weeks without significant loss of activity. In general, microbial proteases are extracellular in nature and are directly secreted into the fermentation broth by the producer, thus simplifying downstream processing of the enzyme as compared to proteases obtained from plants and animals.
     Production of alkaline protease employing marine yeast Aureobosidium pullulans 10 under solid state fermentation was optimized. The optimum medium is soybean meal with 5% rice hull and 50% NaNO_3 (2%) solution. The optimum inoculation size is 1.0×10~7 yeast cells per gram dry medium. The optimum quantity of dry medium in 250-ml flask is 10 gram. The optimum temperature and initial pH are 28°C and 10.0, respectively. Maximum yields of 196.9U/g dry medium were achieved after 72 h under the optimum medium and optimum conditions.
     The extracellular protease secreted by Aureobosidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ultrafiltration, gel filtration chromatography (SephadexTM G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacryl- amide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0kDa. The optimal pH and temperature of the purified enzyme were 9.5 and 45°C, respectively. The enzyme was activated by Cu~(2+) (at a concentration of 1.0 mM) and Mn~(2+) and inhibited by Hg~(2+),Fe~(2+), Fe~(3+), Zn~(2+), and Co~(2+). The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride. The Km and Vmax values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 mmol/min/mg of protein, respectively.
     After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.
     A genomic DNA fragment for the full length of gene encoding the alkaline protease(ALP1) from marine yeast Aureobosidium pullulans 10 has been cloned and sequenced by degenerate PCR and inverse PCR. ORF frame in the genomic DNA fragment consisting of 1349 bp is presumed by BLASTx in NCBI. The cDNA fragment is amplified by RT-PCR.
     After sequencing and blasting with ALP1 genomic ORF, the results show that ALP1 genome DNA fragment consists of three extrons of 311bp, 346bp, 588bp and two introns of 54bp and 50bp, respectively. The cDNA fragment of ALP1 encoded 415 amino acids. The molecular weight of alkaline protease precursor is 42887 Da.
     A putative promoter at–111 from the start codon is observed. A TATA box and two CAAT are observed at -101, -82, -25, respectively. Terminator at the 3′-noncoding region is observed with clip structure. A consensus sequence of a signal peptide consisting of 18 amino acids is found at the N-terminus and three N-glycosylation sites are found. The primary structure of the mature region shares extensive homology with that of subtilisin families and peptidase S8, and the two active sites (Histidine active site and serine active site) are preserved. Multiple alignment and phylogeny analysis of deduced amino acid sequence of pre-protease with other alkaline protease from representative species are done by using the software of Clustal X and PHYLIP-NP respectively.
引文
Aikat K., Bhattacharyya B.C. Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochem , 2000,35:907–914.
    Aikat K., Bhattacharyya B. C. Protease production in solid state fermentation with liquid medium recycling in a stacked plate reactor and in a packed bed reactor by a local strain of Rhizopus oryzae Process Biochemistry 2001, 36: 1059–1068.
    Andersen L.P. Method for dehairing of hides or skins by means of enzymes. US Patent,1998:5, 834, 299.
    Babu K.R., Satyanarayana T. Production of bacterial enzymes by solid state fermentation. J Sci Ind Res, 1996, 55:464-467.
    Balagopalan C. Improving the nutritional value of cassava by solid state fermentation. J Sci Ind Res, 1996, 55:479–482.
    Balakrishnan K., Pandey A. Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res, 1996,55:365–372.
    Bano Z., Ghosh P.K., Rajarathnam S., Shashirekha M.N. Biotransformation efficiencies of lignocellulose wastes by mushrooms in solid state fermentation. J Sci Ind Res, 1996, 55:400–407.
    Barranco-Florido J.E., Alatorre-Rosas R., Gutiérrez-Rojas M., Viniegra-González G., Saucedo-Castaňeda G. Criteria for the selection of strains of entomopathogenic fungi Verticillium lecanii for solid state cultivation. Enzyme and Microbial Technology.2002,30: 910–915.
