用户名: 密码: 验证码:
钒钛磁铁矿综合利用新流程及其比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的钒钛磁铁矿资源十分丰富,但由于资源的特殊性,目前已工业化的高炉-转炉法传统流程仅能提取其中的铁和钒,大量的钛资源进入高炉渣无法回收利用,且该方法存在流程长、能耗高、投资大、环境污染严重等问题,因此,开展钒钛磁铁矿综合利用新流程研究,将资源优势转化为经济优势,对于促进我国国民经济持续健康发展具有重要意义。
     本文在热力学研究的基础上,以我国内蒙小红山钒钛磁铁矿资源为对象,对选矿所得钒钛磁铁精矿产品在研究其固态还原行为及其强化技术的基础上,采用还原-磨选法和预还原-电炉法对钒钛磁铁精矿综合回收铁、钒、钛进行了系统研究,并从工艺流程及主要设备、生产规模与产品方案、建厂投资与成本、环保与能耗等方面对还原-磨选法和预还原-电炉法新流程进行了比较分析,取得以下结论:
     (1)钒钛磁铁精矿碳热还原反应热力学研究发现,钒钛磁铁精矿中铁氧化物还原的热力学趋势最大,其次为钒氧化物,钛氧化物还原的热力学趋势最小。在有液态铁存在时会大大改善钒氧化物还原的热力学条件,当有杂质组分MgO、CaO存在时,将会进一步降低钛氧化物还原的热力学趋势。
     (2)研究钒钛磁铁精矿固态还原行为发现,钒钛磁铁精矿属较难还原矿物,当铁氧化物金属化率提高到80%左右时,提高还原温度和延长还原时间,钒钛磁铁精矿还原产品金属化率增加的较为缓慢。预氧化处理有利于促进钒钛磁铁精矿的后续还原,但不利于铁晶粒的生长,其作用机理是破坏了钒钛磁铁精矿颗粒结构,提高了反应比表面积。添加剂硼砂具有较好促进钒钛磁铁精矿的还原和铁晶粒生长作用,其作用机理是强化了钒钛磁铁精矿中钛铁晶石和钛铁矿的还原过程。
     (3)研究了基于煤基回转窑还原工艺的钒钛磁铁精矿还原-磨选法新流程。研究结果表明,通过添加硼砂强化钒钛磁铁精矿还原过程,能显著改善还原-磨选过程的铁与钒钛分离效果。钒钛磁铁精矿配加硼砂和F粘结剂经润磨处理后造球,所得生球经干燥、预热后在适宜的还原磨选条件下,可获得TFe90.06%、回收率96.53%的直接还原铁精粉,非磁性物(富钒钛料)V205含量为1.64%,Ti02含量为28.4%的富钒钛料。富钒钛料适于采取酸浸提钒的技术路线,在适宜的条件下,钒的浸出率可达到70.18%,获得了纯度大于98%的V205产品。
     (4)研究了基于煤基回转窑预还原工艺的钒钛磁铁精矿预还原-电炉法新流程。研究结果表明,预还原-电炉法流程的预还原产品适宜的金属化率为70%左右。钒钛磁铁精矿预还原采用预氧化强化还原技术,电炉冶炼通过调整碱度和MgO含量进行适量造渣的方法,在适宜的球团预还原制度、电炉冶炼渣型制度及操作参数下,获得了钒品位0.253%、钒回收率85.36%的含钒生铁,以及Ti02为35.97%的含钛炉渣。
     (5)还原-磨选法新流程具有耗电量小,还原过程中钒钛走向易控制等特点,适于电力资源缺乏、资源处理量要求小的地区等采用。预还原-电炉法新流程具有生产规模大、效率高、耗电量大等特点,适于电力资源丰富、资源处理量要求大的地区等采用。从生产规模、生产效率、污染源控制方面来看,采用预还原-电炉法新流程处理钒钛磁铁精矿更有优势。
     本文系统研究了钒钛磁铁精矿碳热还原反应的热力学,查明了实现钒钛磁铁精矿中铁、钒及钛氧化物选择性还原的热力学条件,通过研究钒钛磁铁精矿固态还原行为、电炉冶炼渣型制度,开发钒钛磁铁精矿固态还原强化技术和电炉冶炼过程钒钛走向控制技术,优化了钒钛磁铁精矿还原-磨选法和预还原-电炉法综合利用新流程,为钒钛磁铁矿资源综合利用新流程工业化应用提供技术基础和决策依据。
Vanadium-titanium magnetite is abundant in our country, which has been widely utilized by using the process of blast furnace-converter smelting. This traditional process is capable of extracting iron and vanadium, while cannot recycle titanium due to its entering into the blast-furnace slag. Moreover, due to the lots of serious problems of the traditional method, such as long process, high energy consumption, huge investment and environmental pollution, it is imperative to explore a new process to research the comprehensive utilization of vanadium-titanium magnetite. The research is of significance not only for the transformation of resource advantage to economic advantage, but also for the sustained rapid and sound development of our national economy.
