用户名: 密码: 验证码:
中国近海赤潮/绿潮多发海域稳定同位素组成分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究共分三部分。第一部分:在实验室条件下,以三种微藻(青岛大扁藻,Platymonas helgolandica var. tsingtaoensis;强壮前沟藻,Amphidinium carterae Hulburt,海洋原甲藻,Prorocentrum micans)和孔石莼(Ulva pertusa)为研究对象,利用稳定同位素技术确定营养盐(培养条件)对藻类稳定同位素组成(〥C、〥N),探讨了不同生长期及生长速率与〥C和〥N的关系、同位素的分馏效应以及孔石莼(U. pertusa)对氨氮吸收的生理过程,对于了解水生生态系统的机能,保护海洋生态环境,有着重要的理论和实际意义。主要研究结果如下:
     (1)藻类稳定同位素组成的变化与藻类的分类组没有关系,不同物种的同位素值不同,即使同一纲不同物种的稳定同位素绸.成也不一样:一般而言,同一物种,指数期的稳定同位素组成低于稳定期;藻类稳定同位素的变化与藻类的营养条件有很大关系,氮的限制能导致更正的同位素值,而磷的缺乏对同位素值没有很大影响。
     (2)试验初始阶段,孔石莼大量吸收水体中的14NH4+-N、12CO2用于自身组织的合成,导致水体中氨氮浓度、N和C急剧下降,约在5-25h,这一·阶段水体中氨氮浓度变化很小,藻体N缓慢降低,达剑平缓期;约在25h后,氨氮浓度缓慢下降,海水中的底物浓度很低,水体中NH4+-N儿乎被吸收殆尽,孔石莼开始大幅吸收15NH4+-N,15N上升。C在4h后呈现无规律波动。
     第二部分:本文对赤潮发生海域(珠江口海区)和绿潮发生海域(青岛沿岸)进行调查采样,研究海区的生态环境因子,包括海区浮游植物的种类组成和数量、营养盐等影响浮游植物群落和赤潮/绿潮生物种群变化的关键环境因子,并首次利用稳定同位素技术测定赤潮/绿潮发生海域浮游植物及绿潮藻的〥C和〥N,为制定防治措施提供基础参数,为赤潮/绿潮多发海域的生态保护策略提供理论依据。其研究结果如下:
     (1)赤潮发生期间,浮游植物的稳定同位素组成分布范围较大。8C与时间呈现显著正相关,但11月6日浮游植物的8C急剧降低,恢复到赤潮前期水平;6N与时间无线性关系(p>0.05),〥N随着赤潮的发生呈现先下降(11月1日前)后上升(10月31日后)的趋势,但11月6日浮游植物的〥N继续增大,恢复到赤潮前期水平。
     (2)赤潮中心区域与赤潮边缘区域的比较研究中发现,赤潮边缘区的DIP和DIN都明显低于赤潮中心区域,几乎一直维持较低浓度水平,无较大的波动,DIP几乎没有变化。〥N无论在赤潮中心区还是边缘区,都是随着赤潮的发生而呈现上升趋势:〥C在赤潮中心区随着赤潮的发生逐渐升高,但在赤潮边缘区,随着赤潮的发生而降低。
     (3)绿潮爆发后绿潮藻通过多种途径抑制浮游植物的生长,与历史资料相比,绿潮爆发后,浮游植物的种类数及总细胞数下降,硅藻种类数明显低于未爆发时的调查结果。浮游植物细胞数减少,一般会导致以此为食的浮游动物数量降低,进而影响食物链的其他环节,其对浮游动物的影响有待进一步研究。
     (4)采集的浒苔〥C值无明显规律可循,而〥N则呈现稍稍下降趋势。可能是因为海藻生长速率不仅跟外部环境中营养盐浓度有关,而且与细胞内营养积累有关,另外也可能与海藻本身的生存状态有关。
     第三部分:本文在国内首次利用稳定同位素技术对黑石礁湾排污口附近的浮游植物和6种海洋生物的〥C和〥N进行了初步探讨,对排污口附近海域生态系统的食物网结构和营养级关系进行了研究。主要研究结果如下:
     不同的生物物种的〥C和〥N存在明显的差异。生物的〥N与距离排污口的远近有关系,越靠近排污口〥N越大,与人类活动营养物质的输入有关系;〥C与距离排污口的远近没有关系,可以用〥N监测人类活动对海洋生物的影响。
The research consists of three parts.
     In the first part, under laboratory conditions, the thesis takes three species of microalgae including Platymonas helgolandica var. tsingtaoensis, Amphidinium carterae Hulburt and Prorocentrum micans and Prorocentrum micans as research objects. Through stable isotope technique to make sure that the influence of nutrient salt has made to the content of the algous stable isotopics (δ13C、δ15N). It aims to discuss the relationship between different growing seasons and rate, isotopic fractionation effect and the physiological process where U. pertusa absorbs ammonia, which has an important theoretical and practical significance on understanding the aquatic ecosystem functions and the protection of ocean ecosystems. The main results are as follows:
     (1) There is no relationship between the change of algous isotopic value and its taxonomic group. The isotopic value of different species are various, even the different species of the same class are distinctive. Generally speaking, the stable isotopic content of the same species at the exponential phase is lower than that at the stable phase. There is relationship between the change of algous stable isotope and its nutrition conditions which the limitation of nitric can bring about the correction of isotopic value and the phossy deficiency has no significance on the isotopic value.
     (2) In the initial test phase, the assimilation of14NH4+-N and12CO2by Ulva pertusa is undergoing to satisfy their nitrogen demand for growth, which leads to the concentration of ammonia,15N and13C sharp decline in waters. After five to twenty-five hours, there is very little change of concentration of ammonia in water, which15N slowly decreases to moderate phase. After about twenty-five hours, the concentration of ammonia decreases slowly and the substrate concentration in seawater is very low. During that period, Vlva pertusa assimilates a grate quantity of15NH4+-N when14NH4+-N in waters is almost exhausted, however,15N rises. Four hours after that,13C takes on erratic fluctuations.
