用户名: 密码: 验证码:
颗粒性肽-DNA复合疫苗激发抗肿瘤免疫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTLs)在机体抵抗肿瘤的过程中发挥着关键性的作用,激发体内有效的抗肿瘤CTL反应是目前肿瘤免疫治疗的主要目标。在当前的治疗方案中,由于肽疫苗和DNA疫苗具备较高的安全性和实用性,因而成为肿瘤疫苗学领域中发展最为迅速的肿瘤免疫治疗方案之一。但是这两种疫苗形式仍然具有各自的缺点,较低的免疫原性限制了肽疫苗的临床应用,以抗原多肽或重组蛋白进行免疫,通常不能激起机体有效的CTL反应,甚至还会导致机体对该抗原的特异性耐受;而DNA疫苗虽然可有效激发体内的CTL反应,但是其免疫反应强度通常较低,效应发挥滞后,不能提供较为有效的免疫保护。
     大量的研究表明,多肽抗原与基因形式的抗原其抗原呈递动力学存在明显差异,肽抗原可直接快速呈递,无需表达过程,但是由于多肽的不稳定性,其呈递时效短暂;基因形式的抗原可被长期表达,其呈递具备持续性,但是由于抗原基因存在表达的过程,其呈递存在滞后效应。同时有研究表明,抗原CTL表位的递呈动力学参数是肿瘤特异性CTL活化的关键性因素。肽抗原和基因抗原呈递动力学的差异提示这两种抗原在激发机体免疫过程中可能存在互补性。
     本课题以本研究所前期“模拟病毒”的研究工作为基础,对多肽疫苗和DNA疫苗进行综合,以期实现这两种抗原形式在抗肿瘤免疫激发过程中的协同互补,进而设计出肽-DNA复合疫苗。多聚赖氨酸作为自组织非病毒基因转染载体,已经在基因治疗领域得到广泛应用。在正负电荷相互吸引的静电作用下,富含正电荷的多聚赖氨酸可与富含负电荷的DNA分子结合,进而可以将质粒由几百纳米的松散线性分子压缩成直径数十纳米的致密颗粒。本研究以肿瘤相关抗原P815A为模式抗原,合成含有P815A CTL表位和多聚赖氨酸DNA结合区的双功能线性肽,并以该多肽对编码P815A和GM-CSF细胞因子的真核双表达质粒进行包装,进而形成肽-DNA复合疫苗颗粒。
     本研究在技术路线上,以标准Fmoc方案化学合成上述双功能阳离子线性肽,中压液相色谱纯化,高压液相色谱、质谱鉴定;RT-PCR扩增鼠GM-CSF全长cDNA,常规基因重组技术构建P815A、GM-CSF双表达真核质粒;DNA沉淀分析、结合多肽增量分析、DNA凝胶阻滞、DNase Ⅰ保护试验及电镜分析优化疫苗颗粒制备条件;细胞转染、Western Blotting鉴定肽-DNA复合疫苗介导P815A、GM-CSF基因表达的有
    
    第二军医人学硕士研究生论文
    效性;;’C:释放试验评价该疫苗激发体内CTL反应有效性;预防性保护试验、治疗性
    保护试验评价该疫苗激发体内抗瘤免疫的有效性。
     结果显示,本研究所设计的阳离子双功能线性抗原肤被成功合成纯化;编码
    PS 15,、、GM一CSF的双表达真核质粒被正确构建;DNA沉淀分析、结合多肤增量分沂、
    DNA凝胶阻滞、ONasel保护试验及电镜分析确定了NaCI浓度87.5:二M、电荷比等于
    2的肤一DNA疫苗制备最优条件,并显示在该制备条件下质粒DNA被阳离子肤充分包
    装,并保护其免于DNasel的破坏;细胞转染、Western Blotting证实肤一DNA复合疫
    苗介导PS 15、、、GM一cSF基因表达的有效性;5‘Cr释放试验证实该疫苗激发体内P8!SA
    特异性CTL反应的有效性;预防性保护试验、治疗性保护试验显示该疫苗可预防性保
    护小鼠有效抵抗致命吐肿瘤,并可有效根治荷瘤小鼠的致死性Psls肿瘤。综上结果,
    本研究证实了!J太一 ONA复合疫苗被成功构建,初步证实了该疫苗激发抗瘤免疫的有效
    性,提示该肤一DNA复合疫苗有希望成为一种有效的肿瘤疫苗形式。本研究同时提示
    了!1太一从因抗原并供‘对于月中瘤疫苗设计的必要性和合理性。
The cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. The elicitation of strong CTL responses capable of mediating tumor regression in vivo has become the main aim of the immuotherpies for tumor. Peptide-based vaccines and naked DNA have been considered of the most rapidly evolving technologies for tumor vaccination due to their safety and feasibility. The major drawback Peptide-based vaccine is their weak inherent immunogenicity. Immunazition with peptide or recombinant proteins generally fails to elicit CTLs, and even in some case the induction of tolerance was observed. Although naked DNA vaccines in some cases may be effective in inducing immunity, however, the immune response that they elicit is often too weak or too late in developing to provide protective immunity.
    Previous studies demonstrated the differences between the dynamics for the presentations of these two forms of antigens. Antigenic peptides could be presented directly and quickly, however, for a short period of time due to their short half-life. Whereas, antigens in the form of genes could be expressed for a long time, but have a time lag owing to the process of gene expression. In addition, the dynamics of antigen presentation is thought a critical parameter in activating CTL response. Thus, the functional complementation of antigen forms of peptide and genes may be reasonably proposed and the collocation of antigenic peptide with gene encoding the same antigen might have a synergistic effect on elicitation of anti-tumor immunity.
    In the present study based on the previous research on "mimovirus" in our institute, we designed a peptide-DNA dual vaccine, which combines the peptide and DNA vaccines on the base of the probable functional complementation of antigen forms of peptide and genes. The cationic polylysine has been widely described as a self-assembly nonviral vector for gene therapy, which can condense plasmid DNA into small particles through electrostatic interactions between the positively charged lysine residues and the negatively charged DNA. As a test system, we chose a CTL epitope from the well-defined tumor Ag, P815A, as a
    
