用户名: 密码: 验证码:
关中盆地地下热水地球化学及其开发利用的环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关中盆地地处鄂尔多斯断块南缘,是位于鄂尔多斯台地和秦岭造山带之间的特殊构造体。自新生代以来,在盆地地质演化过程的控制下,形成了结构复杂的地热系统。在盆地中,地下热水是地热能、地下水与岩石矿物相互作用的产物,也是区域地质演化过程中的活跃因子之一,它不仅是地质环境变化的信息载体,而且是相关人类活动规模和强度的表征体。关中盆地地热开发利用历史悠久,但多以自发或粗放经营模式为主,随着地下热水开采量的逐年增加,热水水位持续下降,水位降落漏斗明显形成,这不仅改变了地下热水的天然赋存环境和区域循环条件,而且引发了一系列环境问题,如资源衰竭、环境污染、地面沉降、地震等。因此,“如何有效地、安全地、持久地开发利用地热资源而又最大限度地减少其开发利用所引起的环境效应?”是目前迫切需要回答的问题之一。本文在系统分析地下热水形成的储、盖、源、通条件下,对地下热水水化学成分及环境同位素演化特征进行研究,并对地下热水深部热储温度、水质及其开发利用的环境效应进行评价,以揭示地下热水的成因机制、赋存方式、地球化学演化格局及其开发利用的环境效应,不但具有深刻的理论意义,而且具有重要的实际价值。
     地下水水化学成分和环境同位素演化研究是地下水水环境演化研究的重要内容,也是本文研究的重点之一。论文研究表明,受区内地形地貌、地层岩性、地质构造等因素影响,水化学成分和环境同位素空间变化表现出极强的水平分带和垂向分层演化特征。即在水平方向上,由盆地周边或边缘带向盆地中央有地下热水埋深、水温、TDS、δ18O、δ13C、14C和δ345增高、氘过量参数降低、水化学类型由HCO3-Na型向SO4-Na或Cl-Na型演化特征,指示在盆地中央区域,地下热水所处地质环境封闭程度高、还原性强,热水滞留时间长,18O漂移明显,热水与围岩之间水-岩作用强烈;在垂直方向上,由浅至深不仅有地下热水水温、TDS增高、水化学类型由HC03-Na型向S04-Na或C1-Na型演化特征,而且有分层演化特征,即不同热储层地下热水水化学成分演化特征不同,标志着其补给、径流、排泄自成循环系统。根据地下热水补给、径流、排泄条件,在盆地北部和南部分别选取代表性地下热水流动路径进行质量平衡模拟,其定量计算结果与水化学演化定性研究结果一致,表明在关中盆地内高岭石、方解石、玉髓的沉淀以及岩盐、石膏、萤石、钠长石、钾长石的溶解作用,径流-排泄区阳离子的交换作用,地下热水沿断裂带运移过程中与浅层冷水的混合作用是控制地下热水地球化学演化的主要因素。
     地下热水深部热储温度及水质评价结果表明,在水平方向上,由盆地周边或边缘带至盆地中央有深部热储温度增高、命名矿水达标组分增多、医疗价值增高、热水对碳钢的腐蚀性增强、热水作为生活饮用水的超标组分增多、超标井率和超标倍数增高的演化特征;在垂直方向上,热储层埋藏越深,层位时代越老,亦有上述演化特征,这与地下热水水化学成分及环境同位素演化研究结果基本保持一致。以盆地中部新生界孔隙裂隙热水为例,评价结果如下:热水中多种矿物处于水-岩平衡状态,深部热储温度较高,最高约146℃;热水中多项微量组分达到矿水浓度或命名矿水浓度限值,主要产出集氟、硅、碘、硼于一体的复合型医疗矿水;热水对碳钢的腐蚀较强,以严重腐蚀性和明显腐蚀性为主;热水作为生活饮用水的超标组分较多、超标井率和超标倍数较高,不仅不能作为生活饮用水,而且容易对周边环境造成污染,需慎重排放。
     地下热水开发利用的环境效应研究是本次研究的重点之一。论文在综合考虑地热地质条件和地下热水开发利用现状的前提下,对地下热水开发利用的环境效应进行分析,主要结论为:关中盆地地下热水开采以消耗静态储量为主,长期自发或粗放经营已引起地下热水水位持续下降,水位降落漏斗明显形成,严重破坏了地热资源的可再生能力;地热尾水中F-、Cl-、SO42-、TDS等多项组分超过相关排放标准,排放温度约为40℃,长期无序排放已对周边水体环境、土壤环境及生态环境造成污染,并对农作物质量、水产质量及人体健康产生影响;根据西安地下热水开采引起的地面沉降计算结果可知,在1995~2000年地下热水平均开采规模下,西安地热田原动物园断块上地面沉降量最大,平均沉降量达12.76mm/a,小雁塔断块上次之,为7.96mm/a,表明地下热水开采已引起地面沉降发生,只是与浅部地层相比,在同等水位降深条件下,引起的沉降量较小且在时间上相对滞后,其原因主要在于地下热水开采引起的地面沉降具有缓慢性和隐蔽性;西安地震活动与地下热水开采量之间具有明显的正相关关系,主要发生M=2~3或M=1~2的中小型地震,震中分布在临潼区和户县两地,这是因为西安地区地下热水循环深度较深,地下热水对构造断裂的弱化程度高,在较小的构造应力作用下,断裂就会发生错动,剪切应力主要通过中小地震来释放。因此,以“可持续发展战略思想”为指导,加强地热基础理论研究,完善地下热水动态监测和地质环境监测系统,实行地热梯级开发和综合利用,力争做到地热科学规划和管理,在最大限度内避免或缓解地下热水开发利用的环境问题,为地下热水可持续开发利用提供有力保障。
Guanzhong Basin is located at the southern edge of Ordos Block, and is a special geological body between Ordos Plateau and Qinling Mountain. Since the Cenozoic, there forms a complicated geothermal system under the control of geological evolution. Geothermal water is the product of interaction among geothermal energy, groundwater and rock minerals. It can indicate the change of geological environment, and also reflect the scale