    Barros R.J., Wehtje E., Adlercreutz P. Enhancement of immobilized protease catalyzed dipeptide synthesis by the presence of insoluble protonated nucleophile. Enzyme Microb Technol, 1999, 24:480–488.
    Bedouet L., Arnold F., Batina P., Robreau G. Potential application of the Clostridium tyrobutyricum flagellin as substrate for proteinase detection. Biotechnol Lett, 1998, 20 :1011–1016.
    Berger R.G. Aroma Biotechnology. Berlin: Springer, 1995.
    Beg Q.K., Gupta R. Purification and characterization of an oxidationstable, thiol- dependent serinealkaline protease from Bacillus mojavensis. Enzyme Microbial Technol, 2003, 32:294–304.
    Beg Q.K., Saxena R.K., Gupta R. Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnol Bioeng, 2002, 78:289–295.
    Bergman M., Frankel-Conrat H. The role of specificity in the enzymic synthesis of proteins: synthesis with intracellular enzymes. J Biol Chem. ,1937,119:707–720.
    Berry D.F., Tomkinson R.A., Hetzel G.H., Mullins D.E., Young R.W. Evaluation of solid state fermentation techniques to dispose off atrazine and carbofuran. J Environ Qual ,1993, 22:366–374.
    Biesebeke R. et al., Aspergillus oryzae in solid-state and submerged fermentations Progress report on a multi-disciplinary project FEMS Yeast Research 2002, 2: 245-248.
    Boman H.G., Hultmark D. Cell-free immunity in insects. Annu. Rev. Microbiol., 1987, 41: 103–126.
    Boman H.G., Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 1995, 13: 61–92.
    Botella C., Diaz A., Ory I.D., Webb C., Blandino A. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochemistry 2007, 42:98–101.
    Chang M.C., Chang J.C., Chen J.P. Cloning and nuvleotide sequence of an extracellular α-amylase gene from Aeromonas hydrophila. J. Gen. Microbiol., 1993, 139:3215-3223.
    Chang T. M., Liu C. C., Chang M. C. Cloning and sequence analysis of th gene (eprA1) encoding an extracellular protease from Aeromonas hydrophila.Gene 1997,199:225-229.
    Cheevadhanarak S. et al. Cloning and selective overexpression of an alkaline protease-encoding gene from Aspergillus oryzae Gene 1991, 108:151-155.
    Chellappan S., Jasmin C., Basheer S. M., Elyas K.K., Bhat S. G., Chandrasekaran M. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochemistry 2006; 41:956–961.
    Cheng S.W., Hu M.N., Shen S.W., Takagi H., Asano M., Tsai Y.C. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci Biotech Biochem , 1995, 59:2239–2243.
    CHI Z., LIU Z., GAO., GONG F., MA C., WANG X., and LI H. Marine Yeast and Their Application in Mariculture. Journal of Ocean university of China 2006, 5: 251-256.
    Chi Z., Ma C., Wang P., Li H.F. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans Bioresource Technology . 2007, 98:534–538.
    Chi Z., Zhao S. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzy Microb Technol 2003, 33: 206–211.
    Christiansen T., Nielsen J. Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state transient continuous cultures. J Biotechnol 2002, 97:265–273.
    Clapes P., Pera E., Torres J.L. Peptide bond formation by the industrial protease, neutrase, in organic media. Biotechnol Lett, 1997, 19:1023–1026
    Claudia I.et al. Control of Extracellular Protease Synthesis in the Yeast Yarrowia lipolytica Genetics, 2002, 160:417-427.
    Dalev P.G. Utilization of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour Technol 1994, 48:265–267.
    Datta M.,Patel S. and Parikh H. Solid state fermentation for cellulases andβ-glucosidase production by Aspergillus niger. Journal of fermentation and Bioengineering 1989, 67:424-426.
    Davidow L. S.et al. Cloning and Sequencing of the Alkaline Extracellular Protease Gene of Yarrowia lipolytica .Journal of bioteriology 1987, 169:4621-4629.