     The second part of the research is to sample and investigate the sea area where the red tide and the green tide happen, that is the Pearl River sea area and the Qingdao seacoast. The ecological environment features at the sea area are studied, including the species and quantity of the phytoplankton and the key environment factors which affect the phytoplankton and red tide/greed tide populations like nutrient salt and so on. In addition, the stable isotope technology is firstly adopted to measure the δ13C、δ15N of the phytoplankton and the green tide algae at the sea area where red tide/greed tide happen. It aims to provide with the fundamental parameters for making control measures and the theory about protecting the environment of sea area where red tide/greed tide happen a lot. The main results are as follows:
     (1) During the red tide period, the distribution scale of the phytoplankton stable isotopic is large. Results demonstrate a significantly positive correlation between δ13C and time. But the δ13C of phytoplankton declines sharply on November6th which returns to the.previous level of the red tide. There is no linear correlation between δ15N and time. With the red tide happening, the number of δ15N declines first (before November1st) and increases later (after October31st). However, the δ15N of phytoplankton keeps increasing on November6th which returns to the previous level of the red tide.
     (2) With the comparison between the central area and the fringing area of the red tide, the DIP and the DIN at the fringing area are obviously lower than those at the central area, which keeps lower concentration without large fluctuation.δ15N shows a rising trend with the red tide happening wherever it is. And the numbers of δ13C at the central area increases with the red tide happening but that at the fringing area is the opposite.
     (3) After the bloom of green tide, green tide algae suppresses the growth of the phytoplankton through many ways. But comparing with the historical records, the amount of the species and total cell of phytoplankton decline and it is obvious that the amount of diatom species is smaller after green tide happens. Usually, the decline of the total cellular numbers of phytoplankton can cause the decrease of the planktonic animal which feed on it, which can influence the other links of the food chain. Its influence to the planktonic animal needs further investigation.
     (4) The δ13C of collected Entemorpha has no obvious rules to follow and its δ13N shows a slight decline. It might because the growth rate of the algae is not only related to the nutrient concentration of the external environment, but also related to the accumulation of the nutrition inside the cell. The existent state itself might be another reason.
     In the third part, the thesis firstly adopted the stable isotope technique in China to investigate the δ13C and δ15N of the phytoplankton and6species of marine organism. Moreover, the thesis studies the food chain organization and the nutrition relationship of the ecological systems of the sea area around the drain outlet. The main results are as follows:
     Significant differences were found among stable isotope (δ13C and δ15N) of some species. Nitrogen isotope ratios (δ15N) of biota can be influenced by sewage inputs, and found that the δ15N ratios in the food webs decreased with distance from the sewage inputs. The δ15N of biota decreased significantly with distance down the sewage treatment plant, however only minor and on consistent were observed in the813C of the biota with the distance of the sewage treatment plant. Nitrogen isotope ratios (δ15N) can be used to monitor future trends in nitrogen to this estuary.
引文
[1]李俭平.浒苔对氮营养盐的响应及其氮营养盐吸收动力学和生理生态研究:(博士学位论文).青岛:中国科学院海洋研究所,2011.
    [2]姚云,沈志良.水域富营养化研究进展.海洋科学,2005,29(2):53-57.
    [3]Van Bennekom A J, Wetsteijn F J. The winter distribution of nutrients in the Southern Bight of the North Sea(1961-1978)and in the estuaries of the Scheldt and the Rhine/Meuse. Netherlands Journal of Sea Research,1990,25(1-2):75-87.
    [4]赵冬至,等著.中国典型海域赤潮灾害发生规律.北京:海洋出版社,2010.
    [5]藏公柱.环境报告.海洋环境保护工作通讯,2003,1:32.
    [6]邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨.海洋环境科学,1983,2(2):41-54.
    [7]林昱,陈孝麟,庄栋法等.围隔生态系内富营养引起赤潮的初步研究.海洋与湖沼,1992,23(3):312-316.
    [8]Nixon S W. Ambio special issue:Marine Eutrophication. Ambio,1990,19(3):25-29.
    [9]NSTF(North Sea Task Force). North Sea Quality Status Report. London:Oslo and Paris Commission,1993.
    [10]Nixon S W. Coastal marine eutrophication:A definition, social causes and future concerns. Ophelia,1995, (41):199-219.
    [11]Paerl II W. Coastal eutrophication and harmful algal blooms:Importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources. Limnology and Oceanography,1997,42(No.5, Part 2):1154-1165.
    [12]孙耀,陈聚法,张友篇.胶州湾海域背养状况的化学指标分析.海洋环境科学,1993,12(3-4):25-31.
    [13]Z-L Shen. Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine.Coastal and Shelf Science,2001,52(2):211-224.
    [14]沈志良.渤海湾及其东邢水域水化学要素的分布.海洋科学集刊.北京:科学出版社,1999.41(00):51-59.
    [15]杨新梅.大连湾海水环境质母状况分析.海洋环境科学,2001,20(4):18-20.
    [16]章守宇.杭州湾富营养化及浮游植物多样性问题的探讨.水产学报,2001,25(6):512-517.
    [17]Turner R E, Rabalais N N. Changes in Mississippi River water quality this century implications for coastal food webs. Bioscience,1991,41(3):140-147.
    [18]Turner R E, Rabalais N N. Evidence forcoastal eutrophication near the Mississippi River delta. Nature,1994,368:619-621.
    [19]彭云辉,王肇鼎.珠江河口富营养化水平评价.海洋环境科学,1991,10(3):7-12.
    [20]林荣根,邹景忠.近海富营养化的结果与对策.海洋环境科学,1997,16(3):71-75.
    [21]http://www. whoi. edu/redtide/page. do?pid=14899.
    [22]唐启升,张晓雯,叶乃好等.绿潮研究现状与问题.中国科学基金,2010,(1):5-9.
    [23]徐宁,吕颂辉,段舜山等.营养物质输入的改变对赤潮发生的影响.海洋环境科学,2004,23(2):20-24.
    [24]梁宗英,林祥志,马牧等.浒苔漂流聚集绿潮现象的初步分析.中国海洋大学学报(自然科学版),2008,38(4):601-604.
    [25]Matsukawa Y, Umebayashi 0. Ulva pertusa biomass, growth rate and its limiting factors in an intertidal flat. Bull Tokai Reg Fish Res Lab,1988, (126):25-35.