and intensity of human activities related geothermal water. The exploitation and utilization of geothermal water has a long history in Guanzhong Basin, but owing to lack of the scientific management, which not only changes the natural occurrence and circulation conditions of geothermal water, but also causes a series of environmental problems, such as resource exhaustion, environmental pollution, land subsidence and earthquake. Therefore, "how to exploit and utilize geothermal water effectively, safely and continuously but to minimize its environmental impacts?" is one of the important questions need to be answered urgently. In order to know about the flow, occurrence, geochemistry of geothermal water and its environmental impacts, firstly this paper systematically analyzes geological conditions of geothermal water, secondly studies the evolution of hydrochemical elements and environmental isotopes, and finally evaluates the geothermal temperature, hot water quality and its environmental impacts.
     The study indicates the hydrochemical elements and environmental isotopes have the spatial evolution characteristics of horizontal sub-band and vertical sub-stratification under the impacts of the regional topography, lithology, geological structure etc. Namely, in the horizontal direction, from the marginal basin to the central, with the increase of depth, TDS,δ18O,δ13C,14C, andδ34S of geothermal water gradually, the hydrochemical type is represented as HCO3-Na type to SO4Na or Cl-Na type. The evolution characteristics indicate in the centre of Guanzhong Basin, the geological environment is closed and deoxidized, the residence time of geothermal water is long, and water-rock interaction is strong with obvious 18O drift; in the vertical direction, the hydrogeochemical evolution characteristics are the same as the horizontal, and simultaneously with sub-stratification evolution characteristics from the shallow to the deep. It indicates different reservoir has relatively independent circulation system. According to the recharge, runoff and discharge of geothermal water, the paper respectively selects the representative flows in the northern and southern Basin to quantitatively research on hydrochemical evolution by mass balance simulation. The research results show:in Guanzhong Basin, the main hydrogeochemical processes are the precipitation of kaolinite, calcite and chalcedony; the dissolution of rock salt, gypsum, albite and fluorite; the cation exchanges in the runoff or discharge zones; the mixture of cold water and geothermal water migrating from the deep to the shallow along the fault zones.