    Dayanandan A., Kanagaraj J., Sounderraj L., Govindaraju R., Rajkumar G.S. Application of an alkaline protease in leather processing: an ecofriendly approach. Journal of Cleaner Production, 2003, 11:533–536.
    Deshpande M.V. Mycopesticide production by fermentation: potential and challenges. Crit Rev Microbiol 1999, 25:229–243.
    Elibol M., Moreira A.R. Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochemistry 2005,40:1951–1956.
    El-Shanshoury A.R., El-Sayeed M.A., Sammour R.H., El-Shouny W.A. Purification and partial characterization of two extracellular alkaline proteases from Streptomyces corchorusii ST36. Can J Microbiol 1995, 41:99–104.
    Essers A.J.A., Jurgens C.M.G.A., Nout M.J.R. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava. Int J Food Microbiol 1995, 26:251–257.
    Fan L.F., Pandey A., Vandenberghe L.P.S., Soccol C.R. Effect of caffeine on Pleurotus sp. and bioremediation of caffeinated residues. IX European Congress on Biotechnology,1999 July 11–15; Brussels, Belgium. p 2664.
    Fell J.W. Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in aquatic mycology. 1976 , Elec, London, pp 93–124.
    Fikret U., Zübeyde B. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochemistry 2004, 39:1893–1898.
    Friedrich J., Gradisar H., Mandin D., Chaumont J.P. Screening fungi for synthesis of keratinolytic enzymes. Lett Appl Microbiol 1999, 28:127–130
    Fujimaki M., Yamashita M., Okazawa Y., Arai S. Applying proteolytic enzymes on soybean. 3. Diffusable bitter peptides and free amino acids in peptic hydrolyzate of soybean protein.J Food Sci 1970, 35:215–218.
    Gadanho M., Almeida J.M., Sampaio J.P. Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek.2003, 84:217-227.
    Gallegos N.G., Jun J., Hageman J.H. Preparation of general proteinase substrates using 3,5-dinitrosalicylaldehyde. J Biochem Biophys Methods 1996, 33:31–41.
    Gibbs B.F., Zougman A., Masse R., Mulligan C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International 2004, 37:123–131.
    Gobbetti M., Ferranti P., Smacchi E., Goffredi F., Addeo F. Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp.bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl Environ Microbiol 2000, 66:3898–3904.
    Gonzalez G., Gonzalez C., Merino P. Thermostabilization of Cucurbita ficifolia protease in the presence of additives. Biotechnol Lett 1992, 14:919–924.
    Goto S., Yamasato K., Iizaka H. Identification of yeasts isolated from the Pacific Ocean. J Gen Appl Microbiol 1974, 20:309–316.
    Gupta R., Beg Q.K., Khan S., Chauhan B. An overview on fermentation, downstream processing and properties of microbial alkaline protease. Appl Microbiol Biotechnol. 2002, 60:381-395.
    Gupta R., Beg Q.K., Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 2002, 59:15–32.
    Gupta R., Gupta K., Saxena R.K., Khan S., Bleach-stable alkaline protease from Bacillus sp. Biotechnol Lett 1999; 21:135–138.
    Hakamada Y., Kobayashi T., Hitomi J., Kawai S., Ito S. Molecular cloning and nucleotide sequencing of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J Ferment Bioeng 1994, 78:105–108.
    He H., Chen X., Sun C., Zhang Y., Gao P. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresour Technol 2006, 97: 385–390.
    Hermandez M.R.T., Raimbault M., Roussos S., Lonsane B.K. Potential of solid state fermentation for the production of ergot alkaloids. Lett Appl Microbiol 1992, 15:156-159.
    Hernandez-Saavedra N.Y., Hernandez-Saavedra D., Ochoa J.L.Distribution of Sporobolomyces (Kluyver et van Niel) Genus in the Western Coast of Baja California Sur, Mexico. Syst Appl Microbiol 1992, 15:319–322.