    [26]Back S, Lehvo A, Blomster J. Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea coast. Annales Botanici Fennici,2000,37:155-161.
    [27]Charlier R H, Morand P, Finkl C W et al. Green tides on the Brittany coasts. Environmental Researeh, Engineering and Management,2007,3(41):52-59.
    [28]Jaanika B, Saara B, David P F et al. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides.American Journal of Botany,2002,89(11):1756-1763.
    [29]Nelson T A, Lee A. A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquatic Botany,2001,71(2):149-154.
    [30]Nelson T A, Haberlin K, Nelson A V, et al. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology,2008,89(5):1287-1298.
    [31]Dahlgren S, Kautsky L. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient load?. Hydrobiologia, 2004,514(1-3):249-258.
    [32]Taylor R. The green tide threat in the UK-a brief overview with particular reference to Langstone Harbour, south coast of England and the Ythan Estuaty, east coast of Scotland. Botanical Journal of Scotland,1999,51(2):195-203.
    [33]Berezina N A, Tsiplenkina I G,Pankova E S et al. Dynamics of invertebrate communities on the stony littoral of the Neva Estuary (Baltic Sea) under macroalgal blooms and bioinvasions. Transitional Waters Bulletin,2007,1(1):65-76.
    [34]Berezina N A. Spatial distribution of macrofauna in a littoral zone with drifting macroalgae in the Neva estuary. Estonian Journal of Ecology,2008,57(3):198-213.
    [35]Kim H G. Rcecnt harmful algal blooms and mitigation strategies in Korea, Ocean Research,1997,19(2):185-192.
    [36]Jones M, Finn E. The impact of a macroalgal mat on benthic biodiversity in Poole Harbour. Marine Pollution Bulletin,2006,53(1-4):63-71.
    [37]Hernandez I,Peralta G, Perez-Llorens J L et al. Biomass and dynamics of growth of Ulva species in Palmones River estuary. Journal of Phycology,1997,33(5):764-772.
    [38]郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000.
    [39]Jochen Hoefs(德)著,刘季花,石学法,卜文瑞译.稳定同位素地球化学(第四版).北京:海洋出版社,2002.
    [40]Schimel, David S. Theory and application of tracers. San Diego:Academic Pr.,1993.
    [41]Nier A 0. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev,1950,77(6):789-793.
    [42]Craig H. Isotopic standards for carbon and oxygen and correction factors for mass-spec trometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta,1957,12(1-2): 133-149.
    [43]Hayes J M. An introduction to isotopic measurements and terminology. Spectra. 1982,8:3-8.
    [44]Coplen, Tyler B. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta,1996,60(17):3359-3360.
    [45]Mariotti A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements.Nature,1983,303:685-687.
    [46]Fry B, Smith T J. Stable isotope studies of red mangroves and filter feeders from the Shark River estuary, Florida. Bulletin of Marine Seienee,2002,70(1-3):871-890.
    [47]曾庆飞,孔繁翔,张恩楼等.稳定同位素技术应用于水域食物网的方法学研究进展.湖泊科学,2008,20(1):13-20.
    [48]Lorrain A, Savoye N, Chauvaud 1, et al. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta,2003,491(2):125-133.
    [49]Rau G H, Teyssie J L, Rassoulzadegan S W et al.13C/12C and 15N/14N variations among size-fractionated marine particles:implications for their origin and trophic relationships. Marine Ecology Progress Series,1990,59:33-38.
    [50]Sarakinos H C, Johnson M L, Zanden M J V. A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Canadian Journal of Zoology,2002,80(2): 381-387.
    [51]Edwards M S, Turner T F, Sharp Z D. Short- and long-term effects of fixation and reservation on stable isotope values (13C,15N,34S) of fluid-preserved museum specimens. Copeia,2002,2002(4):1106-1112.
    [52]Bosley K L, Wainright S C. Effects of preservatives and acidification on the stable isotope ratios (15N:14N,13C:12C) of two species of marine animals. Canadian Journal of Fisheries and Aquatic Sciences,1999,56(11):2181-2185.
    [53]DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science,1977,197(4300):261-263.
    [54]Vander Zanden M J, Chandra S, Allen B C et al. Historical food web structure and restoration of native aquatic communities in the lake Tahoe (California-Nevada) basin. Ecosystems,2003,6(3):274-288.
    [55]Arrington D A, Winemiller K 0. Preservation effects on stable isotope analysis of fish muscle. Transactions of the American Fisheries Society,2002,131(2):337-342.
    [56]Mullin M M, Rau G H, Eppley R W. Stable nitrogen isotopes in zooplankton:some geographic and temporal variations in the North Pacific. Limnology and Oceanography,1984,29(6): 1267-1273.
    [57]Hamilton S K, Sippel S J, Bunn S E. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnology and Oceanography:Methods,2005, Methods 3:149-157.
    [58]黄祥飞,陈伟民,蔡启铭等著.湖泊生态调查观测与分析.北京:中国标准出版社,2000.
    [59]Bidigare R R, Kennicutt M C, Macko S A. Isolation and purification of chlorophylls a and b for the determination of stable carbon and nitrogen isotope compositions. Analytical Chemistry,1991,63(2):130-133.
    [60]Currin C A, Newell S Y, Paerl H W. The role of benthic microalgae and standing dead Spartina alternif lora in salt marsh food webs:implications based on multiple stable isotope analysis. Marine Ecology Progress Series,1995,121:99-116.
    [61]Pel R, Hoogveld H, Floris V. Using the hidden isotopic heterogeneity in phyto- and zooplankton to unmask disparity in trophic carbon transfer. Limnology and Oceanography, 2003,48 (6):2200-2207.
    [62]黄祥飞,陈伟民,蔡启铭等湖泊生态调查观测与分析北京中国标准出版社,2000.
    [63]Carabel S, Dominguez E G, Verisimo P et al. An assessment of sample processing methods for stable isotope analyses of marine food webs. Journal of Experimental Marine Biology and Ecology,2006,336(2):254-261.