     On the basis of the hydrochemical data, the paper estimates the reservoir temperature and evaluates geothermal water quality. The results show:in the horizontal direction, from the marginal to the central basin, the reservoir temperature, the medical value, the corrosion to carbon steel, and the degree of exceeding the drinking standard are all increasing gradually; and the same evolution characteristics are shown from the shallow to the deep in the vertical direction. In a word, it is consistent with the hydrogeochemical and Isotopic evolution characteristics.
     The environmental impacts from exploitation and utilization of geothermal water are the important part for the research. The main conclusions are:the static reserves in geothermal system are over-exploited in Guanzhong Basin, and then caused geothermal water level is dropping continuously, the regeneration ability is weakening, and geothermal water is exhausting; In geothermal tail water, many components such as Temperature, F", Cl", SO42-and TDS all exceed the relative standard for discharge, so the direct discharge of geothermal water already causes some pollutions on the surrounding water, soil and ecology environment.
     By calculating subsidence caused by exploitation of geothermal water, it can be seen that from 1995 to 2000 in Xi'an geothermal field, the average subsidence rate on the original Xi'an zoo Block is 12.76mm/a, and 7.96mm/a on Small Wild Goose Pagoda Block. The calculation results indicate in Xi'an area, the over-exploitation of geothermal water can cause land subsidence with slow, hidden and unrecoverable. Moreover, the study also shows a positive correlation between earthquake and the exploitation amount of geothermal water, and the shear stress from the fault dislocation is usually released by the small earthquakes M=2-3 or M=1-2.
     Considering above environment problems, the paper advises:the exploitation and utilization of geothermal water should regard "sustainable development strategic thinking" as the guidance to strengthen the research of the basic theory, to improve the dynamic monitoring of geothermal water and geological environmental monitoring system, to implement the cascade development and comprehensive utilization of geothermal water, to scientifically plan and manage geothermal water, and to ensure the sustainable exploitation and utilization of geothermal water in Guanzhong Basin.
引文
[1]. Afyin M. Hydrochemical Evolution and Water Quality along the Groundwater Flow Path in the SandLklL Plain [J], Afyon, Turkey. Environmental Geology. Volume 31, Numbers 3-4/June 16,1997: 221-230
