用户名: 密码: 验证码:
苔藓组织氮含量和氮同位素探讨江西省大气氮沉降规律及大气氮源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苔藓植物因其特殊的形态结构和生物学性质被广泛应用于环境变化和大气沉降的指示和监测。稳定同位素是辨识环境体系中物源走向,以及研究植物和环境关系的可靠技术。为了探讨苔藓作为监测植物指示大气氮污染的可行性,研究江西省大气氮沉降的空间分布以及甄别大气氮源。本论文结合苔藓生物指示和稳定氮同位素示踪技术,利用苔藓氮含量与氮同位素(δ15N)指示江西省大气氮沉降状况。作者在江西省城市、郊区、农村采集了183个细叶小羽藓(H. microphyllum (Hedw.))样品。通过测定不同环境下苔藓氮含量,并结合目前所报道的苔藓氮含量与大气氮沉降之间的定量关系式,估算了江西省大气氮沉降量。并应用苔藓氮同位素(δ15N)显著性差异分析,揭示了江西省大气氮沉降的氮源以及氮沉降形式,以深化苔藓植物环境监测和在大气氮沉降研究中的应用,为城市氮污染的防治提供地球化学依据。
     (1)不同环境下苔藓氮含量与氮同位素(δ15N)组成特征
     通过对苔藓氮含量的分析发现,江西省苔藓氮含量在总体上呈现出赣东北区偏高,赣西南区较低的空间分布特征。对城市、郊区和农村苔藓氮含量进行t检验,发现不同下垫面环境下苔藓氮含量之间存在显著性差异(p<0.05),表现出城市苔藓氮含量(2.95±0.06%)>农村苔藓氮含量(2.73±0.05%)>郊区苔藓氮含量(2.56±0.76%)的变化规律。江西省城市及郊区苔藓δ15N平均值的变化范围为(-1.96±1.30‰~--9.74±0.25‰),最低值出现在上饶市区(-9.74±0.25‰),最高值出现在南昌市郊区(-1.96±1.30‰)。其中郊区苔藓δ15N(-1.96±1.30‰~-4.81±0.53‰)比城市苔藓δ15N(-3.72±0.71‰~-9.74±0.25‰)富集15N。且崇仁县农村地区苔藓δ15N平均值在(-3.11±0.44‰~0.078±0.074‰)之间变化。可见江西省苔藓δ15N表现出城市偏负、农村偏正的特征。说明城市和农村受不同氮源的影响。
     (2)利用苔藓氮含量估算江西省大气氮沉降量
     根据目前所报道的大气氮沉降和苔藓氮含量之间的定量关系式,可以采用苔藓氮含量估算江西省地区的大气氮沉降量。估算结果表明江西省大气氮沉降量的均值变化范围为(28.81kg·a)-1~51.41kg·(hm2·a)-1总体已经超过最易受影响的陆地生态系统的氮沉降负荷值(5kg·a(Chm2·a)-1~10kg·(hm2·a)-1郊区大气氮沉降量(33.26±10.88kg·(hm2·a)-1~34.57±8.75kg·(hm2·a)-1)低于城市大气氮沉降量(39.66±11.07kg·(hm2·a)-1~52.92±13.05kg·(hm2·a)-1)。本研究首次根据苔藓氮含量量化了江西省大气氮沉降水平,对大气氮沉降生态环境影响的评价以及生态系统的保护具有重要意义。
     (3)苔藓氮同位素(δ15N)示踪江西省大气氮沉降的主要来源和主要形态
     江西省城市、郊区和农村苔藓δ15N值分别为(-6.11±0.37‰、-3.75±0.34‰、-0.74±0.16‰),三者之间存在着显著性差异(p<0.001),表明该地区的大气氮沉降存在不同的氮源。城市明显偏负的苔藓δ15N,主要反映大量城市排泄物和污水释放的氨的影响。而郊区和农村地区苔藓δ15N偏正,主要指示农业氨源对大气氮沉降的贡献。江西省苔藓δ15N组成特征(城市贫15N、郊区和农村富15N),反映了江西省地区大气氮沉降以铵沉降(NHx)为主,NHx-N是大气氮沉降中的主要氮形态,而氧化态氮(NOx)的影响较小。
Due to the peculiar morphological structure and biological characteristics, mosses have been widely employed in indicating and monitoring environmental change and atmospheric deposition. The stable isotopes are reliable tools in identifying the source and fate of elements in varying environments and understanding the relationships between plants and environment. In order to explore the reliability of moss used as biological indicator to monitor atmospheric nitrogen pollution, the spatial distribution of atmospheric nitrogen deposition of Jiangxi Province and trace atmospheric nitrogen source. By combining moss bio-indicating method with nitrogen isotopic technique, this thesis was mainly around a topic on using 515N and nitrogen concentration in mosses for indicating atmospheric N deposition. The author packed 183 mosses (H.microphyllum (Hedw.)) in Jiangxi Province. By using elemental contents and the relation between N deposition and moss N, the level of N deposition at Jiangxi area could be quantified. Combined with the correlation significant difference analysis in moss isotopic signatures to indicate the main sources and N form of atmospheric N deposition at Jiangxi area. This thesis has deepened the application of moss for monitoring environment and N deposition, and has provided geochemical references for the prevention and control of N pollutants at city area.
