用户名: 密码: 验证码:
还原剂反应性对含碳球团还原过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦炭、无烟煤、半焦是常用的固体还原剂,其中半焦粉是半焦生产过程中的筛下物,如果能用半焦粉代替焦粉、无烟煤等其他还原剂制作含碳球团,不仅节约了宝贵的焦炭资源也可带来一定的经济效益。
     本文利用热分析仪与质谱仪联动技术,研究了半焦粉、焦粉、无烟煤等还原剂的反应性能及其还原铁矿粉的还原性能,并对还原剂还原铁氧化物的还原动力学进行了解析。通过竖式电炉还原含碳球团技术,探讨了含碳球团中还原剂的还原性能及其对含碳球团还原的影响。主要研究结果如下:
     1.与焦粉和无烟煤等还原剂相比,半焦粉与CO2的反应能力较好;
     2.还原剂与铁矿粉的还原机理分别为:半焦粉和无烟煤还原机理为单步形核机理,焦粉还原机理为二维扩散机理。
     3.相同实验条件下,半焦粉还原铁氧化物所需能量最少,即还原反应最容易进行。
     4.含碳球团内铁氧化物的碳热还原是通过碳气化和铁氧化物间接还原实现的,两个反应耦合完成的。还原前期,含碳球团的还原速率主要由碳气化速率控制,因为半焦粉比焦粉和无烟煤粉其具有良好的还原性能,还原反应一步完成,且还原最大速率对应的温度比焦粉和无烟煤粉的低150℃以上。
     5.还原反应结束温度为1250℃左右。半焦粉可以代替焦粉、无烟煤等制作含碳球团。
Coke, anthracite, semi-coke are usually used as reductant ,Semi-coke powder is the siftage of semi-coke production process .If it can use semi coke powder instead of coke powder, anthracite and other reductant production carbon pellet, Not only saving coke resource also can bring certain economic benefits.
     In this paper, I uses thermal analyzer and mass spectrometry technology, research the semi-coke powder, coke, anthracite reaction of a reducing agent performance and reduction of iron ore powder reduction performance, and the reduction of iron oxide reduction kinetics were analyzed. Through the reduction of carbon pellet vertical furnace technology, discusses the carbon pellet in reducing agent and its performance on the reduction of carbon pellet reduction effect. The main results are as follows:
     1. compared with the different reducer as coke powder and anthracite, semi-coke powder and CO_2 response capacity is better;
     2. Reducing agent with iron powder reduction mechanism respectively: semi-coke powder and anthracite reduction mechanism for single-step nucleation mechanism, coke powder reduction mechanism for only two diffusion.
     3. The same experiment conditions, semi-coke powder reduction of iron oxide energy required minimal reduction reaction, The reduction reaction of the most easily.
     4. Carbon pellet in iron oxide by carbon thermal reduction by carbon gasification and iron oxide indirect reduction achieved, two reaction coupled to finish. Reduction of carbon containing pellet prophase, the rate of reduction is mainly composed of carbon gasification rate control, semi coke powder than coke powder anthracite powder has good reduction performance, reduction reaction are completed in one step, and the reduction of maximum rate corresponding to the temperature range than coke powder anthracite powder low above 150℃
     5. Reducing reaction temperature of 1250℃end. Semi-coke powder can replace coke, anthracite production of carbon pellet
引文
[1]范浩杰等.碳酸钙热分解的机理研究[J].动力工程,1998,18(5): 40~43.
    [2]汪海涛,胡红玲,付利俊,金蝶翔.焦炭反应性(CRl)及反应后强度(CSR)和焦炭抗碱性试验研究[J].内蒙古科技与经济, 2004年第24期: 44.
    [3]郝素菊,蒋武峰,赵丽树,张维斌,高炉炼铁500问[M].北京化工出版社,2008,7: 31.
    [4] Patrick.J,W.Wilkinson,H.C,1978.Analysis of metallurgical cokes.In:Karr.Jr,C.(Ed.), Analytical Methods for Coal and Coal Products [J],vol.II.Academic Press,New York:339– 370.
    [5] Ragan.S. Marsh, H.1980. A critique of industrial methods of measurement of strength of metallurgical coke. [J] J.Phys.D: Appl. Phys.13:983–993.
    [6] Loison. R, Foch, P.Boyer, A.1989. Coke. Quality and Production.Butterworth [J], London, p.178– 189.