    [64]Malseed T. Stable isotope analysis of the food web supporting Sardinops sagax in the waters off Esperance, Western Austualis. perth:The University of Western Austealia,2004.
    [65]Bouillon S, Raman A M, Dauby P et al. Carbon and nitrogen isotope ratios of subtidal benthic invertebrates in an estuarine mangrove eeosystem(AndhraPradesh, India). Estuarine, Coasta land Shelf seienee,2002,54(5):901-913.
    [66]Kang C K,Kim J B,Lee K S et al.Thropic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea:dual stable C and N isotope analyses. Marine Ecology Progress Series,2003,259:79-92.
    [67]Riera P, Hubas C. Trophic ecology of nematodes from various microhabitats of the Roscoff Aber Bay (France):importance of stranded macroalgae evidenced through 13C and 15N. Marine Ecology Progess Series,2003,260:151-59.
    [68]Grey J, Jones R I,Slee P D. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography,2001,46(3):505-513.
    [69]Bunn S E, Loneragan N R, Kempster M A. Effects of acid washing on stable isotope ratios of C and N in penacid shrimp and seagrass:implications for food-web studies using multiple stable isotopes. Limnology and Oceanography,1995,40(3):622-625.
    [70]Abdelwahed W, Pegobert G, Stainmesse S. Freeze-drying of nanpoarticles:formulation, process and storage condierations. Advanced Drug Delivery Reviews,2006,58:1688-1713.
    [71]Kritzberg E S, Cole J J, Pace M L et al. Autochthonous versus allochthonous carbon sources of bacteria:Results from whole-lake 13C addition experiments. Limnology and Oceanography, 2004,49 (2):588-596.
    [72]Robinson D.15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution, 2001,16(3):153-162.
    [73]West J B, Bowen G J, Cerling T E et al. Stable isotopes as one of nature's ecological recorders. Trends in Ecology and Evolution,2006,21(7):408-414.
    [74]Hansson L A,Tranvik L J. Food webs in sub-Antarctic lakes:a stable isotope approach. Polar Biology,2003,26(12):783-788.
    [75]McCall ister S L, Bauer J E, Cherrier J E et al. Assessing sources and ages of organic matter supporting river and estuarine bacterial production:A multiple-isotope (14C,13C, and 15N) approach. American Society of Limnology and Oceanography,2004,49(5): 1687-1702.
    [76]Kwak T J,Zedler J B.Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia,1997,110(2):262-277.
    [77]Wainright S C, Weinstein M P, Able K W et al. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmites austral is to brackish-marsh food webs. Marine ecology progress series,2000,200:77-91.
    [78]McCutchan J H Jr,William M L Jr, McGrath C C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos,2003,102:378-390.
    [79]Mills E L, Pittman K, Tan F C. Food-web structure on the Scotian Shelf, eastern Canada:A study using carbon isotopes as a food-chain tracer. ICES R APPP-V Reun Consint Explor Mer,1984,183:111-118.
    [80]禁德陵,李红燕,店启升等.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果.中国科学,C辑,生命科学,2005,35(2):123-130.
    [81]金鑫.黄东海浮游食物网的初步研究:(硕士论文).北京:中国科学院海洋研究所,2011.
    [82]Wooller M, Srnallwood B, Jacobson M et al. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa(L.)(white mangrove) from Florida and Belize:implication for trophic level studies. Hydrobiologia,2003,499(1-3):13-23.
    [83]Wigand C, Mckinney R A, Cole M L et al. Varying stable nitrogen isotope ratios of different coastal marsh plants and their relationships with wastewater nitrogen and land use in New England, USA. Environnental Monitoring and assessment,2007,131(1-3):71-81.
    [84]Bannon R O,Roman C Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries. Eeological Applications,2008,18:22-30:
    [85]Cole M L,Valiela L, Kroeger K D et al. Assessment of a(?) 15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystem. Journal of environmental quality-abstract,2004,33(1):124-132.
    [86]Wang L.,D'Odorico P, Okin G S et al. Isotope composition and anion chemistry of soil profiles along the Kalahari Transect. Journal of Arid Environments,2009,73(4-5):480-486.
    [87]徐军.应用碳、氮稳定性同位素探讨淡水湖泊的食物网结构和营养级关系:(博士论文).武汉:中国科学院水生生物研究所,2005.
    [88]Cabana G, Rasmussen J B. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature,1994,372:255-257.
    [89]Kayoko Fukumori, Misa Oi, Hideyuki Doi, et al. Food sources of the pearl oyster in coastal ecosystems of Japan. Estuarine,Coastal and Shelf Science,2008,76:704-709.
    [90]Rogers K M. Effects of sewage contamination on macro-algae and shellfish at Moa Point, New Zealand using stable carbon and nitrogen isotopes. NZ Journal of Marine and Freshwater Research,1999:181-188.
    [91]Hadwen W L, Arthington A H. Food webs of two intermittently open estuaries receiving 15N-enriched sewage of fluent. Estuarine,Coastal and Shelf Science,2007,71(1-2):347-358.
    [92]Fukuhar H, Nemoto F, Takeuehi Y et al. Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan:Analysis of nitrate retention using stable nitrogen isotope ratios. Hydrobiologia,2007,196(part 1):49-58.
    [93]Wolf A F, Baron J S, Cornett R J. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range(USA). Journal of Paleolimnology,2001,25(1):1-7.
    [94]Mcclelland J W, Valiela 1. Changes in food web structure under the influence of increase anthropogenic nitrogen inputs to estuaries. Marine Ecology Progress Series. 1998,168:259-271.
    [95]刘敏,侯立军,许世远,等.长江口潮滩有机质来源地C、N稳定性同位素示踪.地理学报,2004,5(4):918-926.
    [96]白志鹏,张利文,彭林,等.稳定性同位素在污染物溯源与示踪中的应用.城市环境与城市生态,2006,19(4):29-32.
    [97]Power M, Klein G M, Guiguer K R R A, et al. Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. J Appl Ecol. 2002,39:819-830.
    [98]Jarman W M, Hobson K A, Sydeman W J, et al. Influence of trophic position and feeding location on contaminant levels in the Gulf of the Farallones food web revealed by stable isotope analysis. Environ Sci Technol.1996,30:654-660.