     (1) Bryophyte plants can be used as bio-indicator to monitor atmospheric pollution. Tissue the nitrogen content of moss in Jiangxi province increased from northeast to the southwest, reflecting the spatial distribution of atmospheric nitrogen deposition in Jiangxi Province. Trough t-test, significant difference (P<0.05) between urban suburban and rural tissue nitrogen content of moss in Jiangxi cities.We were found that tissue nitrogen content of the urban moss tissue (2.95±0.06%) was significantly higher than that of rural(2.73±0.05%) and suburban(2.56±0.76%).The average nitrogen isotope moss is-1.96±1.30 to -9.74±0.25%o in Jiangxi Province. Among them, tissues nitrogen isotope of moss in Shangrao is the lowest (-9.74±0.25‰), the highest is tissue nitrogen isotope of moss in Nanchang suburban-(1.96±1.30%o). Suburban tissue nitrogen isotope of moss (-1.96±1.30%o~-4.81±0.53%o) is higher than urban tissue nitrogen isotope (-3.72±0.71%o~-9.74±0.25%o).Though the average nitrogen isotope moss is from -3.11±0.44‰to 0.078±0.074%o in Chongren rural. More negativeδ15N values of urban mosses thanδ15N values of suburban and rural mosses. Indicating the rural area and cities are affected by different sources of nitrogen.
     (2) Through the relation between N deposition and moss nitrogen content, the level of N deposition at Jiangxi area could be quantified by the N contents of mosses. The general level of N deposition Jiangxi at area (28.81 kg-(hm2-a)"1~51.41 kg·(hm·a)-1) has exceeded the critical load for the vulnerable terrestrial ecosystems (5kg·(hm·a)-1~10kg·(hm·a)-1). Besides, the level of N deposition (33.26±10.88 kg·(hm·a)-1~34.57±8.75kg·(hm·a)-1) in the suburban area is lower than the urban site (39.66±11.07kg·(hm·a)-1~52.92±13.05kg·(hm·a)-1). For the first time, the level of N deposition in Jiangxi were quantified by nitrogen content in mosses, which is important for further studying the ecological effects of atmospheric N deposition and helpful for the protection of the ecosystems.
     The average nitrogen isotope moss in urban (-6.11±0.37%o), suburban (-3.75±0.34%o) and rural (-0.74±0.16%o) were significant difference exist (p<0.001), indicating there are affected by different sources of nitrogen.. More negativeδ15N values of urban mosses indicated that more NH3 was released from excretory wastes and sewage, while less negativeδ15N values of suburban and rural mosses suggested an important contribution from agricultural NH3 emission due to fertilizer application. This study found the regulation of mossδ15N variation (more negative at urban than suburban and rural) around Jiangxi Province dominated by NHx deposition. The main nitrogen form of atmospheric N deposition at Guiyang area was NHx, while the affected by the NOx was least.
引文
[1]Galloway J G, Dentener F J, Capone D Q et al. Nitrogen cycles:past, present and future [J].Biogeochemistry,2004,70:153-226.
    [2]Larssen T, Seip H M, Semb A, et al. Acid deposition and its effects in China:an overview [J].Environmental Science and Policy,1999,2 (1):9-24.
    [3]Holloway T, Levy H, Carmichael G. Transfer of reactive nitrogen in Asia:development and evaluation of a source receptor model [J].Atmospheric Environment,2002,36 (26):4251-4264.
    [4]刘滨扬,刘蔚秋,雷纯义,等.三种苔藓植物对模拟N沉降的生理响应[J].植物生态学报,2009,33(1):141-149.