    [2]. Arnold J.R., Libby W.F. Age Determinations by Radio Content:Checks with Samples of Known Age [J]. Science,1949,110 (2868):678-680
    [3]. Appelo C.A.J., Postma D. Geochemistry, Groundwater and Pollution [M]. Rotterdam:A.A. Balkema Publisher,2005
    [4]. Arnorsson S., Gunnlaugsson E. The Chemistry of Geothermal Waters in Iceland.II Mineral Equilibria and Independent Variables Controlling Water Compositions [J]. Geochim Cosmochim Acta,1982,47: 547-566
    [5]. Bishop P.K., Smalley P.C., Emery D., et al. Strontium Isotopes as Indicators of the Dissolving Phase in a Canfield D.E. Isotope Fraction by Natural Populations of Sulfate-Reducing Bacteria [J]. Geochem. Cosmochim Acta 65,2001:1117-1124
    [6]. Boaretto E., Thorling L., Sveinbj a.E., Rnsdottir et al. Study of the Effect of Fossil Organic Carbon on 14C in Groundwater from Hvinningdal, Denmark [J], Radiocarbon,1998,40 (1-2):915-918
    [7]. Chapelle F.H. Groundwater Geochemistry and Calcite Cementation of the Aquifer in Southern Maryland[J]. Water Resources Research,1983,19 (2):545-558
    [8]. Craig H.1961, Isotope Variations in Meteoric Water[J], Science, Vol.133, PP.1702-1703
    [9]. Craig H.1963, The Isotopic Geochemistry of Water and Carbon in Geothermal Areas. In:E. Tongirogi. (Ed), Nuclear Geology on Geothermal Areas, Spoleto,1963. Consiglio Nazionale Delle Ricerche, Laboratorio Di Geologia Nucleare, Pisa:17-53
    [10]. Dansgaard W. Stable Isotopes in Precipitation [J]. Tellus.1964,16:436-468
    [11]. Davisson M.L., et al. Isotope Hydrology of Southern Nevada Groundwater:Stable Isotopes and Radiocarbon [J], Water Resource Research,1999, Vol.35, No.l:279-294
    [12]. ElliS A.J., Mahon W.A.J. Geochemistry and Geothermal Systems [M]. New York. Academic Press, 1977:1-52
    [13]. Favara R., et al. Hydrochemical Evolution and Environmental Features of Salso River Catchment, Central Sicily (ITALY) [J]. Environmental Geology. Volume 39, Number 11/October,13,2000: 1205-1215
    [14]. Florent B., Christelle M., Elisabeth G, et al. Hydrochemical and Isotopic Characterization of the Bathonian and Bajocian Coastal Aquifer of the Caen Area (Northern France) [J]. Applied Geochemistry.2000 (15):791-805
    [15]. Fournier R.O. Chemical Geothermometers and Mixing Models for Geothermal Systems [J]. Geothermics,1997,5:41-50
    [16]. Giggenbach W.F. Reply to Comment by P.Blattner,1993, " Andesitic water":A Phantom of Isotopic Evolution of Water-Silicate System[J]. Earth Planet. Sci.Lett.,120,519-522
    [17]. Giuseppe GAMBOLATI. Pietro TEATINI, Massimiliano, Anthropogenic Land Subsidence [J]. Earth Science Frontiers,2006,1