     In this paper, we have done with the vanadium-titanium magnetite of China's Inner Mongolia Xiaohongshan on the basis of thermodynamics. Besides the study of its solid-state reduction behavior and improving measures, the methods, reduction-grinding and pre-reduction-electric furnace, have been systematic researched about the comprehensive recovery of iron, vanadium, titanium. Given other aspects of the two methods as well, the process and the main equipments, production scale and product solutions, plant investments and costs, environment and energy, we reached the main conclusions as follows:
     (1) From thermodynamics study of the carbothermic reduction reaction of vanadium-titanium magnetite concentrate, it was found that the thermodynamic tendencies of iron oxide reduction, vanadium oxide reduction, titanium oxide reduction were in turn decreased. In the presence of a liquid iron, the thermodynamic conditions of vanadium oxide reduction will be greatly improved. While the thermodynamic tendency of titanium oxide reduction will further reduce when there exist impurities components such as MgO, CaO.
     (2) We found that vanadium-titanium magnetite concentrate is hard for reduction when studied its solid-state reduction behavior. When the metallization rate of iron oxide was80%, the metallization rate of reduction products was increased more slowly even by increasing the reduction temperature and time. Pre-oxidation can promote the subsequent reduction while go against the growth of iron grains, due to its mechanism that the structures of iron particles are destroyed and the surface area of action is increased in pre-oxidation. Borax is a good additive to promote the reduction of vanadium-titanium magnetite concentrate and the growth of iron grains with its mechanism that the reductions of ulvite and ilmenite in vanadium-titanium magnetite concentrate were strengthened.
     (3) The new process of treatment of vanadium-titanium magnetite concentrate, reduction-grinding based on coal-based rotary kiln, was studied. Borax can efficiently improve the separation of iron and vanadium-titanium in the reduction-grinding and separation process. After a series of processes, damp milling the raw materials with borax and F binder as additives, pelletizing, drying and preheating the green balls, and grinding under the suitable conditions, we got the iron powders in which TFe was90.06%and recovery rate was96.53%, and the non-magnetic materials (vanadium-titanium-rich materials) in which V2O5content was1.64%, TiO2content was28.4%. It is conducive to choose vanadium acid extraction technology to utilize vanadium-titanium-rich materials, in which the leaching rate of vanadium reached70.18%and the purity of V2O5product was more than98%under proper conditions.
     (4) As the study of another new process of vanadium-titanium magnetite concentrate, the pre-reduction-electric furnace process based on coal-based rotary kiln, we found that the suitable metallization rate of the pre-reduction products was70%in the process. Pre-oxidation was used to enhance the pre-reduction process, and adjusting the alkalinity and MgO content were used to moderate slag in the electric furnace. Under the appropriate conditions of pre-reduction and slag type in smelting furnace, we gained the pig iron in which vanadium grade was0.253%and the vanadium recovery was85.36%, and titanium slag in which TiO2content was35.97%.
     (5) It is suitable for areas that are lack of power resources and have small amounts of vanadium-titanium magnetite to deal with to choose reduction-grinding, which has many benefits, including small power consumption, easy controlling of vanadium and titanium in the reduction. Taking advantages of pre-reduction-electric furnace, production of large-scale, high efficiency, heavy power consumption, we recommended this process is suitable for the areas that are rich in electric power resource and have large amounts of vanadium-titanium magnetite to deal with. Pre-reduction-electric furnace weighs more than other processes in dealing with vanadium-titanium magnetite, when the production scale, production efficiency and pollution control are taken into account.