    [5]Baddeley J A, Thompson D B A, Lee J A. Regional and historical viriation in the nitrogen content of Ra-comitrium lanuginosum in Britain in relation to atmospheric nitrogen deposition [J]. Environmental Pollution,1994,84:189-196.
    [6]Gignac L D. Bryophytes as indicators of climate change [J]. The Bryologist,2001,104(3): 410-420.
    [7]安丽,曹同,俞鹰浩.上海市小羽藓属植物重金属含量及其与环境的关系[J].应用生态学报,2006,17(8):61-71.
    [8]崔明昆.附生苔藓植物对城市大气环境的生态监测[J].云南师范大学学报,2001,21(3):54-57.
    [9]Yoneyama T, Matsumaru T, Usui K. Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants[J]. Plant Cell and Environment,2001,24:133-139.
    [10]刘学炎,肖化云,刘丛强,等.贵阳地区主要大气氮源的沉降机制与分布:基于石生苔藓氮含量和氮同位素的证据[J].地球化学,2008,37(5):455-461.
    [11]Liu X Y, Xiao H Y, Liu C Q, et al.δ13C andδ15N of moss(Haplocladium microphyllum (Hedw.) Broth) for indicating environment variations and canopy retention on atmospheric nitrogen deposition [J].Atmospheric environment,2007,41 (23):4897-4907.
    [12]Yeatman S G, Spokes L J, Dennis P F, et al. Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites[J]. Atmospheric Environment,2001a,35: 1307-1320.
    [13]何纪力,龙刚,黄云.江西省酸雨时空分布规律研究[M].中国环境科学出版社,2007:175-176.
    [14]朱仁果.苔藓组织硫含量和硫同位素指示江西省大气硫沉降规律及大气硫源[D],南昌大学,2010.
    [15]崔健,周静,杨浩.大气氮沉降向典型红壤区农田生态系统定量输入的研究[J].环境科学,2009,30:2221-2226.
    [16]Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[J]. Ambio,2002,31:64-71.
    [17]Zhang Ying, Liu Xuejun, Zhang Fusuo, et al. Spatial and temporal variation of atmospheric nitrogen deposition in the North China Plain [J]. Acta Ecologica Sinica,2006,26:1633-1639.
    [18]Paerl H W and Whitall D R. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion:Is there a link? [J]. Ambio,1999, 28(4):307-311.
    [19]Streets D G, Yarber K F, Woo J H. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions [J]. Global Biogeochemical Cycles,2003,17(4):1-20.
    [20]Holland E A, Dentener F J, Braswell B H, Sulzman J M. Contemporary and pre-industrial global reactive nitrogen budgets [J]. Biogeochemistry,1999,46(1-3):7-43.
    [21]张颖,刘学军,张福锁,巨晓棠,邹国元,胡克林.华北平原大气氮素沉降的时空变异[J].生态学报,2006,26(6):1633-1639.
    [22]Zhang Ying, Liu Xuejun, Zhang Fusuo, et al. Spatial and temporal variation of atmospheric nitrogen deposition in the North China Plain [J]. Acta Ecologica Sinica,2006,26:1633-1639.
    [23]Olivier J G J, Bouwman A F, Van der Hock K W. Global air emission inventories for anthropogenic sources of N O X, NH3 and N2O in 1990 [J]. Environmental Pollution,1998, 102(S1):135-148.
    [24]Bartnicki J, Alcamo J.Calculating nitrogen deposition in Europe [J].Water Air and Soil Pollution,1989,39:378-386.
    [25]Asman W A H, Sutton M A, Schjrring J K.Ammonia:emission, atmospheric transport and deposition [J]. New Phytol,1998,139:27-48.
    [26]朱兆良,Simpson J R,张绍林,.石灰性稻田土壤上化肥氨损失的研究[J].土壤学报,1989,26(4):337-343.
    [27]徐仁扣.我国降水中的及其在土壤酸化中的作用.农业环境保护[J],1996,15(3):139-140,142.
    [28]周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J].生态学报,2001,21(12):2002-2012.
    [29]Roberto LR, Gelaacio A A, Linda V GG, et al. Ammonia exchange on Clinoptilolite from mineral deposits located in Mexieo [J]. ChemTechnol Biotechmol,2004,79(6):651-65.
    [30]Robinson D.815N as an integrator of the nitrogen cycle [J]. Trends in Ecology and Evolution, 2001,16(3):153-162.