    Hu S. et al. Structure and function of antimicrobial peptide penaeidin-5 from the black tiger shrimp Penaeus monodon. Aquaculture 2006, 260: 61–68.
    Hutadilok-Towatana N., Painupong A., Suntinanalert P. Purification and characterization of an extracellular protease from thermophilic and alkaliphilic Bacillus sp. PS719. J Biosci Bioeng 1999, 87:581–587
    Isono Y., Nakajima M. Enzymic peptide synthesis using a microaqueous highly concentrated amino acid mixture. Process Biochem 2000, 36:275–278.
    Ito N., Hirose M., Fukushima S., Tsuda H., Shirai T., andTatematsu, M.. Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem Toxicol .1986, 24:1099–1102.
    Ito S., Kobayashi T., Ara K., Ozaki K., Kawai S., Hatada Y. Alkaline detergent enzymes fromalkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 1998; 2:185–190.
    Jacobs I., Eliasson M., Uhlen M., Flock J.I. Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 1985, 13:8913–8926
    Jacobs M.F. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 1995, 152:67–74.
    Jang J.S., Kang D.O., Chun M.J., Byun S.M. Molecular cloning of a subtilisin J from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem Biophys Res Comm.1992, 184:277–282.
    Jaton-Ogay K., Suter M., Crameri R., Falchetto R., Fatih A., and Monod M. Nucleotide sequence of a genomic and a cDNA clone encoding an extracellular alkaline protease of Aspergillus fumigatus. FEMS Microbiol Lett 1992, 92:163-168.
    Joo H.S. and Chang C.S. Production of protease from a new alkalophilic Bacillus sp. I-312grown on soybean meal: optimization and some properties. Process Biochemistry .2005, 40: 1263–1270.
    Joo H.S., Kumar C.G., Park G.C., Palik S.R., Chang C.S. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem 2004, 3 :1441–1447.
    Joo H.S., Kumar C.G., Park G.C., Paik S.R., Chang C.S. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem 2002, 38:155–159.
    Joo H.S., Kumar C.G., Park G.C., Paik S.R., Chang C.S. Oxidant and SDS stable alkaline protease from Bacillus clausii I-52: Production and some properties. J Appl Microbiol 2003, 5: 267–272.
    Joshi V.K., Sandhu D.K. Composition of distillates from the solid state fermentation of apple pomace by different yeasts. Natl Acad Sci Lett 1996, 19:219–224.
    Kamp R.M., Choli-Papadopoulou T., Wittmann-Liebold B. Protein Structure Analysis: Preparation, Characterization and Microsequencing. Berlin: Springer-Verlag Berlin Heidelberg, 1997.
    Kang B.S., Jeon S.J., Kim Y.M. Purification and characterization of two extracellular proteases from Oligotropha carboxydovorans DSM 1227. J Microbiol 1999, 37:14–20.
    Kaneko R., Koyama N., Tsai Y.C., Juang R.Y., Yoda K., Yamasaki M Molecular cloning of thestructural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J Bacteriol 1989, 171:5232–5236.
    Kastanek F., Demmerova K., Pazlarova J., Burkhard J., Maleterova Y. Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and ground water in field conditions. Int Biodeter Biodegr 1999, 44:39–47.
    Katz M.E., Ricea R.N. and Cheetham B.F. Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene.1994, 150:287-292.
    Khoo L. et al., Callinectin, an Antibacterial Peptide from Blue Crab, Callinectes sapidus, Hemocytes. Mar Biotechnol 1999, 1: 44–51.
    Kobayashi T., Hakamada Y., Hitomi J., Koike K., Ito S. Purification of alkaline proteases from a Bacillus strain and their possible interrelationship. Appl Microbiol Biotechnol 1996, 45:63–71.
    Koide Y., Nakamura A., Uozumi T., Beppu T. Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J Bacteriol 1986, 167:110–116.