    
    
    target and synthesized a bifunctional linear cationic peptide, which comprises a P815A CTL epitope and a DNA-binding moiety consisting of polylysine residues.
    In the present study, cationic antigenic peptide was synthesized by standard Fmoc, purified by middle-performance liquid chromatography and the purity was confirmed by reversed-phase high-performance liquid chromatography and the molecule weight by mass spectrometry. The gene for GM-CSF was amplified by RT-PCR and the plasmid encoding P815A and GM-CSF was constructed by standard recombinant technology. The condition of peptide-DNA vaccine preparation was determined by precipitation assay, gel retardation assay, DNase I protection assay and electronic microscopy. Further, the expressions of P815A and GM-CSF mediated by peptide-DNA vaccine particles were accessed by cell transfection and Western blotting. Finally, the efficacy of inducing antigen specific CTL response and eliciting anti-tumor immunity were accessed by 51Cr release assay and protection assay in P815 model.
    Here, we report that the cationic peptide was successfully synthesized and purified and the bicistronic plasmid encoding GM-CSF and P815A was constructed correctly. As bias of the results from precipitation, gel retardation, DNase I protection and electron microscopy assays, all vaccines used for immunization of animals were prepared by titrating cationic peptide into a solution of DNA with charge ratio of 2 at 87.5 mM NaCl concentration. The efficient expression of P815A and GM-CSF genes in cells mediated by peptide-DNA dual vaccine was conformed by cell transfection and Western blotting. The peptide-DNA dual vaccine elicited P815A specific CTL response, which was assayed in 51Cr release. Moreover, the peptide-DNA dual vaccine effectively protected DBA/2 mice from the fatal P815 tumor challenge and cure tumor-bearing DBA/2 mice with fatal P815 tumor,
引文
1. Greenberg PD, Cheever MA, Fefer A. H-2 restriction of adoptive immunotherapy of advanced tumors. J Immunol. 1981 Jun;126(6):2100-3.
    2. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature. 2001 May 17;411(6835):380-4.
    3. Van Pel A, van der Bruggen P, et al. Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev. 1995 Jun; 145:229-50.
    4. Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev. 1999 Aug;170:85-100.
    5. Momburg F, Ortiz-Navarrete V, et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature. 1992 Nov 12;360(6400): 174-7.
    6. Oxenius A, Bachmann MF, et al. Presentation of endogenous viral proteins in association with major histocompatibility complex class Ⅱ: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur J Immunol. 1995 Dec;25(12):3402-11.
    7. Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci U S A. 1996;93:7855-60.
    8. Fooks AR, Jeevarajah D, Wames A, Wilkinson GW, Clegg JC. Immunization of mice with plasmid DNA expressing the measles virus nucleoprotein gene. Viral Immunol. 1996;9(2):65-71.
    9. Bronte V, Carroll MW, et al. Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3183-8.
    10. Slansky JE, Rattis FM, Boyd LF, et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity. 2000 Oct; 13(4):529-38.
    11. Wang RF, Wang HY. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat Biotechnol. 2002 Feb;20(2): 149-54.
    12. Schirmbeck R, Wild J, Reimann J. Similar as well as distinct MHC class Ⅰ-binding
    