    [99]Kidd M A, Achindler D W, Hesslein R H, et al. Correlation between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web. Sci Total Environ.1995,160/161:381-390.
    [100]Swanson H K, Johnston T A, Leggett W C, et al. Trophic positions and mercury bioaccumulation in rainbow smelt (Osmerus mordax) and native forage fishes in northwestern Ontario lakes. Ecosystems.2003,6:289-299.
    [101]Greenf ield B K, Hrabik T R, Harvey C J, et al. Predicting mercury levels in yellow perch: use of water chemistry, trophic ecology, and spatial traits. Can J Fish Aquat Sci. 2001,58:1419-1429.
    [102]Broman D, Naf C, Rolff C, et al.Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polychlorinated dibenzop-dioaxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem.1992,11:331-345.
    [103]Atwell L, Hobson K A, Welch H E.Biomagnification and bioaccumulation of mercury in an arctic marine food web:insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci.1998,55:1114-1121.
    [104]窦硕增.鱼类胃含物分析的方法及其应用.海洋通报,1992,11(2):28-31.
    [105]窦颂增.鱼类摄食生态研究的理论及方法.海洋与湖沼,1996,27(5):556-561.
    [106]唐启升.海洋食物网与高营养层次营养动力学研究策略.海洋水产研究,1999,20(2):1-6.
    [107]薛莹,金显仕.鱼类食性和食物网研究评述.海洋水产研究,2003,24(2):76-87.
    [108]纪炜炜,李圣法,陈雪忠.鱼类营养级在海洋生态系统研究中的应用.中国水产科学,2010,17(4):878-887.
    [109]李忠义,金显仕,庄志猛,等.稳定同位素技术在水域生态系统研究中的应用.生态学报,2005,25(11):3052-3060.
    [110]于灏,吴莹,张经.特定化合物同位素分析技术在海洋食物网研究中的应用.质谱学报,2006,27(2):122-128.
    [111]王明亮,洪阿实.海洋生物样品中的氮同位素分析.海洋环境科学,1992,11(1):74-79.
    [112]洪阿实,李文权.15N稳定同位素示踪技术在海水养殖研究中的应用.海洋学报,1994,16(4):73-81.
    [113]蔡德陵,李红燕,唐启升,等.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果.中国科学c辑:生命科学,2005,35(2):123-130.
    [114]郭旭鹏,李忠义,金显仕,等.采用碳氮稳定同位素技术对黄海中南部鳗鱼食性的研究.海洋学报,2007,29(2):98-104.
    [115]蔡德陵,张淑芳,唐启升,等.妒鱼新陈代谢过程中的碳氮稳定同位素分馏作用.海洋科学进展,2003,21(3):308-317.
    [116]余婕,刘敏,候立军,等.崇明东滩大型底柄动物食源的稳定同位素示踪.自然资源学报,2008,23(2):319-326.
    [117]万祎,胡建英,安立会,等.利用稳定氮和碳同位素分析渤海湾食物网主要种的营养层次.科学通报,2005,50(7):708-712.
    [118]宋要伟,李明财,李来兴等.高寒草甸消费者种群稳定碳、氮同位索组成的海拔分异.动物学杂志,2007,26(1):40-45.
    [119]吴绍洪,潘韬,戴尔阜.植物稳定碳同位素进展与展望.地理科学进展,2006,25(3):1-11.
    [120]刘学炎,肖化云,刘丛强,等.碳氮稳定同位素指示苔鲜生境特征以及树冠对大气氮沉降的吸收.地球化学,2007,36(3):286-294.
    [121]刘小宁,马剑英,孙伟,等.高山植物稳定碳同位素沿海拔梯度响应机制的研究进展.山地学报,2010,28(1):37-46.
    [122]石岩峻,胡晗华,马润宇,等.不同氮磷浓度水平下微小原甲藻对营养盐的吸收及光合特性.过程工程学报,2004,4(6):554-560.
    [123]胡晗华,石严峻,从威,等.不同氮磷水平下中肋骨条藻对营养盐的吸收及光合特性.应用与环境生物学报,2004,10(6):735-739.
    [124]Craig A L, Marcio S A, Ross B et al. Applying stable isotopes to examine food-web structure:an overview of analytical tools. Biological Reviews,2012,87(3):545-562.
    [125]Kirk O W, David J H, Allison A P et al. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Research and Applications,2011,27(7):791-803.
    [126]Linda M C, Robert T, David B et al. Re-engineering the eastern Lake Erie littoral food web:The trophic function of non-indigenous Ponto-Caspian species. Journal of Great Lakes Research,2009,35(2):224-231.
    [127]赵文著.水生生物学.北京:中国农业出版社,2005.
    [128]Korb R E, Raven J A, Johnston A M et al. Effects of cell size and specific growth rate on stable carbcn isotope discrimination by two species of marine diatom. Mar. Ecol. Prog. Ser.,1996,143:283-288.
    [129]Popp B N, Laws E A, Bidigare R R et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et cosmochimica acta,1998,62(1):69-77.
    [130]俞志明.不同氮源对海洋微藻氮同位素分馏作用的影响.海洋与湖沼,2004,35(6):524-529.
    [131]Karsh K L, Trull T W, Lourey M J et al. Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron Release Experiment (SOIREE). Limnology and Oceanography,2003,48(3):1058-1068.
    [132]Finlay J C. Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography,2004,49(3):850-861.
    [133]Leboulanger C,Descolas-Gros C,Fontugne M R et al. Interspecific variability and environmental influence on particulate organic carbon 13C in cultured marine phytoplankton. Journal of plankton research,1995,17(11):2079-2091
    [134]Thompson, P. A., Calvert, S. E. Carbon-isotope fractionation by a marine diatom:the influence of irradiance, daylength, pH, and nitrogen source. Limnol. Oceanogr,1994,39, 1835-1844.
    [135]Burkhardt S, Riebesell U, Zondervan I. Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availability. Marine Ecology Progress Series,1999a,184:31-41.
    [136]Sackett W M, Eckelmann W R, Bender M L et al. Temperature dependence of carbon isotope composition in marine plankton and sediments. Science,1965,148(3667):235-237.