    Kristinsson H.G., Rasco B.A. Biochemical and functional various alkaline proteases. J Agric Food Chem 2000, 48: 657-666.
    Kuba M., Tana C., Tawata S., Yasuda M.. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase Process Biochemistry 2005, 40:2191–2196.
    Kumar C.G., Malik R.K., Tiwari M.P. Novel enzyme-based detergents: an Indian perspective. Curr Sci 1998, 75:1312–1318.
    Kumar C.G. Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus.Lett Appl Microbiol 2002, 34:13–17.
    Kumar C.G., Takagi H. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv. 1999, 17:561–594
    Kumar C.G., Tiwari M.P., Jany K.D. Novel alkaline serine proteases from alkalophilic Bacillus spp.: purification and some properties. Process Biochem 1999, 34:441–449.
    Kumar D., Bhalla T.C. Microbial proteases in peptide synthesis: approaches and applications.Appl Microbiol Biotechnol 2005, 68: 726–736.
    Suetsuna K. Antioxidant Peptides from the Protease Digest of Prawn ( Penaeus japonicus)Muscle.Mar. Biotechnol 2000, 2:5–10.
    Laemmli U.K. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 1970, 227:680-685.
    Larcher G., Cimon B., Symoens F., Tronchin G., Chabasse D.,Bouchara J.P. A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 1996, 315:119–126.
    Layman P.L. Industrial enzymes: battling to remain specialties.Chem Eng News 1986, 64:11–14.
    Lee J.K., Kim Y.O., Kim H.K., Park S.Y., Oh T.K. Purification and characterization of a thermostable alkaline protease from Thermoactinomyces sp. E79 and the DNA sequence of the encoding gene. Biosci Biotechnol Biochem 1996, 60:840–846.
    Li G.H., Liu H., Shi Y.H., Le G.W. Direct spectropho-tometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J Pharm Biomed Anal 2005, 37: 219–224.
    Lowry O.H., Rosebrough N., Farr A., Randall R. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 193: 265-275.
    Marshak D R,Kadonaga J T, Burgess R R, Knuth M W., Brennan W A, Lin SH. Strategies for Protein Purification and Characterization: A Laboratory Course Manual. USA: Cold Spring Harbor Laboratory Press,1976.
    Masaphy S., Levanon D., Henis Y. Degradation of atrazine by the lignocellulolytic fungus Pleurotus pulmonarius during solid state fermentation. Biores Technol 1996, 56:207–214.
    Matoba S. et al. Intracellular Precursors and Secretion of Alkaline Extracellular Protease of Yarrowia lipolytica. Molecular and Cellular Biology 1988, 8: 4904-4916.
    Matsui T., Matsufuji H., Seki E., Osajima K., Nakashima M., Osajima Y. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscles. Biosci Biotechnol Biochem 1993, 57:922–925.
    Matsui T. Production of hypotensive peptide, SVY, from 7S globulin of soybean protein and its physiological functions. Soy Protein Res.2003, 6:73–77.
    Minervini F., Algaron F., Rizzello C.G., Fox P.F., Monnet V., Gobbetti M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl Environ Microbiol 2003,69: 5297–5305.
    Murthy M.V.R., Mohan E.V.S., Sadhukhan A.K. Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 1999, 34:269–280.
    Nagadi M.O., Correia L.R.. Kinetics of solid state ethanol fermentation from apple pomace. J Food Eng 1992, 17:97–116.
    Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Kluyveromyces nonfermentans sp. nov., a new yeast species isolated from the deep sea. Int J Syst Bacteriol 1999, 49:1899–1905.
    Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay andits phylogenetic analysis. Antonie van Leeuwenhoek. 2001a, 80:317–323.
    Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically. Int J Syst Evol Microbiol 2003, 53:897–903.
    Nagahama T., Hamamoto M., Nakase T., Takami H., Horikoshi K. Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie van Leeuwenhoek .2001b, 80:101–110.
    Nakayama S., Takahashi S., Hirai M., Shoda M. Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Appl Micobiol Biotechnol 1997, 48:80–82.