    peptides are generated by exogenous and endogenous processing of hepatitis B virus surface antigen. Eur J Immunol. 1998 Dec;28(12):4149-61.
    13. Raz E, Carson DA, Parker SE, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci U S A. 1994 Sep 27;91 (20):9519-23.
    14. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol. 1997; 15:821-50.
    15. Brinckerhoff LH, Kalashnikov VV, Thompson LW, Yamshchikov GV, Pierce RA. Galavotti HS, Engelhard VH, Slingluff CL Jr. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: implications for peptide vaccines. Int J Cancer. 1999 Oct 29;83(3):326-34.
    16. Fooks AR, Jeevarajah D, Warnes A, Wilkinson GW, Clegg JC. Immunization of mice with plasmid DNA expressing the measles virus nucleoprotein gene. Viral Immunol. 1996;9(2):65-71.
    17. Martins LP, Lau LL, Asano MS, Ahmed R. DNA vaccination against persistent viral infection. J Virol. 1995 Apr;69(4):2574-82.
    18. Wagner E, Cotten M, Foisner R, Birnstiel ML. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4255-9.
    19. Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, Hanson RW. Biological properties of poty-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem. 2001 Sep 14;276(37):34379-87.
    20. Moudgil KD, Sercarz EE, Grewal IS. Modulation of the immunogenicity of antigenic determinants by their flanking residues. Immunol Today. 1998 May; 19(5):217-20.
    21. Wu YZ, Zhao JP, Wan Y, Jia ZC, Zhou W, Bian J, Ni B, Zou LY, Tang Y. Mimovirus: a novel form of vaccine that induces hepatitis B virus-specific cytotoxic T-lymphocyte responses in vivo. J Virol. 2002 Oct;76(20): 10264-9.
    22. Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol. 2000 Jan;18(1):33-7.
    23. Lethe B, van den Eynde B, van Pel A, Corradin G, Boon T. Mouse tumor rejection antigens PS15A and P815B: two epitopes carried by a single peptide. Eur J Immunol. 1992 Sep;22(9):2283-8.
    24. Uyttenhove C, Godfraind C, Lethe B, Amar-Costesec A, Renauld JC, Gajewski TF,
    
    Duffour MT, Warnier G, Boon T, Van den Eynde BJ. The expression of mouse gene P1A in testis does not prevent safe induction of cytolytic T cells against a P1A-encoded tumor antigen. Int J Cancer. 1997 Jan 27;70(3):349-56.
    25. Bergmann CC, Yao Q, Ho CK, Buckwold SL. Flanking residues alter antigenicity and immunogenicity of multi-unit CTL epitopes. J Immunol. 1996 Oct 15; 157(8):3242-9.
    26. Shastri N, Serwold T, Gonzalez F. Presentation of endogenous peptide/MHC class Ⅰ complexes is profoundly influenced by specific C-terminal flanking residues. J Immunol. 1995 Nov 1 ;155(9):4339-46.
    27. Moudgil KD, Sercarz EE, Grewal IS. Modulation of the immunogenicity of antigenic determinants by their flanking residues. Immunol Today. 1998 May; 19(5):217-20.
    28. Chow YH, ,Huang WL, Chi WK, Chu YD, Tao MH. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2. J Virol. 1997 Jan;71(1): 169-78.
    29. Singh M, O'Hagan D. Advances in vaccine adjuvants. Nat Biotechnol. 1999 Nov;17(11):1075-81.
    30. Aarts WM, Schlom J, Hodge JW. Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Res. 2002 Oct 15;62(20):5770-7.
    31. Witmer-Pack MD, Olivier W, Valinsky. J, Schuler G, Steinman RM. Granulocyte/ macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med. 1987 Nov 1;166(5): 1484-98.
    32. Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med. 1988 Feb 1;167(2):700-5.
    33. Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991 Mar 1 ;173(3):721-30.
    34. Larsen CP, Ritchie SC, Hendrix R, Linsley PS, Hathcock KS, Hodes RJ, Lowry RP, Pearson TC. Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol. 1994 Jun 1 ;152(11):5208-19.
    35. Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol. 2000; 18:245-73.
    