     The thermodynamics of the carbothermic reduction of vanadium-titanium magnetite concentrate was systematically researched in this paper, and we identified the thermodynamic conditions to realize the selective reductions of iron oxide, vanadium oxide and titanium oxide. By studying the solid-state reduction behavior and slag type in electric furnace, we developed the technologies to enhance the solid-state reduction of vanadium-titanium magnetite concentrate and control the vanadium and titanium in the smelting of electric furnace, optimizing the new comprehensive utilization processes, reduction-grinding and pre-reduction-electric furnace, leading train of novel thoughts to select and develop new processes to utilize vanadium-titanium magnetite.
引文
[1]王喜庆.钒钛磁铁矿高炉冶炼.北京:冶金工业出版社,1994:1-18.
    [2]杜鹤桂.高炉冶炼钒钛磁铁矿原理.北京:科学出版社,1996:1-16.
    [3]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析.矿产综合利用,1996,(1):27-34.
    [4]肖六均.攀枝花钒钛磁铁矿资源及矿物磁性特征.金属矿山,2001,(1):28-30.
    [5]秦震,陆祖雄.攀枝花钒钛磁铁矿成矿特征.钒钛磁铁矿开发利用国际学术会议,1989:172.
    [6]朱俊士.中国钒钛磁铁矿选矿(第1版).北京:冶金工业出版社,1996:1-20.
    [7]汪子和.国外钒钛工业与钒钛磁铁矿的综合利用.钒钛,1993,(4):1-21.
    [8]汪镜亮.国外钒钛磁铁矿的开发利用.钒钛,1993,(5):1-11.
    [9]梁国强,冯文普.攀枝花钒钛磁铁矿采选生产工艺.钒钛磁铁矿开发利用国际学术会议,1989:89.
    [10]任觉世.工业矿产资源开发利用手册.武汉:武汉工业大学出版社,1993.64-68.
    [11]谭若斌.国内外钒资源的开发利用.钒钛,1994,(4):4-11.
    [12]郭新春,曲红权.钒钛磁铁矿的利用.攀钢技术,1998,(1):27-31.
    [13]傅文章.攀西钒钛磁铁矿资源待征及综合利用.矿产综合利用,1996,(1):27-34.
    [14]朱俊士.钒钛磁铁矿选矿及综合利用.金属矿山,2000,(1):1-5.
    [15]刘克敏.攀西钒钛磁铁矿的综合利用及其工艺流程.四川冶金,1992,12(1):3-17.
    [16]博里先科,乌斯科夫.卡奇卡纳尔型钛磁铁矿扩大综合利用的前景.国外金属矿山,1994,(4):67-70.
    [17]刘克敏.攀西钒钛磁铁矿的综合利用及其工艺流程.四川冶金,1992,12(1):3-17.
    [18]百度百科.钒钛磁铁矿,http://baike.baidu.com/view/935564.htm?fr=alaO_1.
    [19]杨绍利.钒钛材料,北京:冶金工业出版社,19,20.
    [20]陈启福.攀钢高炉渣提取Ti02及8c203扩大试验.钢铁钒钛,1995,16(3):64-68.
    [21]佘宗华,毛建军,徐舜.攀枝花含钪钛尾矿分解试验研究.矿冶,1999,8(1):54-57.
    [22]孟长春.攀枝花矿产资源综合利用现状及其发展前景.矿产综合利用,1993(6):32-36.
    [23]陈世芳.攀钢V205弃渣中金属镓的提取研究.钢铁钒钛,1994,15(1):49-52
    [24]刘吉实.攀枝花钒钛磁铁矿综合利用研究及发展.矿产综合利用,1990,(6):
    [25]孟长春.攀枝花选矿厂工艺流程优化途径实践与研究.昆明理工大学学报,1991,24(3):131-136.
    [26]孟长春.攀枝花选矿厂选钛工艺现状及合理选矿工艺流程探讨.昆明理工大学学报,1994,19(3):99-115.
    [27]孟长春,汪云华.攀钢选钛厂生产现状及发展方向.攀钢技术,1998,21(6):1-6.
    [28]白晨光.攀枝花钒钛磁铁矿综合利用研究展望.2000年西部矿物资源开发利用发展战略研讨会,112-120.
    [29]李金河.承德市钒钛磁铁矿资源现状及开发利用前景.金属矿山,2005,7月增刊:21-25.