    [31]Rundel P W, Stichler W, Zander R H, Ziegler H. Carbon and hydrogen isotope ratios of bryophytes from arid and humid regions[J]. Oecologia,1979,44:91-94.
    [32]Yeatman S G, Spokes L J, Dennis P F, Jickells T D. Can the study of nitrogen isotopic composition in size-segregated aerosol nitrate and ammonium be used to investigate atmospheric processing mechanism? [J]. Atmospheric Environment,2001b,35:1337-1345.
    [33]Heaton T H E, Spiro B, Robertson S M C. Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition [J]. Oecologia,1997,109: 600-607.
    [34]Freyer H D, Kley D, Volz-Thomas A, Kobel K. On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen [J]. Journal of Geophysical Research,1993,8:14791-14796.
    [35]Garten C T Jr and Hanson P J. Foliar retention of 15N-NO3- and 15N-NH4+ by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain [J]. Environmental and Experimental Botany,1990,30:333-342.
    [36]Moore H. The isotopic composition of ammonia, nitrogen dioxide, and nitrate in the atmosphere [J]. Atmospheric Environment,1977,11:1239-1243.
    [37]Xiao H Y and Liu C Q. Chemical characteristics of water-soluble components in TSP over Guiyang, SW China,2003[J]. Atmospheric Environment,2004,38:6297-6306.
    [38]Yeatman S G, Spokes L J, Dennis P F, Jickells T D. Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites [J]. Atmospheric Environment,2001c,35: 1307-1320.
    [39]Kreitler C W. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas [J]. Journal of Hydrology,1979,42:147-170.
    [40]Liu X Y, Xiao H Y, Liu C Q, Li Y Y.δ13C and δ15N of moss (Haplocladium microphyllum (Hedw.) Broth) for indicating environment variations and canopy retention on atmospheric nitrogen deposition [J]. Atmospheric environment,2007,41(23):4897-4907.
    [41]Kendall C. Tracing nitrogen sources and cycling in catchments. In:Kendall C and McDonnell J J (eds.) Isotope tracers in catchment hydrology [J]. Elsevier Science B.V, Amsterdam,1998, pp.519-576.
    [42]Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review [J]. Chemical Geology,1986,59:87-102.
    [43]Freyer H D.Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Julich [J].GermanyR Tellus,1978,30:83-92.
    [44]Martinelli L A, Camargo P B, Lara L, Victoria R L, Artaxo P. Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil [J]. Atmospheric Environment,2002,36(14):2427-2432.
    [45]Widory D. Nitrogen isotopes:Tracers of origin and processes affecting PM10 in the atmosphere of Paris [J]. Atmospheric Environment,2007,41(11):2382-2390.
    [46]罗绪强,王世杰,刘秀明.稳定氮同位素在环境污染示踪中的应用进展[J].矿物岩石地球化学通报,2007,26(3):295-298.
    [47]吴玉环,高谦,程国栋.苔藓植物对全球变化的响应及其生物指示意义[J].应用生态学报,2002,13(7):895-900
    [48]Pott U, Turpin D H. Changes in atmospheric trace element deposition in the Fraser Valley, B. C., Canada from 1960 to 1993 measured by moss monitoring with Isotheeium stolonifernm [J]. Can JBot.1996,74:1345-2353.
    [49]Vitt D H and Slack N G. Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands [J]. Canadian Journal of Botany,1984,62(7):1409-1430.
    [50]Robinson D, Handley L L, Scrimgeour C M. Using stable isotope natural abundances (δ15N and δ13 C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes [J]. Journal of Experimental Botany,2000,51:41-50.
    [51]吴鹏程,罗健馨.苔藓植物与大气污染[J].环境科学,1979,03:68-72.
    [52]Li Y H. physiological ecology of bryophytes lit:Wu p-Ced. Beyological Biology introduction and Diverse Branehes Beijing [J].Sciences.1998:131-147(inChinese).
    [53]Proctor M C F. Physiological ecology:water relations, light and temperature responses, carbon balance. In:Smith A J E (ed). Bryophyte ecology [J]. Chapman and Hall, London, 1982, pp.333-381.
    [54]Berg T, Steinnes E. Use of mosses (Hylocomium splendens and Pleurozium schreberi)as biomonitors of heavy metal deposition:from relative to absolute deposition values[J]. Environ. Pollut,1997,98(1):61-71
    [55]Rincon E. Gime J P. Ananalysis of seasonal patterns of bryophyte growth in a natural [J]. Ecol,1989,77(1):447-455.