    [137]Hinga K R, Arthur M A, Pilson M E Q et al. Carbon isotope fractionation by marine phytoplankton in culture:the effects of C02 concentration, pH, temperature, and species. Global Biogeochemical cycles,1994,8(1):91-102.
    [138]Popp B N, Laws E A, Bidigare R R et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimca et Cosmochimica Acta,1998,62(1):69-77.
    [139]Sachs J P, Repeta D J, Goericke R. Nitrogen and carbon isotopic ratios of chlorophyll from marine phytoplankton. Geochimca et Cosmochimica Acta,1999,63(9):1431-1441.
    [140]Boschker II T S, Middelburg J J. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology ecology,2002,40(2):85-95.
    [141]Vuorio K, Meili M, Sarvala J. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater biology,2006,51(5):807-822.
    [142]Van Dongen B E, Schouten S,Damste J S S. Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants. Inter-research marine ecology progress series,2002,232:83-92.
    [143]Thompson P A, Calvert S E. Carbon-isotope fractionation by a marine diatom:the in fluence of irradiance, daylength, pⅡ and nitrogen source. Limnology and Oceanography, 1994,39:1835-1844.
    [144][128]Limen H, Olafsson E. Ostracod species-specific utilisation of sediment detritus and newly settled cyanobacteria, Aphanizomenon sp., in the Baltic Sea:evidence from stable carbon isotopes. Mar. Biol,2002,140:733-738.
    [145]Gleitz M, Kukert H,Riebesell U et al. Carbon acquisition and growth of Antarctic sea ice diatoms inclosed bottle incubations. Marine ecology,1996,135:169-177.
    [146]Nimer N A, Merrett M J,Brownlee C. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high-calcifying strain of Emiliania huxleyi (Prymnesiophyceae). Journal of phycology,1996,32(5):813-818.
    [147]Abelson P H, Hoering T C. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proceedings of the national academy of sciences of the united states of America,1961,47(5):623-632.
    [148]Crosta X, Koc N. Chapter Eight Diatoms:From micropaleontology to isotope geochemistry. Developments in marine geology,2007,1:327-369.
    [149]Gervais F, Riebesell U. Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different C02 concentrations. Limnology and Oceanography,2001,46(3):497-504.
    [150]Rybczyk J M, Garson G, Day J W. Nutrient enrichment and decomposition in wetland ecosystems:models, analyses and effects.Current Topics in Wetland Biogeochemistry,1996, 2:52-72.
    [151]Darley,Marshall W.Algal biology:A physiological approach. Oxford London Blaek-well Scientific Publications.1982.
    [152]杨阳,李炳乾,陈长平,等.基于磷酸盐浓度和起始细胞密度的沃氏藻与塔玛亚历山大藻种间竞争研究.厦门大学学报(自然科学版),2008,47(2):162-172.
    [153]周名江,朱明远,张经.中闲赤潮的发生趋势和研究进展.生命科学,2001,13(2):54-60.
    [154]姚炜民,郑爱榕,邱进坤.浙江洞头列岛海域水体富营养化及其与赤潮的关系.海洋环境学,2007,26(5):466-469.
    [155]韩秀荣,王修林,孙霞等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报,2003,14(7):1097-1011.
    [156]符颖,项有堂.象山海域富营养化及其与赤潮的关系.海洋环境科学,2002,21(3):67-69.
    [157]章守宇,杨红,焦俊鹏,等.浙江北部沿海富营养化的评价与分析.水产学报,2001,25(1):71-78.
    [158]庞勇.珠江口海区环境特征及双胞旋沟藻赤潮发生过程的研究:(硕士论文).广州:暨南大学,2010.
    [159]欧林坚,张玉字,李扬等.广州珠海双胞旋沟藻Cochlodinium genminatum赤潮事件分析.热带海洋学报,2010,29(1):57-61.
    [160]王朝晖,江珊,谷阳光等.珠海旋沟藻赤潮水样对其他微藻生长的影响.深圳大学学报理工版,2011,28(6):553-558.
    [161]黄长江,董巧香.1998年春季珠江口海域大规模赤潮原因生物的形态分类和生物学特征II.海洋与湖沼,2000,32(3):233-238.
    [162]钟思胜,李锦蓉,罗一丹.大亚湾五角多甲藻赤潮发生的环境因素分析.海洋环境科学,2002,21(1):34-38.
    [163]Harrison P J, Waters R E, Taylor F J R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. Journal of phycology,1980,16(1):28-35.
    [164]Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, cl and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz,1975,167:191-194.
    [165]Dortch Q. Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids, and protein in-three marine diatoms. Journal of experimental marine biology and ecology,1982,61(3):243-264.
    [166]沈国英,施并章著.海洋生态学.北京:科学出版社,2002.
    [167]Harlin M M, Wheeler P A. Ecological field methods:macroalgae. handbook of phycological methods. Cambridge, New York:Cambridge University Press,1985.
    [168]Dugdale R C, Goering J J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography,1967,12(2):196-206.
    [169]包苑榆,钟萍,韦桂峰等.基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究.水生态学杂志,2011,32(3):16-19.
    [170]Kudo I, Noiri Y, Imai K et al. Primary productivity and nitrogenous nutrient assimilation dynamics during the subarctic Pacific iron experiment for ecosystem dynamics Study. Progress in Oceanography,2005,64(2-4):207-221.
    [171]Zehr J P,Ward B B.Nitrogen cycling in the ocean:New perspectives on processes and paradigms. Applied and Environmental Microbiology,2002,68(3):1015-1024.
    [172]姚南瑜著.藻类生理学.大连:大连工学院出版社,1987.
    [173]Mc,Glathery K J, Pedersen M F, Borum J. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). Journal of Phycology,1996,32(3):393-401.
    [174][Pedersen M F. Transient ammonium uptake in the macroalga Ulva lactuca (Chlorophyta): nature, regulation, and the consequences for choice of measuring technique. Journal of Phycology,1994,30(6):980-986.
    [175]刘静雯,董双林.氮饥饿细牲汀蓠繁枝变型和孔石纯氨氮的动力学特征.海洋学报,2004,26(2):95-102.