    [18]. Glowacka E., Sarychikhina O., Nava F.A. Subsidence and Stress Change in the Gerro Prieto Geothermal Field [J]. Pure and Applied Geophysics,2005
    [19]. Helgeson H.C. Evolution of Irreversible Reactions in Geochemical Process Involving Mineral-sand Aqueous Solutions Thermodynamic Relations [J]. Geochemical Cosmochimica Acta,1968,32: 853-857
    [20]. Helm D.C. Three-Dimensional Consolidation Theory in Terms of the Velocity of Solid [J]. Geotechnique,1987,37 (3):369-392
    [21]. Kenoyer Wisconsin G.I., Bowse C.J. Groundwater Chemical Evolution in a Sandy Silicate Aquifer in Northern Patterns and Rates of Change [J]. Water Resources Research,1992,28 (2):579-589
    [22]. Laaksoharju M., Gurban I., et al. Multivariate Mixing and Mass Balance (M3) Calculations, a New Tool for Decoding Hydrogeochemical Information [J], Applied Geochemistry,1999 (7)
    [23]. Toran L.E., James A.S. Modeling Alternative Paths of Chemical Evolution of HCO3-Na-type Groundwater near Oak Ridge [J], Tennessee, USA, Hydrogeology Journal,1999,7:355-364
    [24]. Lofgren B.E. Monitoring Crustal Deformation in the Geysers-Clear Lake Geothermal Area[R]. Geysers-Clear Lake U.S Geological Survey Open-File Report,1999,78-597
    [25]. Mandernack K.W., Lynch L., Rrouse H.R., et al. Sulfur Cycling in Wetland Peat of the New Jersey Pinelands and Its Effect on Stream Water Chemistry [J]. Geochim. Cosmochim Acta 64,2000: 3949-3964
    [26]Marimuthu S., Reynoids D.A., et al. A Field Study of Hydraulic, Geochemical and Stable Isotope Relationships in a Coastal Wetlands System [J]. Journal of Hydrology.2005 (315):93-116
    [27]. Masaru Yamanaka., Yoshihiro Kumagai. Sulfur Isotope Constraint on the Provenance of Salinity in a Confined Aquifer System of the Southwestern Nobi Plain, Central Japan [J]. Journal of Hydrology. 2006 (325):35-55
    [28]. Matthew M.U., John M.S. Tracing Regional Flow Paths to Major Springs in Trans-pecos Texas Using Geochemical Data and Geochemical Models [J]. Chemical Geology,2001,179:53-72
    [29]. Michel F.A. Hydrogeology of the central Mackenzie Valley [J], Journal of Hydrology,1986,85 (3-4): 379-405
    [30]. Munnich K.O., Messugen des.14C-gehaltes von Hartem Groundwater[J]. Nature Wisens Chaften, 1957,44:2853-2868
    [31]. Parhurst D.L., Thorstenson D.C., Plummer L.N. PHREEQE-A Computer Program for Geochemical Calculations [R]. U.S.Geol.Surv.Water Resourse Invest. Rept.,1980,80-96
    [32]. Payne B.R. The Status of Isotope Hydrology Today[J]. Journal of Hydrology,1988, Vol.100, No.1/3: 207-237
    [33]. Plummer L.N., Busby J.F., Lee R.W., et al. Geochemical Modeling of the Madison Aquifer in Parts of Montana, Wyoming, and South Dakota [J]. Water Resources Research.1990,26 (9):1981-2014