    [56]Oechel W C and Sveinbjornsson B. Primary poduction processes in Arctic bryophytes at Barrow, Alaska. In:Tieszen L L (ed). Vegetation and production ecology of an Alaskan arctic tundra. Springer-Verlag, Heidelberg, Germany,1978, pp.269-298.
    [57]Skre O and Oechel W C. Moss production in a black spruce Picea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands [J]. Holarctic Ecology,1979,2(4):249-254.
    [58]Odukoya O O, Arowolo T A, Bamgbose O. Pb, Zn and Cu levels in tree barks as indicator of atmospheric pollution [J]. Environmental International,2000,26:11-16
    [59]Bell P R. The ability of Sphagnum to absorb cations preferentially from dilute solutions resembling natural waters [J]. The Journal of Ecology,1959,47(2):351-355.
    [60]Burton M A S and Peterson P J. Metal accumulation by aquatic bryophytes from polluted mine streams [J]. Environmental Pollution,1979,19:39-46.
    [61]Gignac L D. Bryophytes as indicators of climate change [J]. The Bryologist,2001,104(3): 410-420.
    [62]Grodzinska K, Szarek-Lukaszewska G. Response of mosses to the heavy metal deposition in Poland an overview [J]. Environmental pollution,2001, (114):443-451.
    [63]曹同,高谦,傅星,贾学乙.长白山森林生态系统中苔藓植物的生物量[J].生态学报,1995,15(增刊B):68-74.
    [64]Gerdol R, Bragazza L, Marchesini R, Medici A, Pedrini P, Benedetti S, Bovolenta A, Coppi S. Use of moss (Tortula muralis Hedw.) for monitoring organic and inorganic air pollution in urban and rural sites in Northern Italy [J]. Atmospheric Environment,2002,36:4069-4075.
    [65]Gonzalez M L, Elustondo D, Lasheras E, et al. Use of native mosses as biomonitors of heavy metals and nitrogen deposition in the surroundings of steel works [J]. Chemosphere,2010, 78:965-971.
    [66]Berg T and Steinnes E. Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition:From relative to absolute deposition values [J]. Environmental pollution,1997,98(1):61-71.
    [67]Kosior G, Samecka-Cymerman A, Chmielewski A, Wierzchnicki R, Derda M, Kempers A J. Native and transplanted Pleurozium schreberi (Brid.) Mitt, as a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland) [J]. Atmospheric Environment, 2008,42(6):1310-1318.
    [68]Yoneyama T, Handley L L, Scrimgeour C M, Fisher D B, Raven J A. Variations of the natural abundances of nitrogen and carbon isotopes in Triticum aestivum, with special reference to phloem and xylem exudates [J]. New Phytologist,1997,137:205-213.
    [69]Pitcairn C E R, Fowler D, Grace J. Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull [J]. Environmental Pollution, 1995,88:193-205.
    [70]Harmens H, Norris D, Cooper D, et al. The participants of the moss survey,2008b. Spatial trends in nitrogen concentrations in mosses across Europe in 2005/2006. Programme Coordination Centre for the ICP Vegetation. Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK. http://icpvegetation.ceh.ac.uk.
    [71]Sutton M A, Schjorring J K, Wyers G P. Plant-atmosphere exchange of ammonia. Philosophical Transactions:Physical Sciences and Engineering.351, No.1696, The Exchange of Trace Gases between Land and Atmosphere,1995, pp.261-278.
    [72]Pitcairn C, Fowler D, Leith I, et al. Diagnostic indicators of elevated nitrogen deposition [J]. Environmental Pollution,2006,144:941-950.
    [73]Solga A, Burkhardt J, Zechmeister H G, Frahm J P. Nitrogen content,15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt and Scleropodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition [J]. Environmental Pollution,2005,134:465-473.
    [74]Skinner R A, Ineson P, Jones H, et al. Heath land vegetation as a bio-monitor for nitrogen deposition and source attribution using δ15N values [J]. Atmospheric Environment,2006,40: 498-507.
    [75]Hicks W K, Leith I D, Woodin S J, et.al. Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field survey [J].Environmental Pollution,2000,107:367-376.
    [76]刘学炎,肖化云,刘从强,等.基于石生藓类氮含量的贵阳地区大气氮沉降[J].生态学报,2009,29:6646-6653.