    Neklyudov A.D., Ivankin A.N., Berdutina A.V. Properties and uses of protein hydrolysates (review). Appl Biochem Microbiol 2000, 36: 452– 459.
    Ng M. and Auld D.S. A Fluorescent Oligopeptide Energy Transfer Assay with Broad Applications for neutral proteases. Anal Biochem 1989, 183: 50-56.
    Nigam P. Investigation of some factors important for solid state fermentationof sugarcane bagasse for animal feed production. Enzymen Microb Technol 1990, 12:805–811.
    Nigam P., Singh D. Processing of agricultural wastes in solid state fermentation of microbial protein. J Sci Ind Res 1996, 55:373–380.
    Ochman H., Gerber A. S. and Hartl D. L. Genetic applications of an inverse polymerase chain reaction.Genetics 1988, 120:621-623.
    Ofuya C.O., Obilor S.N. The effects of solid state fermentation on the toxic components ofcassava peel. Process Biochem 1994, 29:25–28.
    Ohno A., Ano T., Shoda M. Effect of temperature on production of lipopeptide antibiotics iturin A and surfactin by a dual producer, Bacillus subilis RB 14, in solid state fermentation. J Ferment Bioeng 1995, 80:517–519.
    Ohno A., Ano T., Shoda M. Use of soybean curd residue, okara, for the solid state substrate in the production of lipopeptide antibiotic, iturin a by Bacillus subtilis NB22. Process Biochem 1996, 31:801–806.
    Okamoto H., Fujiwara T., Nakamura E., Katoh T., Iwamoto H., Tsuzuki H. Purification and characterization of a glutamic-acid-specific endopeptidase from Bacillus subtilis ATCC 6051; application to the recovery of bio- active peptides from fusion proteins by sequence-specific digestion. Appl Microbiol Biotechnol 1997, 48: 27–33.
    Pandey A., Radhakrishnan S. The production of glucoamylase by Aspergillus niger NCIM 1245. Process Biochem 1993, 28:305–309.
    Pandey A., Selvakumar P., Soccol C.R., Nigam P. Solid state fermentation for the production of industrial enzymes. Curr Sci 1999, 77:149–162.
    Papinutti V.L., Forchiassin F. Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. Journal of Food Engineering 2007, 81:54–59.
    Perea A., Ugalde U., Rodriguez I., Serra J.L. Preparation and characterization of whey protein hydrolysates: application in industrial whey bioconversion processes. Enzyme Microb Technol 1993, 15:418–423.
    Petinate S.D.G., Branquinha M.H., Coelho R.R.R., Vermelho A.B., DeSimone SG Purification and partial characterization of an extracellular serine-proteinase of Streptomyces cyaneus isolated from Brazilian cerrado soil. J Appl Microbiol 1999, 87:557–563.
    Puri S., Beg Q.K., Gupta R. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 2002, 44:286–290.
    Ramesh M.V., Sirakova T., and Kolattukud P. E. Y. Isolation, Characterization, and Cloning of cDNA and the Gene for an Elastinolytic Serine Proteinase from Aspergillus flavus. Infection and Immunity 1994, 62:79-85.
    Rebeca B.D., Pena-Vera M.T., Diaz -Castaneda M. Production of fish protein hydrolysates with bacterial proteases: yield and nutritional value. J Food Sci 1991, 56:309–314.
    Re R., Pellergini N., Proteggente A., PannAala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radical Biol Med 1999, 26, 1231–1237.
    Riva S., Chopineau J., Kieboom A.P.G., Klibanov A.M. Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. J Am Chem Soc 1988, 110:584–589.
    Sadhukhan A.K., Murthy M.V.R., Kumar R.A., Mohan E.V.S., Vandana G., Bhar C., Rao K.V. Optimization of mycophenolic acid production in solid state fermentation using response surface methodology. J Ind Microbiol Biotechnol 1999, 22:33–38.