    [34]. Raji B.A., Alagbe S.A. Hydrochemical Faces in Part of the Nigerian Basement Complex [J]. Environmental Geology. Volume 29, Numbers 1-2/January 30,1997:46-49
    [35]. Reed M., Spycher N. Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution [J]. Geochim Cosmochim Acta, 1984,48:1479-1492
    [36]. Stilwell W.B., Hall W.K., Tawhai J. Ground Movement in NewZealand Geothermal Fields [C]. In Proc. Second Unitiond Symposium on the Development and Use of Geothermal Resources, Sand Francisco, Calif, U.S.E,1975,1435-1443
    [37]. Talor B.E., Wheeler M.C. Isotope Composition of Sulfate in Acid Mine Drainage as Measure of Bacterial Oxidation[J]. Nature,1984,308,538-541
    [38]. Taylor C.B., On the Isotopic Composition of Dissolved Inorganic Carbon in Rivers and Shallow Groundwater:A Diagrammatic Approach to Process Identification and a More Realistic Model of the Open System [J]. Radiocarbon,1997,39 (3):251
    [39]. Thomas James M., Welch Alan H., Preissler Alan M. Geochemical Evolution of Groundwater in Smith Creek Valley. A Hydrologically Closed Basin in Central Nevada, USA[J]. APPL GEOCHEM. 1989,4 (5):493-510
    [40]. Were O., Tsao K., Wood B. Resource, Technology and Environment at the Gey-sers [R]. Lawrence Berkeley Laboratory Report.1977-5231
    [41]. Wicks C.M., Herman J.S. The Effect of a Unit on the Geochemical Evolution of Groundwater in the Upper Floridian Aquifer System [J]. Journal of Hydrology,1994,153:139-155
    [42]. Zuber A., Weise S.M., Osenbrueck K., et al. Age and Recharge Area of Thermal Waters in Ladek Spa (Sudeten, Poland) Deduced from Environmental Isotope and Noble Gas Data[J]. Journal of Hydrology,1995,167 (1-4):327-349
    [43]. Zhao H., Qian H., Ma Z Y. Hydrochemical Characteristics of Geothermal Waters in Xianyang, China[C].12nd International Conference on Interaction between Water and Rock. Volume 1:115-118
    [44].阿里木·吐尔逊,徐卫亚,萨肯·塞麦提.坝基老化的反向水文地球化学模拟[J].水利水电科技进展,2006,26(5):14-17
    [45].蔡绪贻,桂平.地下水硫酸盐污染的反应途径模拟-以洛阳市后李水源地为例[J].水文地质工程地质,1995(2):13-16
    [46].曹德福.鄂尔多斯盆地南区洛河组地下水演化水文地球化学模拟[D].长安大学,2005
    [47].曹玉清,胡宽路,张永祥等.岩溶化学环境水文地质[M].吉林:吉林大学出版社,1994年第1版
    [48].陈军锋,郑秀清,侯燕军.玄中寺地热水化学特征分析[J].太原理工大学学报,2006,37(3):369-371
    [49].陈宗宇.天津市塘沽低温热储回灌的水-岩相互作用地球化学模拟[J].1998,23(5):513-518
    [50].邓晓铌.关中盆地地热水开发利用对环境影响研究[D].长安大学,2008
    [51].丁援.北京城区地热田地下热水的水化学及同位素研究[D].中国地质大学,2006
    [52].樊秀峰,吴振祥,简文彬.福州市温泉区地面沉降分析[J].地质灾害与环境保护,2004,15(2):89-92
    [53].符必昌,方丽萍.腾冲地热水化学特征及腐蚀机理探讨[J].水文地质工程地质,1998,3:1-4
    [54].韩恒悦,米丰收,刘海云.渭河盆地带地貌结构与新构造运动[J].地震研究,2001,24(3):251-257
    [55].胡杨,马致远,余娟等.关中盆地地下热水接受补给时的温度及热储层温度的估算[J].地球科学与环境学报,2009,32(2):173-176