    [77]谢志英,肖化云,朱仁果,等.利用石生苔藓氮含量与氮同位素探讨江西省大气氮沉降量和来源[J].环境科学,2011,32(4):943-948.
    [78]Salemaa, M., Mkip, R., Oksanen, J.Differences in the growth response of three bryophyte species to nitrogen [J].Environmental Pollution,2008,152,82-91.
    [79]Hicks, K., Harmens, H., Ashmore, M et.al.Impacts of nitrogen on vegetation. Report to Defra. Stockholm Environment Institute, York and Centre for Ecology and Hydrology, Bangor, UK. (2008)
    [80]Mills,G.,Harmens,H.,Hayes,F.,Jones,L.,Norris,D.,Hall,J.,Cooper,D.and the participants of the ICP Vegetation.Air pollution and vegetation.ICP Vegetation Annual Report 2007/2008. UNECE ICP Vegetation Coordination Centre,Centre for Ecology and Hydrology, Bangor, UK. http://icpvegetation.ceh.ac.uk
    [81]Nordin A, Strengbom J.,Ericson L.Responses to ammonium and nitrate additions by boreal plants and their natural enemies [J].Environmental Pollution,2006,141:167-174.
    [82]Leith I D, Mitchell R, Truscott A M, et al. The influence of nitrogen in stemflow and precipitation on epiphytic bryophytes, Isothecium myosuroides Brid.Dicranum scoparium Hewd. and Thuidium tamariscinum (Hewd.) Schimp of Atlantic oakwoods [J]. Environmental Pollution,2008,155:237-246.
    [83]Slootweg J,Posch M, Hetteling J-P.Critical loads of nitrogen and dynamic modelling. CCE Progress Report 2007.ICP Modelling and Mapping, Coordination Centre for Effect, Netherlands Environmental Assessment Agency Bilthoven, The Netherlands.(2007)
    [84]Poikolainen J, Piispanen J, Karhu J, et al. Long-tern changes in nitrogen deposition in finland (1990-2006) monitored using the moss Hylocomium Splendens [J]. Environmental Pollution,2009,157:3091-3097.
    [85]Bates JW. Nutrient retention by Pseudoscleropodium purum and its relation to growth [J].Journal of Bryology,1987,14:565-580.
    [86]Brown, D.H. Mineral nutrition.In:Bryophyte Ecology.Smith, A.J.E.(Ed.).Chapmanand Hall,London,1982,pp.383-444.
    [87]Vingiani S, Adamo P, Giordano S. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area [J]. Environmental Pollution,2004,129:145-158.
    [88]Holy. M, Pesch.R, Leblond, S. Assessment of factors influencing the copper and nitrogen concentration in French mosses [J]. Atmospheric Environment,2002,136:257-263.
    [89]Pesch R, Schrodera W, Schmidt G, et al. Monitoring nitrogen accumulation in mosses in central European forests [J]. Environmental Pollution,2008,155:528-536.
    [90]Power SA, Collins CM.Use of Calluna vulgaris to detect signals of nitrogen deposition across an urban- rural gradient [J].atmospheric environment,2010,44:1772-1780.
    [91]Bragazza L, Limpens J, Gerdol R, et al. Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe [J]. Global Change Biology,2005,11:106-114.
    [92]Liu,X.Y.,Xiao,H.Y.,Liu,C.Q. Stable carbon and nitrogen isotopes of the moss Haplocladium microphyllum in an urban and a background area(SW China):the role of environmental conditions and atmospheric nitrogen deposition [J]. Atmospheric Environment 42,2008,5413-5423.
    [93]Xiao H Y, Tang C G, Xiao H W, et al. Stable sulphur and nitrogen isotopes of the moss Haplocladium microphyllum at urban, rural and forested sites [J]. Atmospheric Environment, 2010,44:4312-4317.
    [94]Pearson J, Wells D, Seller K J, et al. Traffic exposure increases natural 15N and heavy metal concentrations in mosses [J]. New Phytologist,2002,147:317-326.
    [95]Harrison A F, Sleep D, Pearson J. Trends in δ15N signatures of nitrogen depositions along woodland transects from a chicken farm and a motorway as indicated by vegetation and soil analyses. Progress report to the Department of the Environment, Food and Rural Affairs, DETR, London, UK.1999.
    [96]Solga A, Eichert T, Frahm J P. Historical alteration in the nitrogen concentration and 15N natural abundance of mosses in Germany:Indication for regionally varying changes in atmospheric nitrogen deposition within the last 140 years [J]. Atmospheric Environment, 2006,40:8044-8055.