    Sch?fer T. et al. Industrial enzymes. Advances in Biochemical Engineering/ Biotechnology 2007, 105:59-131.
    Sch?fer T., Kirk O., Borchert T.V., Fuglsang CC, Pedersen S, Salmon S, Olsen HS, Deinhammer R, Lund H In: Steinbüchel A, Fahnestock SR (eds) Polyamides and Complex Proteinaceous Materials I. Biopolymers, Wiley, New York, 2002, 7:377.
    Selvakumar P., Pandey A. Solid state fermentation for thesynthesis of inulinase from the strains of Staphylococcus sp. and Kluy6eromyces marxianus. Process Biochem 1999, 34:851–855.
    Shankaranand V.S., Lonsane B.K. Coffee husk—an inexpensive substrate for production of citric acid by Aspergillus niger in a solid state fermentation system. World J Microbiol Biotechnol 1994, 10:165–168.
    Silva S.V., Malcata F.X. Caseins as source of bioactive peptides. Intern Dairy J 2005, 15:1–15.
    Smacchi E., Fox P.F., Gobbetti M. Purification and characterization of two extracellular proteinases from Arthrobacter nicotianae 9458. FEMS Microbiol Lett 1999, 170:327–333.
    Soccol C.R. Biotechnology products from cassava root by solid state fermentation. J Sci Ind Res 1996, 55:358–364.
    Soccol C.R., Iloki I., Marin B., Raimbault M. Comparative production of alpha amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentation. J Food Sci Technol 1994, 31:320–323.
    So J.E., Shin J.S., Kim B.G. Protease-catalyzed tripeptide (RGD) synthesis. Enzyme Microb Technol 2000, 26:108–114.
    Sterz S.C., Soccol C.R., Raimbault M., Pandey A., Leon J.R. Growth kinetics of Rhizopusformosa MUCL28422 or raw cassava flour in solid state fermentation. J Chem Technol Biotechnol 1999, 74:585–586.
    Nagahama T., Yeast Biodiversity in Freshwater, Marine and Deep-Sea Environments,Biodiversity and Ecophysiology of Yeasts, Springer Berlin Heidelberg, 2006, 241-262.
    Takami H., Akiba T., Horikoshi K. Cloning, expression, and characterization of a minor alkaline protease from Bacillus sp. no. AH-101. Biosci Biotechnol Biochem 1992a, 56:510–511.
    Takami H., Kobayashi T., Aono R., Horikoshi K. Molecular cloning, nucleotide sequence and expression of the structural gene for a thermostable alkaline protease from Bacillus sp. no. AH-101. Appl Microbiol Biotechnol 1992b, 38:101–108.
    Takami H., Kobayashi T., Kobayashi M., Yanamoto M., Nakamura S., Aono R., Horikoshi K. Molecular cloning, nucleotide sequence, and expression of the structural gene for alkaline protease from Bacillus sp. 221. Biosci Biotechnol Biochem 1992c, 56:1455–1460.
    Telenius H., Carter N.P., Bebb C.E. Degenrate oligonucleotide- primed PCR: general amplidication of target DNA by a single degenernte primer. Genomics 1992, 13: 718-728.
    Tengerdy R.P. Cellulase production by solid state fermentation. J Sci Res 1996, 55:313–316.
    Thangam E.B., Rajkumar GS. Purification and characterization of an alkaline protease from Alcaligenes faecalis. Biotechnol Appl Biochem 2002, 35:149–154.
    Tong S.L., Miao H.Z. A new species of marine yeast Kluyveromyces penaeid isolated from the heart of penaeid shrimp Penaeus chinensis. J Marine Biol Assoc UK 1999, 79:559–561.
    Tunga R., Banerjee R., Bhattacharya B.C. Some studies on optimization of extraction process for protease production in SSF. Bioprocess Eng 1999, 20:485–489.
    Tunga R., Shrivastava B., Banerjee R. Purification and characterization of a protease from solid state cultures of Aspergillus parasiticus. Process Biochem 2003, 38: 1553–1558.