    [7] Alvarez.R,D?′ez,M.A.2000.Chemistry of production of metallurgical coke.In:Marsh,H. Rodr?′guez-Reinoso, F. (Eds.), Sciences of Carbon Materials, Chap. 18. Secretariado de Publicaciones [J], The University of Alicante, Spain:595– 635.
    [8]高正阳,方立军,叶学民,闫维平.无烟煤与烟煤混煤燃烧性能的热重实验研究[J].华北电力大学学报,2001,(28):39-42.
    [9] Gale. T K, Bartholomew .C H, Fletcher T H [J].Energy and Fuels,1996,10: 766.
    [10] Skorupska .N M, Sanayal. A, Hesselman. G J, Crelling. J C,Edwards .I A S, Marsh H. In: Moulijn J A,Nater K A,Chermin H A G, eds.Proceeding of the International Conferenceon Coal Science.Maastricht,The Netherland [J]: Elsevier SciencePublishing Company Inc. September 1987:827.
    [11] Bailey. J G, Tate. A, Diessel. C F K, Wall .T F. A char morphology system with applications to coal combustion [J]. Fuel,1990,69(2): 225~239.
    [12] H Y. Cai, Kandiyoti R. Effect of Changing Inertinite Concentration on Pyrolysis Yields and Char Reactivities of Two South African Coals [J].Energy and Fuels,1995,9(6): 965~961.
    [13] Thomas C G, Hollombe D, Shibaoka M, Young B C BrunckHorst L F, Gawronski E. In: Sponsored by Member Countriesof the International Energy Agency, eds. Proceeding of theInternational Conference on Coal Science [J]. Tokyo: September1989:257.
    [14] Thomas.CG,Shibaoka.M,Gawronski .E,Gosnell.M E,Phong -anant .D,Brunckhorst .L F, Salehi. M E. In: Sponsored byMember Countries of the International Energy Agency, eds[J].Proceedings of the International Conference on Coal Science.Tokyo: September 1989:213.
    [15]杜铭华,俞珠峰.3种低阶煤热解半焦CO2反应性的研究[J].煤炭科学技术,1996,24(1) :34-37.
    [16]马兴亚,汪琦,姜茂发.含碳球团还原技术研究现状[J].烧结球团, 1999,24(3): 24~26.
    [17]黄典冰,杨学民,杨天钧等.含碳球团还原过程动力学及模型[J].金属学学报, 1996,32(6): 629~636.
    [18]汪琦.含碳球团还原反应及其技术[J].鞍钢技术,2009,(4): 1~9.
    [19] S.SUN et al.Building of a mathematical model for the reduction of iron ore in ore/coal composites [J]. ISIJ International,1999,39(2): 130~138.
    [20] N.S.Studies on the reduction of hematite by carbon. Srinivasan et al.Met [J]. Trans,1977, 8B(3): 175~178.
    [21]杜挺,杜昆.含碳球团—铁浴熔融还原法关键技术的应用基础研究[J].金属学报, 1997,33(7):719~729.
    [22] C.E.Seaton et al. Structural-changes occurring during reduction of hematite andmagnetite pellets containing coal char.Trans [J]. Iron Steel Inst. Jpn,1983,23: 497~503.
    [23] M.C.Abraham et al. Kinetics of reduction of iron oxide by carbon [J].Ironmaking and Steelmaking.1979,6(l): 15.
    [24] N.S.Studies on the reduction of hematite by carbon.Srinivasan et al [J].Met. Trans,1977, 8B(3): 175~178.
    [25] G. V. Reddy et al. Kinetic rate equation for direct reduction of iron ore by non-coking coal[J]. Ironmaking and Steelmaking, 1991, (3): 221.
    [26] S.Prakash.Nonisothermal kinetics of iron-ore reduction[J]. Ironmaking and Steelmaking, 1994,21(3): 237~243.
    [27] C.E.Seaton et al.Reduction kinetics of hematite and magnetite pellets containing coal char.Trans[J].Iron Steel Inst. Jpn,1983,23:490.
    [28] Q.Wang et al.mechanisms of reduction in iron ore-coal composite pellet[J].Ironmaking and Steelmaking,6(1997):457.
    [29] W.M.McKewan,Reduction of iron oxide reduction.Trans[J].TMS-AIME,1960,2:2.
    [30] J. Szekely et al.Gas-Solid Reduction, Academic Press[R], New York, NY:1976.
    [31] S.Prakas et al. Reduction of iron ore under rising temperature and fluctuating temperature conditions[J]. Thermochimica Acta,1987,(111):143~166.