    [97]Kosior G, Samecka-Cymerman A, Chmielewski A, et al. Native and transplanted Pleurozium schreberi (Brid.) Mitt, as a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland) [J]. Atmospheric Environment,2008,42(6):1310-1318.
    [98]江西省各区市环境统计报表.http://www.jxepb.gov.cn.
    [99]王体健,刘倩,赵恒,等.江西红壤地区农业生态系统大气氮沉降通量的研究[J].土壤学报,2008,45:280-287.
    [100]胡春燕,黄喜根,李春莲.南昌市酸雨污染特征及变化规律[J].江西农业大学学报(自科版),2002,24(10):689-691.
    [101]王文兴,卢筱凤,庞燕波,等.中国氨的排放强度地理分布[J].环境科学学报,1997,17(1):2-7.
    [102]林碧娜.南昌市酸性降水的污染特征研究[D].南昌大学,2008.
    [103]Balasubramanian R, Victor T, Chun N. Chemica and statistical analysis of precipitation on Singapore [J]. Water Air and Soil Pollution,2001,130:45-456.
    [104]张龚.湖南省城市城市大气湿沉降化学与典型污染物特征研究[D].长沙:湖南大学,2004.
    [105]李祚泳.我国部分城市降水中离子浓度与pH值的关系研究[J].环境科学学报,1999,19(3):303-306
    [106]Migliavacca D, Teixeira E C, W iegand F, et al. Atmospheric Precipitation and Chemical Composition of an Urban Site, Guaiba Hydrographic Basin, Brazil [J]. Atmospheric Environment,2005,39:1829-1844.
    [107]Ito M, Mitchell M, Driscoll C T. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York[J]. Atmospheric Environment, 2002,36:1051-1062.
    [108]Okuda T, Iwase T, Uedaa H, et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002[J]. Science of the Total Environment,2005,339:127-141.
    [109]Topcu S, Incecik S, Atimtay A. Chemical composition of rainwater at EMEP station in Ankara, Turkey [J]. Atmospheric Research,2002,65:77-92.
    [110]Lee B K, Hong H S, Lee D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J]. Atmospheric Environment,2000,34:563-575.
    [111]Hu G P, Balasubramanian R, Wu C D. Chemical characterization of rainwater at Singapore [J]. Chemosphere,2003,51:747-755.
    [112]Baez A, Belmont R, Garcia R, et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico [J]. Atmospheric Environment,2007,86:61-75.
    [113]Tu J, Wang H, Zhang Z, et al. Trends in chemical composition of precipitation in Nanjing, China, during 1992- 2003[J].Atmospheric Research,2005,73:283-298.
    [114]Wenche A, Shao M, Lei J, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003[J]. Atmospheric Environment,2007, 41:1706-1716.
    [115]张苗云,王世杰,洪冰,等.大气降水化学的统计学分析—以浙江省金华市为例[J].环境化学,2007,26(5):699-703.
    [116]杨复沫,贺克斌,雷雨.2001-2003年间北京大气降水的化学特征[J].中国环境科学2004,24(5):538-541.
    [117]牛或文,何凌燕,胡敏.深圳大气降水的化学组成特征[J].环境科2008,29(4):1014-1019.
    [118]Li C L, Kang S C, Zhang Q G et al. Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau[J]. Atmospheric Research,2007,85:351-360.
    [119]Xiao H Y, Liu X Y, Xiao H W. Atmospheric ammonium deposition at a city with high ambient SO2 concentrations (Guiyang, SW China) [J]. Atmospheric Research,2008, 94:378-392.
    [120]Peiiuelas J, Filella I, Terradas J.Variability of plant nitrogen and water use in a 100m
    transect of a subdesertic depression of the Ebro valley (Spain) characterized by leaf 813C andδ15N[J]. Acta Oecologicn,1999,20 (2):119-123.
    [121]Zechmeister H G, Dirnbock T, Hulber K, et al. Assessing airborne pollution effects on bryophytes e lessons learned through long-term integrated monitoring in Austria [J]. Environmental Pollution,2007,147:696-705.
    [122]Wilson D, Stock W D, Hedderson T. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the Cape Metropolitan Area, South Africa [J].Environmental Pollution,2009,15:938-945.
    [123]Pitcairn C E R, Fowler D, Leith I D, et al. Bioindicators of enhanced nitrogen deposition [J]. Environmental Pollution,2003,126:353-361.