    Wu J., Ding X. Characterization of inhibition and stability of soyprotein-derived angiotensin I-converting enzyme inhibitory peptides.Food Res Int 2002, 35:367–375.
    Vasantha N., Thompson L.D., Rhodes C., Banner C., Nagle J., Filpula D.Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 1984, 159:811–819.
    Wang X., Chi Z., Yue L., Li J., Li M., Wu L..A marine killer yeast against the pathogenic yeaststrain in crab (Portunus trituberculatus) and an optimization of the toxin production.Microbiological Research 2007, 162 :77—85.
    Wicklow D.T., Dowd P.F., Alfatafta A.A., Gloer J.B.. Ochratoxin A: an antiinsectan metabolite from the sclerotia of Aspergillus carbonarius NRRL 369. Can J Microbiol 1996, 42:1100–1103.
    Xavier S., Lonsane B.K. Sugarcane press-mud as novel and inexpensive substrate for production of lactic acid in a solid state fermentation system. Appl Microbiol Biotechnol 1994, 41:291–295.
    Yamagata Y., Abe R., Fugita Y., Ichishima E. Molecular cloning and nucleotide sequence of the 90 k serine protease gene, hspK, from Bacillus subtilis (natto) No. 16. Curr Microbiol 1995a , 31:340–344.
    Yamagata Y., Isshiki K., Ichishima E. Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Enzyme Microb Technol 1995b, 17:653–663.
    Yamasato K., Goto S., Ohwada K., Okuno D., Araki H., Iizaka H. Yeasts from the PacificOcean. J Gen Appl Microbiol 1974, 20:289-307.
    Yang H.Y.T, Erdos E.G., Levin Y. Characterization of a dipeptide hydrolase. J Pharmacol Exp Ther 1971, 177:291–300.
    Yang H.Y.T., Erdos E.G., Levin Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta 1970, 214:374–376.
    Yang J.K., Shih I.L., Tzeng Y.M., Wang S.L. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbial Technol 2000, 26:406–413.
    Yeoman K.H., Edwards C. Purification and characterization of the protease enzymes of Streptomyces thermovulgaris grown in rapemeal-derived media. J Appl Microbiol 1997, 82: 149–156
    Yoshimoto T., Oyama H., Honda T., Tone H., Takeshita T., Kamiyama T., Tsuru D. Cloning and expression of subtilisin amylosacchariticus gene. J Biochem 1988, 103:1060–1065.
    Zadrazil F., Kamra D.N., Isikuemhen O.S., Schuchardt F. Bioconversion of lignocellu- lose into ruminant feed with white rot fungi. J Appl Anim Res 1996, 10: 105–124.
    Zaghloul T.I., Abdelaziz A., Mostafa M.H. High level of expression and stability of the cloned alkaline protease (aprA) gene in Bacillus subtilis. Enzyme Microb Technol 1994, 16:534–537.
    Zhang A., Chen H., Li Z. Air pressure pulsation solid state production of alkaline protease by Bacillus pumilus 1.1625 Process Biochemistry. 2005, 40: 1547–1551.
    管华诗,海洋生物基因与生物工程技术.北京:海洋出版社,2001,p 17-21。
    郭尧君,蛋白质电泳技术,北京:科学出版社, 2001。
    刘志国,屈伸,基因克隆的分子基础与工程原理,化学出版社;2003。
    靖德兵,李培军,台培东,刘宛,巩宗强彩绒革盖菌固体发酵生产木质素酶工艺优化研究。微生物学通报,2004,31:19-23。
    萨姆布鲁克著,黄培堂译,分子克隆实验指南(第三版);北京:科学出版社;2002
    史兆兴,简并PCR及其应用,生物技术通讯,2004,15:172-175。
    王洪振,周晓馥,宋朝霞,刘文广,曾宪录,简并PCR技术及其在基因克隆中的应用,遗传,2003,25:201-204。
    魏述众,生物化学,1996,中国轻工业出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700