    [30]周继贤,孟繁奎.承钢钒钛磁铁矿综合利用概况.承钢技术,1989,(1):1-6,19.
    [31]杨绍利.钒钛材料.北京:冶金工业出版社,2007:63.
    [32]蒙钧,韩明堂.高钛渣生产现状和今后发展的看法.钛工业进展,1998,(1):12-13.
    [33]杨保祥,黄守华,胡旭东.钛渣冶炼技术及攀枝花钛渣产品开发策略探讨.攀枝花科技与信息,2002,27(2):36-38.
    [34]邹建新,王荣凯,彭富昌.电炉冶炼高钛渣试验研究.轻金属,2004,(12):37-39.
    [35]黄道鑫.提钒炼钢.北京:冶金工业出版社,2000:17.
    [36]刘熙光,邱克辉,张其春.关于钒钛磁铁矿综合利用可持续发展问题的讨论.中国矿产,2001,10(4):21-23.
    [37]汪云华,彭金辉,杨卜.钒钛磁铁精矿制取还原铁粉工艺及改进途径探讨,2006,(1):94-97.
    [38]HAN G, JIANG T, ZHANG Y, et al. High-Temperature Oxidation Behavior of Vanadium, Titanium-Bearing Magnetite Pellet. Journal of Iron and Steel Research, International,2011,18(8):14-19.
    [39]周兰花,陶东平,方民宪等.钒钛磁铁矿碳热还原研究.稀有金属,2009,33(3):406-410.
    [40]刘征建,杨广庆,薛庆国等.钒钛磁铁矿含碳球团转底炉直接还原实验研究,过程工程学报,2009,6月增刊:51-55.
    [41]洪流,丁跃华,谢洪恩等.钒钛磁铁矿转底炉直接还原综合利用前景.金属矿山,2007,(5):10-13.
    [42]陶晋.环形转底炉直接还原工艺现状及发展趋势.冶金信息工作,1997,(6):11-13.
    [43]薛逊,邓君等.基于转底炉直接还原的钒钛磁铁矿综合利用技术研究.2007中国钢铁年会论文集.
    [44]周瑜生,张友平.转底炉直接还原炼铁工艺的发展.2006年中国非高炉炼铁会议论文集.
    [45]薜逊.钒钛磁铁矿直接还原实验研究.钢铁钒钛,2007,28(3):37-41.
    [46]秦廷许.转底炉直接还原_电炉炼铁流程与高炉炼铁流程的对比.江苏冶金.2004,32(2):9-11.
    [47]杨绍利,刘松利,高仕忠等.转底炉直接还原一电炉熔分处理钒钛磁铁矿新工艺简介.
    [48]夏锋.微波碳热还原钒钛磁铁精矿的研究:[硕士学位论文],重庆:重庆大学,2008.
    [49]杨卜,汪云华,彭金辉等.微波辐射钒钛磁铁精矿制备铁粉新工艺研究.中国工程科学,2009,7卷增刊:361-363.
    [50]Y.Chen.N.Yoshikawa,S.Taniguchi.Heating Behavior of Blast Furnace Slag Bearing High Tiunder Microwave,The Third Symposium on Microwave Science and Its Application toRelated Fields,2003,24-25.
    [51]S tandish, N., Huang, W.,Micro wave Application in Carbothermic Reduction of Iron Ores.ISIJ International,1991, Vol.31, No.3:241-245.
    [52]Zhong,S., Geotzman,H. E. and Bleifuss,R. L. Reduction of iron ores with coal by microwave heating[J]. SME Transactions,1996,300:5.
    [53]Ishizaki Kotaro, Nagata Kazuhiro, Hayashi Tetsuro. Localized heating and reduction of magnetite ore with coal in pellets using microwave irradiation. ISIJ International,2007,47(6):817-822.
    [54]梁经冬.浮选理论与选冶实践.北京:冶金工业出版社,1993,(10):330-394.
    [55]朱德庆,郭宇峰.钒钛磁铁精矿冷固球团催化还原机理.中南工业大学学报,2000,31(3):208-211.
    [56]邱冠周,姜涛,徐经沧,蔡汝卓.冷固结球团直接还原.长沙:中南大学出版社,2001,232-238.