    [56].姜凌.干旱区绿洲地下水水化学成分形成及演化机制研究[J].长安大学,2009
    [57].金海峰,张益谦,西安地下热水开采现状与合理开发利用探讨[J].地球科学与环境学报,2004,26(3),40-43
    [58].李惠娣,张森琦,白嘉启.西宁药水滩地热田水化学特征及热水起源初探[J].地质学报,2007,81(9):1299-1303
    [59].李莲花,张建斌.地热水资源开发引起的环境问题分析[J].地下水,2004,26(3):194-195
    [60].李喜安,刘玉洁,蔚远江等.西安地区地下热水资源开发利用现状及展望[J].水资源保护,2003,3:50-52
    [61].李义连,王焰新,张江华等.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析[J].地球科学,2000,25(5):468-471
    [62].李义连,王焰新,周来茹等.地下水矿物饱和度的水文地球化学模拟分析-以娘子关泉域岩溶水为例[J].2002,21(1):32-36
    [63].李雨新,钱会.地下水化学组分存在形式计算方法[J].文地质工程地质.1991(6),.28
    [64].李云峰,郭建青,吴耀国.西安地热田医疗热矿水的产出状况分析[J].西安工程学院院报.1999
    [65].李云峰,钱会.稠油热采注入水对储层岩石化学破坏作用的研究[J].油田化学,1996(1)40-43
    [66].梁振福,王培娜,邢煜军等.开封地区深井地热水质状况调查[J].河南大学学报.2004,23(3):73-74
    [67].廖忠礼,张予杰,陈文彬等.地热资源的特点与可持续开发[J].中国矿业,2006,15(10):8-11
    [68].林黎,赵苏民,李丹,等.深层地热水开采与地面沉降的关系[J].水文地质工程地质,2006,33(2):34-37
    [69].林晓波.杭嘉湖地区地下水环境同位素研究[D].中国地质科学院,2007
    [70].刘文辉,胡雪生,邢宪生.咸阳市区地下热水化学特征[J].陕西地质,17(2):49-56
    [71].马金珠,李相虎,黄天明等.石羊河流域水化学演化与地下水补给特征[J].资源科学,2005,27(3):117-122
    [72].马明章,松辽高平原地下水年龄-公主岭附近同位素水文地质剖面研究[J].吉林地质,1993,12(3):46-52
    [73].马瑞.碳酸盐岩热储隐伏型中低温热水的成因与水-岩相互作用研究:以山西太原为例[D].中国地质大学,2007
    [74].马振民,李立才等.山东泰安岩溶水系统地下水化学环境演化[J].现代地质,2002(4) 423-428
    [75].马致远,范基姣.陕西渭北东部岩溶地下水中硫酸盐的形成[J].煤田地质与勘探,2005,33(3):45-47
    [76].马致远,王心刚,苏艳等.陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].地质通报,2008,27(6):888-894
    [77].盂宪级,白丽萍,齐金生.地热水结垢趋势评价[J].工业水处理.1997,17(5):6-7
    [78].钱会.水溶液组分平衡分布计算及其水文地质应用[M].西安:西安地图出版社,2002
    [79].秦大军,庞忠和,Jeffrey.V等.西安地区地热水和渭北岩溶水同位素特征及相互关系[J].岩石学报,2005,21(5):1489-1499
    [80].覃兰丽.关中盆地地下热水水化学特征及其形成机制研究[D].长安大学,2008
    [81].冉兴龙.储水层质量守恒方程的简化及在垂向弹性形变假定下与水流方程的耦合[J].长安大学学报(地球科学版),2003,25(4):55-59
    [82].任增平,阎俊萍.内蒙古达拉特旗平原区地下水水化学特征及形成机制分析[J].中国煤田地质,1999,11(3):30-34
    [83].申建梅,陈宗宇,张古彬.地热开发利用过程中的环境效应及环境保护[J].地球学报,1998,19(4):402-408
    [84].沈照理.水文地球化学基础[M].北京:地质出版社,1996
    [85].石涵静.开发地热矿水引起的环境地质问题[J].地热能,2008,5:28-29
    [86].石培泽,马金珠,赵华.民勤盆地地下水地球化学演化模拟[J].干旱区地理,2004,27(3)305-309
    [87].宋宝平,张先林等.长江河口地区第四系地下水化学演化机制[J].地理学报,2000,55(2)209-218
    [88].苏春利,王焕新.大同盆地孔隙地下水化学场的分带规律性研究[J].水文地质工程地质,2008,1:83-89
    [89].苏小四,林学钰,董维红.反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J].吉林大学学报(地球科学版),2007,37(2):271-277
    [90].孙继朝.河北平原第四系地下水年龄、水流系统及咸水成因研究[J].水文地质工程地质,1987
    [91].孙熠,王文科,刘国东等.关中盆地浅层地下水水化学场演化规律研究[J].西南民族大学学报(自然科学版),2005,31(6):874-879
    [92].陶书华.西安附近地下热水的形成[J].水文地质工程地质,1995,5:6-11
    [93].陶勇,陈亚妍等.地热水的开发利用对环境和健康的影响[J].中国环境科学,1994,2:37-39
    [94].田华.关中盆地环境同位素分布特征及水文地质意义[D].长安大学,2003
    [95].王东生,王经兰.中国地下热水的基本类型和成因特征[J].第四纪地质,1996,2
    [96].王焰新,马腾,罗朝晖等.山西柳泉域水-岩相互作用地球化学模拟[J].地球科学,1998,23(5):519-522