    [176]Rosenberg G, Probyn T A, Mann K H. Nutrient uptake and growth kinetics in brown seaweeds: response to continuous and single additions of ammonium. Journal of Experimental Marine Biology and Ecology,1984,80(2):125-146.
    [177]Fujita R M. The role of N status in regulating transient ammonium uptake and N storage by macroalgae. Journal of Experimental Marine Biology and Ecology,1985,92(2-3):283-301.
    [178]Armbrust E V, Berges J, Bowler C et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution and metabolism. eScholarship,2004,1-25.
    [179]Heber U. Metabolite exchange between chloroplasts and cytoplasm. Annual Review of Plant Physiollgy,1974,25:393-421.
    [180]Mehrabian A, Epstein N. A measure of emotional empathy. Journal of Personality,1972, 40(4):525-543.
    [181]Dejaegere R, Neirinckx L. Proton extrusion and ion uptake:some characteristics of the phenomenon in barley seedlings. Zeitschrift fuer Pflanzenphysiologie,1978,89:129-140.
    [182]Lam H M, Coschigano K T, Oliveira I C, et al. The molecular genetics of nitrogen assimilation into amino acids in higher plants.Ann Rev Plant Physiol Plant Mol Biol,1996,47:569-593.
    [183]Mengel K,Kirby E A. Principles of Plant Nutrition. International Potash Institute, Switzerland,1982.
    [184]Blomster J, Back S, Fewer D P et al. Novel morphologyin Enteromorpha (Ulvophyceae) forming green tides.Am. J. Bot.,2002,89:1756-1763.
    [185]Nelson T A, Lee D J, Smith B C. Are "green tide" harmful algal blooms?Toxic properties of water soluble extracts from two bloom-forming macroalgae, Ulva fenestrate and Ulvaria obscura(Ulvophyceae). J. Phycol.,2003a,39:874-879.
    [186]工建.青岛沿海绿潮藻类鉴定技术研究:(硕士论文).青岛:中国海洋大学,2011.
    [187]丁兰平,栾日孝.浒苔(Enteromorpha prolifera)的分类鉴定、生境习性及分布.海洋与湖沼,2009,40(1):68-71.
    [188]应成琦,张婷,李信书等.我国近海浒苔漂浮种类ITS与18SrDNA序列相似性分析.水产学报,2009,33(2):215-219.
    [189]忻丁豪,任松,何培民等.黄海海域浒苔属(Enteromorpha)生态特征初探.海洋环境科学,2009,28(2):190--192.
    [190]易俊陶,黄金田,宋建联.对盐城市沿海2008年浒苔发生情况的初步认识.海洋环境科学,2009,28(S1):57-58.
    [191]王婷,石晓勇,张传松等.2008年黄海浒苔绿潮爆发区营养盐浓度变化及分布特征.海洋通报,2011,30(5):578-582.
    [192]秦玉涛,纪焕红,宋晨瑶等.南黄海绿潮分布区浮游植物的生态特征.海洋环境科学,2011,30(3):394-397.
    [193]田千桃,霍元子,王阳阳等.浒苔对NH4+-N与N03--N吸收的相互作用.海洋科学,2010,34(7):42-45.
    [194]孙云潭.北京奥运会帆船比赛前夕浒苔灾害暴发与青岛市应急行动.海洋环境科学,2009,28(4):454-459.
    [195]黄娟,吴玲娟,高松等.黄海绿潮应急漂移数值模拟.海洋预报,2011,28(1):25-32.
    [196]高珍,茅云翔,孔凡娜等.环境因子变化对浒苔孢子释放的影响.现代农业科技,2010,(23):23-27.
    [197]王婷.浒苔对苏北近岸海域水质影响的初步研究:(硕士论文).青岛:中圈海洋大学,2011.
    [198]Tilman D. Resource competition between phytoplanktonic algae:An experimental and theoretical approach. Ecology,1977,58:338-348.
    [199]王建伟,阀斌伦,林阿朋等.浒苔Enteromorpha proifera生长及孢了释放的生态因子研究.海洋通报,2007,26(2):60-65.
    [200]吴玉霖,傅月娜,张永山,等.长江口海域浮游植物分布及其与径流的关系.海洋与湖沼,2004,35(3):246-251
    [201]Tilman D, Kilham S S, Kilham P. Phytoplankton community ecology:The role of limiting nutrients. Annual Review Ecology Syslematics,1982,13:349-372.
    [202]王婷,石晓勇,张传松,等.2008年黄海浒谷绿潮爆发区营养盐浓度变化及分布特征.海洋通报.2011,30(5):578-582.
    [203]王修林,孙霞,韩秀荣,等.2002年舂、夏季东海赤涮高发区背养舱结构及分付特征的比较.海洋与湖沼,2004,35(4):323-331.
    [204]李大秋,贺双颜,杨俯,等.青岛海域浒苔来源与外海分布特征研究.环境保护,2008,402(8B):45-46.
    [205]Callaway R M. Positive interactions among plants. Botanical Review,1995,61(4): 306-349.
    [206]Hein M, Pedersen M F, Sand-Jensen K. Size-dependent nitrogen uptake in micro-arid macroalgae. Marine Ecology Progerss Series,1995,118:247-253.
    [207]张建恒,霍元子, 王阳阳等.浒苔与球等鞭金藻相互抑制的实验验证.上海海洋大学学 报,2011,20(2):211-215.
    [208]Carpenter E J, Capone D G. Nitrogen in the Marine Environment. New York:Academic Press, 1983,487-512.
    [209]冯士筱,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.
    [210]朱明,刘兆普,徐军田等.不同氮磷水平对缘管浒苔生长及光合作用的影响.海洋湖沼通报,2011,(3):57-61.
    [211]李瑞香,吴晓文,韦钦胜等.不同营养盐条件下浒苔的生长.海洋科学进展,2009,27(2):211-216.
    [212]李俭平,赵卫红,付敏等.氮磷营养盐对浒苔生长影响的初步探讨.海洋科学,34(4):45-48.