    [57]夏锋,白晨光.钒钛磁铁精矿铁、钒、钛资源综合利用工艺流程的浅析.2007年中国钢铁年会论文集.
    [58]Sun Zhengwu, Peng Jinhui, Wei Chang. A New Process of Manufacturing Primary Iron Powder.1994 TMS Fall Meeting for Extraction C.19
    [59]汪云华,范兴祥,何德武.一种用转底炉还原-磨选综合利用钒钛铁精矿的方法.中国专利:CN101117660,2008-02-06.
    [60]郭新春.钒钛磁铁矿的利用现状及其使用价值.攀枝花科技,1996,(2):1-18.
    [61]Kanen E Hak,Walden It.The production of titanium and steel from titanomagnetites.In ternational Journal of Mineral Processing,1985,(15):89.
    [62]廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985,100-268.
    [63]Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Minerals Engineering,2003,16(9):793-805.
    [64]毛建林.攀钢3号高炉钒钛磁铁矿强化冶炼生产实践.第九届全国大高炉炼铁学术年会论文集.
    [65]郭新春.国内外钒钛磁铁矿冶炼工艺及技术分析.钒钛,1989,(1):50-64.
    [66]Oaqbonon A.高炉冶炼.钛磁铁矿的理论基本和工艺研究.国外钢铁钒钛,1989,(4):93-94.
    [67]李道昭.高炉全钒钛磁铁矿冶炼的研究.钒钛磁铁矿开发利用国际学术会论文集,攀枝花钢铁公司:1989,205.
    [68]詹星.小高炉冶炼钒钛磁铁矿解剖研究.钢铁钒钛,1984,5(2):10-11.
    [69]屈经文.攀钢高钛型泡沫渣的成渣过程研究.钢铁钒钛,1983,4(3):79.
    [70]马家源,孙希文,盛世雄.钒钛磁铁矿高炉冶炼的强化.2000,35(1):1-12.
    [71]Ivanov I B,Kralchevsky P A,Ivikodov AD.Film and line tension effects on theattachment of particles to an interface.Journal of colloid and Interface Science,1986,112(1):97-107.
    [72]Show D I.Introduction to colloid and surface chemistry.Philadelphia 1978,98-117.
    [73]付卫国,何绍刚.攀成钢高炉冶炼钒钛磁铁矿工业试验.2007年中国钢铁年会论文集.
    [74]付卫国,谢洪恩.攀钢高炉钒钛磁铁矿冶炼的技术进步.钢铁,2008,43(10):21-24
    [75]毛建林,林千谷.攀钢3号高炉钒钛磁铁矿高效生产实践.炼铁,2009,28(1):5-7.
    [76]Gabre G&Malinskg LA comparative study of the extraction of vanadium fromtitaiferous magnetite and slogs. Symposium Pore.Extractive Metallurgy ofRefractory Metals,The Metallurgical Society of AIME.1981:167.
    [77]郭新春.对钒钛磁铁矿冶炼新流程试验工作的回顾与评价.钒钛,1991,(6):1-7.
    [78]徐文新.攀枝花钒钛金属化球团焙化分离工艺的探讨.钢铁技术,2000,(4):8-12.
    [79]石玉洪.钒钛磁铁矿预还原球团及熔分渣的理化性能.钢铁钒钛,1996,17(2):20-24.
    [80]陈书元.高钛型钒钛铁矿最佳化利用的新工艺.钒钛,1991,(2):1-7.
    [81]陈茂熙.钒钛磁铁矿回转窑直接还原工艺浅析.四川冶金,992,(4):11-17.
    [82]何其松.钛磁铁矿球团的还原历程及热力学分析.四川冶金,982,(3):6-14.
    [83]洪流,丁跃华,谢洪恩.钒钛磁铁矿转底炉直接还原综合利用前景.金属矿山,2007,(5):10-13
    [84]E1-Tawil S ZM,osri I M,Yehiu A,Francis A.Alkali Reductive Roasting of Ilmenite Ore.Canadian Metallurgical Quarterly,1996,35(1):31-35.
    [85]朱德庆,郭宇峰等.钒钛磁铁精矿铁钒钛综合利用新流程.矿产综合利用,1999,(2):16-20.
    [86]汪云华,彭金辉,杨卜等.钒钛磁铁矿制备还原铁粉的碳还原过程的实验研究.南方金属,2005,(10):25-27.