    [97].王基华.张家口南部地区温泉形成的氢氧稳定同位素及气体组成证据[J].水文地质工程地质,2000,4
    [98].王清利,管华,李斌.河南省地热资源开发利用及对策研究[J].地质找矿论丛,2003,18(3)199-202
    [99].王佟,王莹.陕西渭河盆地地热资源赋存特征研究[J].西安科技学院学报,2004,24(1):82-85
    [100].王万红,张慧,苏鹤军.秦岭北缘断裂带温泉水循环深度与地震活动性的关系研究[J].西北地震学报,2008,30(1):36-41
    [101].王蔚,张景荣,胡桂兴等.湘西北地区现代温泉地球化学[J].中国科学(B辑),1995,25(4):427-433
    [102].王卫东,彭建兵,张永志,等.西安市地热水开采现状及其环境问题[J].水土保持研究,2005,12(5):266-267
    [103].王兴.渭河盆地地热资源赋存与开发[M].陕西科学技术出版社.2005
    [104].王心义,聂新良,赵卫东.开封凹陷区地温场特征及成因机制探析[J].煤田地质与勘探,2001,29(5):4-7
    [105].王心义,邱燕燕,张百鸣.用14C方法确定深部地下热水系统边界性质的研究[J].水利学报,2003,11:112-115
    [106].王兆荣.中国东部温泉水和井水的氢氧同位素初步研究[J].中国科学技术大学学报,1993,23(2):213-217
    [107].王珍岩,孟广兰,王少青.渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟[J].海洋地质与第四纪地质,2003,23(1):49-53
    [108].王振刚,赵法锁.西安市地下热水赋存特征与可持续开发利用[J].黑龙江水专学报,2006,33(4):46-48
    [109].卫克勤,林瑞芬,王志祥.西藏羊八井地热水的氢氧同位素组成及氚含量[J].地球化学,1983,(4):338-346
    [110].吴富春,方炜,宋立胜,等.西安市地热水开采与地面沉降、地裂缝关系的分析[J].地震地质, 2002,24(2):234-239
    [111].吴富春,宋立胜,朱兴国等.西安地区的地热水开采与诱发地震关系的研究[J].地震学报,2001,23(4):407-412
    [112].吴振祥,樊秀峰,简文彬.福州温泉区地面沉降灰色系统预测模型[J].白然灾害学报,2004,13(6):59-62
    [113].谢振乾.论西安市地下热水资源的开发与管理[J].陕西地质,1999,17(2):72-78
    [114].徐步台,章秋芳,周树根.浙江武义盆地热水同位素地球化学研究[J],1999,20(4):357-361
    [115].徐彦泽.沧州市地下水的水文地球化学与稳定同位素[D].中国地质大学,2009
    [116].徐玉琳.江苏地下热水水化学特征概略分析[J].江苏地质,1997,21(4):235-238
    [117].杨彪.瑞丽热田水化学及同位素特征研究[J].中国煤田地质,1999,11(1):47-50
    [118].叶思源,孙继朝,姜春用.水文地球化学研究现状与进展[J].地球学报,2002,23(5):477-482
    [119].尹观,倪师军.地下水氘过量参数的演化[J].矿物岩石地球化学通报,2001,20(4):409-411
    [120].郁冬梅.银川市Y1地热井医疗热矿水水质特征[J].宁夏地矿信息,2000,1:12-16
    [121].于湲.北京城区地热田地下热水的水化学及同位素研究[D].北京:中国地质大学,2006
    [122].曾溅辉.地下水地球化学模拟[J].地质论评,1993,490-495
    [123].张百鸣,金爱善.天津市滨海地区地热资源开发对地面沉降的影响[J].中国地质灾害与防治学报,1998,9(2):112-117
    [124].张卫民.应用SiO2地热温度计估算地热储温度-以赣南横泾地区若干温泉为例[J].地球学报,2001,22(2):185-188
    [125].张宗枯等.华北平原地下水环境演化[M].北京:地质出版社,2000年2月第1版
    [126].赵慧,钱会.抽水和建筑荷载双重作用下的地面沉降模型研究[J].地球科学与环境学报,2008,30(1):57-59
    [127].赵建.海(咸)水入侵与浅层地下水水化学特征及变化研究[J].地理科学,1999(6):525-531
    [128].赵景波,肖军等.陕西秦岭翠华山泉水水化学成分研究[J].第四纪研究,2005
    [129].郑西来,刘鸿俊.地热温标中的水岩平衡状态研究[J].西安地质学院学报,1996,18(1):74-79
    [130].周立岱.中低温地热系统形成机制及评价研究[D],辽宁工程技术大学,2005
    [131].周文斌.水-岩相互作用地球化学模型的回顾与展望[J].华东地质学院学报,1993,16(2)128-135
    [132].周训.深层地热井腐蚀与堵塞原因的初步认识[J].地下水,2001,23(2):95-96
    [133].朱炳球等.地热田地球化学勘察[M].北京:地质出版社,1992
    [134].朱命和,付中,刘彦兵.应用地球化学方法讨论开封地热田地下热水的补给来源[J].物探与化探,2005,29(6):493-496
    [135].GB11615-1989.地热资源地质勘查规范[S].1989
    [136].GBT14848-93.地下水质量标准[S].1993
    [137].陕西省关中盆地地热资源调查评价总体设计[R].2005,陕西省环境监测总站&陕西省地质调查
    [138].西安地区区域地壳稳定性与地质灾害评价和研究[R].1995,陕西地矿局第一水文地质工程地质队
    [139].西安地热普查报告[R].1996,陕西地矿局第一水文地质工程地质队

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700