    [213]吴晓文,李瑞香,徐宗军等.营养盐对浒苔生长影响的围隔生态实验.海洋科学进展,2010,28(4):538-544.
    [214]Koch G N W, Schulib E D, Percival F et al.The nitrogen balance of Raphanus sativax X Pa phanistrum plant. Ⅱ. Growth, nitrogen redistribution and photosynthesis under N03-deprivation. Plant,Cell and Enviroment,1998,11:755-767.
    [215]Vander Zanden J M, CasselmanM J, Rasmussen B J. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature,1999,401:464-467.
    [216]Vander Zanden J M, Ras mussen B J. Primary consumer 13C and 15N and the trophic position of aquatic consumers. Ecology,1999,80(4):1395-1404.
    [217]Gery J. The use of stable isotope analyses in freshwater ecology:current awareness. Polish Journal of Ecology,2006,54(4):563-584.
    [218]Li Z Y, Jin X S, Zhuan Z M et al. Applications of stable isotope techniques in aquatic ecological studies. Acta Ecologica Sinica,2005,25(11):3052-3060.
    [219]王玉玉,于秀波,张亮等.应用碳、氮稳定同位素研究鄱阳湖牯水末期水生食物网结构.生态学报,2009,29(3):1181-1188.
    [220]Post D M.Using stable isotopes to estimate trophic position:models, methods, and assumptions. Ecology,2002,83(3):703-718.
    [221]Post DM, Pace L M, Hairston Jr G N. Ecosystem size determines food-chain length in lakes. Nature,2000,405:1047-1049.
    [222]Vander Zanden J M, Fetzer W W. Global patterns of aquatic food chain length. Oikos,2007, 116(8):1378-1388.
    [223]Vander Zanden J M, Shuter J B, Lester N et al. Patterns of food chain length in lakes: a stable isotope study.The American Naturalist,1999,154(4):407-416.
    [224]Xu J, Xie P. Studies on the food web structure of Lake Donghu using stable carbon an nitrogen isotope ratios. Journal of Freshwater Ecology,2004,19(4):645-650.
    [225]Xu J, Xie P, Zhang M et al. Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake. Hydrobiologia,2005,541:215-220.
    [226]Xu J, Li S, Xie P. Differences in 13C and 15N of particulate organic matter from the deep oligotrophic Lake Fuxian Connected with the Shallow Eutrophic Lake Xingyun, People's Republic of China. Bulletin of Environmental Contamination Toxicology,2005,74(2):281-285.
    [227]Cai D L, Meng F, Han Y B et al. Studies on 13C/12C ratios as a tracer for food web in a marine ecosystem-the trophic relations in pelagic food webs in Laoshan Bay. Oceanologia et Limnologia Sinica,1999,30(6):671-678.
    [228]CaiD L, Hong X G,Mao X H et al. Preliminary studies on trophic structure of tidal zone in the Laoshan Bay by using carbon stable isotopes. Acta Oceanologica Sinica,2001,23(4): 41-47.
    [229]Wan Y, Hu J Y, An L H et al.Determination of trophic relationships within a Bohai Bay food web using stable 15N and 13C analysis. Chinese Science Bulletin,2005,50(10): 708-712.
    [230]Cai D L, Wang R, Bi II S.Trophic relationships in the Bohai ecosystem:preliminary investigation from 13C analysis. Acta Ecologia Sinica,2001,21(8):1354-1358.
    [231]Cai D L, Li H Y, Tang Q S et al. Establishment of trophic continuum in the food web of the yellow sea and East sea ecosystem:insight from carbon and nitrogen stable isotopes. Science in China,2005,48(6):531-539.
    [232]Zhang L, Xu J, Xie P et al. Stable isotope variations in particulate organicmatter and a planktivorous fish in the Yangtze River. Journal of Freshwater Ecology,2007,22(3):82-86.
    [233]Fry B. Stable carbon isotope ratios a tool for tracing food chains. M. S e. Thesis, University of Texas, Austin.1977:126.
    [234]Yoshioka T, Wada E, Yatsuka S. I sotopie characterization of Lake Kizaki and Lake Suwa. Japanese J. Limnol.,1988,49:119-128.
    [235]Peterson B J, Fry B. Stable isotope sin ecosystem studies. Ann. Rev. Ecol. Syst.,1987, 18:293-320.
    [236]Fry B. Stable isotope diagrams of freshwater food webs. Ecology.,1991,72:2293-2297.
    [237]Bordeur R D, Pearcy W G. Effect of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Marine Ecology Progress Series, 1992,84 (2):101-119
    [238][Cabana, G, Rasmussen J B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci.,1996,93:10844-10847
    [239]Hansson S, Hobbie J E, Elmgren R et al. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology,1997,78:2249-2257.
    [240]McClelland J W, Valiela I, Michener R H. Nitrogen-stable isotope signatures in estuarine food webs:a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr.,1997,42:930-937.
    [241]王海霞,刘踽,鲍惠铭等.基于碳氮稳定同位素组成分析的孔石莼对氨氮的吸收.海洋环境科学,2012,31(4):591-593.
    [242]Currin, C. A., Newell, S. Y., Paerl, H.W.. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs:considerations based on multiplc stable isotope analyses. Mar. Ecol. Prog. Ser.,1995,121:99-116.
    [243]Richard J. P., Bryan K. T., James L. L. et al. Nitrogen isotope ratios in estuarine biota collected along a nutrient gradient in Narragansett Bay, Rhode Island, USA. Marine Pollution Bulletin,2006,52:612-629.
    [244]Griff in, M. P. A., Valiela, I.. 15N isotope studies of life history and trophic position of Fundulus heteroclitus and Menidia menidia. Mar. Ecol. Prog. Ser.,2001,214:299-305.
    [245]Hughes, J. E., Deegan, L.A., Peterson, B. J. et al. Nitrogen flow through the food web in the oligohaline zone of a New England estuary. Ecology,2000,81,433-452..
    [246]Xu J, Xie P. Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios. J. Freshw. Eeo.,2004,19:645-650.
    [247]Fry B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography,1988,33(5):1182-1190.
    [248]Montoya J P, Carpenter E J, Capone D G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnology and Oceanography,2002,47(6): 1617-1628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700