    [87]梁典德.直接还原技术在钒钛磁铁矿铁钛分离和提钒工艺中的利用探讨.重钢技术,2003,(3):1-6.
    [88]Kanen E Hak&Walden It.The production of titanium and steel from titanomagnetites.In temational Journal of Mineral Processing.1985,(15):89.
    [89]铁矿砂的处理方法[译自《特评公报》,139-122228].国外钒钛(第六辑),重庆:科学技术文献出版社重庆分社,1973.76-77.
    [91]FU W, WEN Y, XIE H. Development of Intensified Technologies of Vanadium-Bearing Titanomagnetite Smelting. Journal of Iron and Steel Research, International,2011,18(4):7-18.
    [92]BAI Y, CHENG S, BAI Y. Analysis of Vanadium-Bearing Titanomagnetite Sintering Process by Dissection of Sintering Bed. Journal of Iron and Steel Research, International,2011,18(6):8-36.
    [93]徐楚韶,李祖树.高炉钛矿渣的综合利用(I).钒钛,1993,(5):47-50.
    [94]李晨希,王宏,李润霞.含钛高炉渣综合利用研究的进展.沈阳工业大学学报,2004,26(5):495-498
    [95]马俊伟,隋智通,陈炳辰.攀钢含钛高炉渣的综合利用.钒钛,1994,(7):27-30.
    [96]Baneriee P S&Roychoudhury P J.Beneficiation Studies on Vadadiferrous titanomagentites.J of Mines.Metals&Fuels 1992,11:143.
    [97]Oaqbonon A高炉冶炼钛磁铁矿的理论基本和工艺研究.国外钢铁钒钛,989,(4):93-94.
    [98]Jena B C,Dresler W,Reilly T G.Extraction of titanium,vanadium and iron from titanomagnetlte deposits at pipestone lake Manitoba,Canada.Minerals Engineering,1995,8(112):159-168.
    [99]许臻国.平衡氧高炉法和其它铁水生产法的比较.钢铁科技动态,996,(5):1.
    [100]叶匡吾.钒钛磁铁矿链篦机-回转窑直接还原工艺设计的若干问题.烧结球团,1991,(1):15-19.
    [101]叶匡吾.钒钛磁铁矿链篦机-回转窑直接还原工艺设计的若干问题(续).烧结球团,1992.(2):30-33.
    [102]Brachfeld S A, Hammer J. Rock-magnetic and remanence properties of synthetic Fe-rich basalts:Implications for Mars crustal anomalies. Earth and Planetary Science Letters,2006,248(3-4):599-617.
    [103]Schuiling R D, Feenstra A. Geochemical behaviour of vanadium in iron-titanium oxides. Chemical Geology,1980,30(1-2):143-150.
    [104]王雪松.钒钛磁铁矿直接还原技术探讨.攀枝花科技与信息,2005,30(1):3-8.
    [105]方觉.非高炉炼铁工艺与理论.北京:冶金工业出版社:1-5.
    [106]杜鹤桂.高炉冶炼钒钛磁铁矿原理.北京:科学出版社,1996:124-125.
    [107]Kucukkaragoz C.S,Eric R.H.Solid state reduction of a natural ilmenite.Minerals Engineering,2006,(19):334-337.
    [108]潘宝巨.攀枝花钠化氧化球团回转炉金属化过程物质成分的研究.钢铁钒钛,982,(2):20.
    [109]何其松.钛磁铁矿球团的还原历程及热力学分析.四川冶金,1982,(3):6-14
    [110]叶大伦,胡建华.实用无机物热力学数据手册(第2版).北京:冶金工业出版社,2002:1-25,387,1046-1052.
    [111]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册.北京:科学出版社,1985:110,140,205-206.
    [112]Hahn R, Andorfer H,etc. Production of Masteralloys for the Titanium Industry by the GFE-Two-Stage-Process J. Proceeding of the Fifth International Conference on Titanium,1984(1):109.
    [113]莫畏,邓国珠,罗方承.钛冶金(第2版).北京:冶金工业出版社,1998.118-198.
    [114]孙康.钛提取冶金物理化学.北京:冶金工业出版社,2001.24-64.
    [115]郭宇峰,钒钛磁铁矿固态还原强化及综合利用研究:[博士学位论文],长沙:中南大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700