    [124]Zechmeister H G, Hohenwallner D, Smidt S, Roder, et al. Total nitrogen content and δ15N signatures in moss tissue:indicative value for nitrogen deposition patterns and source allocation on a nation-wide scale [J]. Environmental Science and Technology,2008,42: 8661-8667.
    [125]Schroder W, Holy M, Pesch R, et al. First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses [J]. Atmospheric Environment,2010,44:3485-3491.
    [126]Thoni L, Matthaei D, Seitler E, et al. Deposition von Luftschadstoffen in der Schweiz. Moosanalysen 1990 - 2005 [R]. Bundesamt fur Umwelt, Bern, Switzerland,2008, Umwelt- Zustand Nr.0827
    [127]Martinez-Abaigar J, Nunez-Olivera E, Sanchez-diaz M. Seasonal changes in photosynthetic pigment composition of aquatic bryophytes [J]. Journal of Bryology,1994, 18(2):97-113.
    [128]Press M C, Woodin S J, Lee J A. The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnum speices [J]. New Phytologist, 1986,103:45-55.
    [129]Nadelhoffer K J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests [J]. Nature,1999,398:145-148.
    [130]Sievering H. Nitrogen deposition and carbon sequestration [J]. Nature,1999,400(6745): 629-630.
    [131]Lipson D A, Nasholm T. The unexpected versatility of plants:organic nitrogen use and availability in terrestrial ecosystems [J]. Oecologia,2001,128:305-316.
    [132]Evans R D. Physiological mechanisms influencing plant nitrogen isotope composition [J]. Trends in Plant Science,2001,6:121-126.
    [133]Bignal K L, Ashmore M R, Headley A D. Effects of air pollution from road transport on growth and physiology of six transplanted bryophyte species [J]. Environmental Pollution, 2008,99:172-178.
    [134]Koranda M, Kerschbaum S, Wanek W, et al. Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition [J]. Annals of Botany,2007,99:161-169,
    [135]Liu Y D, Li J, Hou J J. The measurement of net photosynthesis of three species of Plagiomnium mosses and its relation to the light and temperature [J]. Journal of Hattori Botanical Laboratory,1999,87(2):315-324.
    [136]Zhu W X, Dillard N D, Grimm N B. Urban nitrogen biogeochemistry:status and processes in green retention basins [J]. Biogeochemistry,2004,71:177-196.
    [137]Paulissen MPCP, BesaluLE, de Bruijn H.Contrasting effects of ammonium enrichment on fen bryophytes [J]. Journal of Bryology,2005,27:109-117.
    [138]Pearce ISK, Woodin SJ, van der Wal R.Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition [J].New Phytologist,2003,160,145-155.
    [139]Rong Yang, Kentaro Hayashi, Bin Zhu, et al. Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China [J]. Science of the Total Environment,2010,408:4624-4632.
    [140]Jauhiainen J, Vasander H, Silvola J. Nutrient concentration in Sphagna at increased N deposition rates and raised atmospheric CO2 concentrations [J]. Plant Ecology,1998,138: 149-160.
    [141]Krupa S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:a review. Environmental Pollution,2003,124:179-221.
    [142]Schlesinger W H, Hartley A E. A global budget for atmospheric NH3 [J]. Biogeochemistry, 1992,15(3):191-211.
    [143]Liu X Y, Xiao H Y, Liu C Q, et al.δ13C and δ15N of moss (Haplocladium microphyllum (Hedw.) Broth) for indicating environment variations and canopy retention on atmospheric nitrogen deposition [J]. Atmospheric environment,2007,41(23):4897-4907.
    [144]Xiao H Y, Liu C Q. Sources of nitrogen and sulfur in wet deposition at Guiyang, Southwest China [J]. Atmospheric Environment,2002,36:5121-5130.
    [145]Heaton T H E. 15N/14N ratios of NOX from vehicle engines and coal-fired power stations [J]. Tellus,1990,42B:305-307.
    [146]Hoering TC, Moore, H.E.The isotopic composition of the nitrogen in natural gases and associated crude oils [J].Geochimica et Cosmochimica Acta,1958,13:225-232.
    [147]Zhao D, Wang A. Estimation of anthropogenic ammonia emissions in Asia [J]. Atmospheric Environment,1994,28A:689-694.
    [148]Ammann M, Siegwolf R, Pichlmayer F. Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles [J]. Oecologia,1999,118:124-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700