    
    36. Banchereau J. Briere F. Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol. 2000; 18:767-811.
    37. Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL. Efficient major histocompatibility complex class Ⅰ presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4942-6.
    38. Lee F, Yokota T, Otsuka T, Gemmell L, Larson N, Luh J, Arai K, Rennick D. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4360-4.
    39. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995 Aug 11;270(32):18997-9007.
    40. Remy JS, Kichler A, Mordvinov V, Schuber F, Behr JP. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1744-8.
    41. Nigg EA. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997 Apr 24;386(6627):779-87.
    42. Ohno M, Fornerod M, Mattaj IW. Nucleocytoplasmic transport: the last 200 nanometers. Cell. 1998 Feb 6;92(3):327-36.
    43. Melchior F, Gerace L. Two-way trafficking with Ran. Trends Cell Biol. 1998 May;8(5): 175-9.
    44. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A. 1996 Oct 29; 93(22): 12349- 54.
    45. Lanzavecchia A. Mechanisms of antigen uptake for presentation. Curr Opin Immunol. 1996 Jun;8(3):348-54.
    46. Slansky JE, Rattis FM, Boyd LF, et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity. 2000 Oct;13(4):529-38.
    47. Pardoll DM. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol. 2002 Apr;2(4):227-38.
    48. Gorlich D, Mattaj IW. Nucleocytoplasmic transport. Science. 1996 Mar 15;271 (5255):1513-8.
    49. Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals
    
    are receptors for nuclear import. Cell. 1991 Sep 6;66(5):837-47.
    50. Pollard H, Remy JS, Loussouam G, Demolombe S, Behr JP, Escande D. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem. 1998 Mar 27;273(13):7507-11.
    51. Labat-Moleur F, Steffan AM, Brisson C, Perron H, Feugeas O, Furstenberger P, Oberling F, Brambilla E, Behr JP. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther. 1996 Nov;3(11):1010-7.
    52. Remy JS, Kichler A, Mordvinov V, Schuber F, Behr JP. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5): 1744-8.
    53. Lees CW, von Hippel PH. Hydrogen-exchange studies of deoxyribonucleic acid-protein complexes. Development of a filtration method and application to the deoxyrubonucleic acid-polylysine system. Biochemistry. 1968 Jul;7(7):2480-8.
    54. Tsuboi M, Matsuo K, Ts'o PO. Interaction of poly-L-lysine and nucleic acids. J Mol Biol. 1966 Jan;15(1):256-67.
    55. Erbacher P, Roche AC, Monsigny M, Midoux P. The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim Biophys Acta. 1997 Feb 21; 1324(1):27-36.
    56. Lai E, van Zanten JH. Monitoring DNA/poly-L-lysine polyplex formation with time-resolved multiangle laser light scattering. Biophys J. 2001 Feb;80(2):864-73.
    57. Boon T, Van Snick J, Van Pel A, Uyttenhove C, Marchand M. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. Ⅱ. T lymphocyte-mediated cytolysis. J Exp Med. 1980 Nov 1; 152(5): 1184-93.
    58. Bellone M, Iezzi G, Imro MA, Protti MP. Cancer immunotherapy: synthetic and natural peptides in the balance. Immunol Today. 1999 Oct;20(10):457-62.
    59. Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3): 1178-83.
    60. Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class Ⅰ molecules. Science. 1995 Jan 13;267(5195):243-6.
    61. Reimann J, Schirmbeck R. Alternative pathways for processing exogenous and endogenous antigens that can generate peptides for MHC class Ⅰ-restricted presentation.
    
    Immunol Rev. 1999 Dec; 172:131-52.
    62. Gil-Torregrosa BC, Raul Castano A, Del Val M. Major histocompatibility complex class Ⅰ viral antigen processing in the secretory pathway defined by the trans-Golgi network protease furin. J Exp Med. 1998 Sep 21;188(6):1105-16.
    63. Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT, Tao MH. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol. 1998 Feb 1;160(3): 1320-9.
    64. Arnold LJ Jr, Dagan A, Gutheil J, Kaplan NO. Antineoplastic activity of poly(L-lysine) with some ascites tumor cells. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3246-50.
    65. Mattner F, Fleitmann JK, Lingnau K, Schmidt W, Egyed A, Fritz J, Zauner W, Wittmann B, Gorny I, Berger M, Kirlappos H, Otava A, Birnstiel ML, Buschle M. Vaccination with poly-L-arginine as immunostimulant for peptide vaccines: induction of potent and long-lasting T-cell responses against cancer antigens. Cancer Res. 2002 Mar 1;62(5):1477-80.
    66. Buschle M, Schmidt W, Zauner W, Mechtler K, Trska B, Kirlappos H, Birnstiel ML. Transloading of tumor antigen-derived peptides into antigen-presenting cells. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3256-61.
    67. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res. 1997 Mar;3(3):483-90.
    68. Plank C, Mechtler K, Szoka FC Jr, Wagner E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther. 1996 Aug 1;7(12):1437-46.
    69. Ward CM, Read ML, Seymour LW. Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood. 2001 Apr 15;97(8):2221-9.
    70. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709-60.
    71. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002 Feb;14(1):123-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700