    [32] E.Donskoi et al.Estimation and modeling of Parameters for Direct Reduction in Iron Ore/Coal Composites:PartⅡ.Kinetics Parameters[J]. Met.Trans. B,2003,34(2):255~266.
    [33] C. E. Seaton et al.Structural-changes occurring during reduction of hematite and magnetite pellets containing coal char. Trans[J]. Iron Steel Inst.Jpn,1983, 23:p.497~503.
    [34] Zsako,J.Kinetic analysis of thermogravimetric data,J.Phys[J].Chem,1968,72:p.2406~2411
    [35]杨世泽.含碳球团矿的研究[J].四川冶金,1983(4): 13~19.
    [36]周渝生,李文采,杜挺等.煤粉含碳球团炼铁半工业试验[J].钢铁研究学报,1992,4(3): 1~7.
    [37]杨学民,郭占成,王大光等.含碳球团还原机理研究[J].化工冶金, 1995,16(2): 118~127.
    [38]游锦洲,薛正良,周国凡等.用含碳球团生产直接还原铁的特性[J].钢铁,1998,17(3): 36~38.
    [39]吴铿,齐渊宏,赵继伟等.含碳球团的还原性和还原冷却后的强度[J].北京科技大学学报, 2000,22(2): 101~104.
    [40]牛永胜,马永磊,李惠朝等.含碳球团配碳比的试验研究[J].河北冶金, 2001,122(2): 9~11.
    [41]李福民,薛漪,,王成立等.煤中氢对含碳球团还原的影响[J].钢铁, 2005,9(9): 21~24.
    [42]刘征建,杨广庆,薛国庆等.钒钛磁铁矿含碳球团转底炉直接还原实验研究[J].过程过程学报, 2009,9(增刊1): 51~55.
    [43]唐贤荣,唐宁,王颜平等.低温固结K球团直接还原法[J].烧结球团,1995,20(6): 19~23.
    [44]陈津,刘浏,曾加庆.竖炉型含碳球团有机粘结剂的选择与应用[J].烧结球团,2000,25(6): 29~31.
    [45]蒋武峰,李运刚,赵利国等..粘结剂对含碳球团还原的影响[J].钢铁研究学报,2000,12(4): 1~4.
    [46]吴斌,龙世刚,蓸枫.含碳球团强度及金属化率的影响因素[J].安徽工业大学学报, 2007,4(2): 127~129.
    [47]吴光亚.快速直接还原法生产金属化球团工艺的探讨[J].上海金属,1994,16(3): 20~24.
    [48]汪琦,杨兆祥,孙家富等.含碳球团在氧化性气氛中的还原机理[J].钢铁研究学报, 1998,10(3): 2~4.
    [49]周渝生,曹传根,齐渊洪等.含碳球团竖炉直接还原实验研究[J].宝钢技术, 1999(5): 31~35.
    [50]唐惠庆,郭兴敏,张圣弼等.CO/CO2气氛下含碳球团还原动力学模型及其应用[J].钢铁研究学报, 2000,12(6):1~6.
    [51]储满生,柳政根,王兆才等.反应气氛好温度对热压含碳球团还原反应进程的影响[J].中国冶金, 2011,21(4): 17~20.
    [52]小泽丈夫.热分析的回顾与展望[J].现代科学仪器,1998,5: 10~14.
    [53]郑瑛,陈小华,郑楚.描述石灰石分解的分数维收缩核模型及模拟[J].华中科技大学学报,2003,31(5): 78~79.
    [54]齐庆杰,马云东等.碳酸钙热分解机理的热重试验研究[J].辽宁工程技术大学学报,2002,21(6): 689~692.
    [55]韦秀华,唐万军等.碳酸钙热分解反应动力学的不同方法研究[J].中南民族大学学报,2005,24(2): 35~38.
    [56]余兆南.碳酸钙分解的试验研究[J].热能动力工程,1997,12(4): 278~280.
    [57]王世杰,陆继东等.石灰石颗粒分解的动力学模型研究[J].工程热物理学报,2003,24(4): 699~702.
    [58]苏雷,詹庆林.石灰石分解反应的热重动力学研究[J].钢铁研究,1997,2:17~20.
    [59]胡英.物理化学[M](下册第四版).北京:高等教育出版社,1999:363~368.
    [60]陆昌伟,奚同庚.“热分析质谱法”[M]上海科学技术文献出版社.2002.1(127):1.
    [61]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [62]陆振荣.热分析动力学的新进展[J].无机化学学报,1998,14(2): 119~126.
    [63]汪琦.铁矿含碳球团技术[M].冶金工业出版社2005.1: 54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700