用户名: 密码: 验证码:
上海地区灰霾过程中的主要物理和化学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰霾是一次颗粒物以及这些颗粒物与污染气体反应生成的二次颗粒物在有限的大气容量下发生积聚导致能见度下降而引起的。灰霾天气的增多不仅影响了交通安全、公共健康和农业生产,甚至影响着全球的气候变化,大气的灰霾污染已经引起全球的普遍关注。同步辐射X射线吸收谱(XAFS)技术以其检测限低、精度高和能进行原位测量等优点成为颗粒物成分分析的最有效手段之一。本论文基于实际大气颗粒物采样与模拟箱模拟实验,结合同步辐射XAFS、离子色谱(IC)与X射线荧光谱(XRF)技术,从两个角度(颗粒物的积聚效应和二次颗粒物生成)系统研究了上海地区灰霾形成过程中的主要物理(逆温层、相对湿度、气团轨迹等)和化学问题(颗粒物中硫酸盐、硝酸盐和铵盐(SNA)的粒径分布特征、硫酸盐的生成机制等)。
     地处长江入海口的上海,其周边是坦荡低平的长江三角洲平原,属于较利于大气颗粒物扩散的地形和地理位置,但是灰霾事件却频繁发生。上海地区灰霾期间各粒径段颗粒物的质量浓度均比非灰霾天高,差别最大的是0.49-0.95以及0.95-1.5μm粒径段。灰霾期间细粒径段(<1.5μm)中水溶性离子中SO42-、NO3-和NH4+的浓度较非灰霾期间高,细颗粒物中的硫酸盐主要以硫酸铵的形式存在。论文通过气团后向轨迹的聚类分析研究区域污染对上海地区颗粒物浓度及其成分的影响,得到六条平均后向轨迹,其中来自长三角地区(全年所占比例为8%)的长度较短的后向轨迹期间上海地区容易发生较严重的颗粒物污染。长度较短的后向轨迹为上海带来大量周边地域的颗粒物污染,研究上海地区灰霾污染必须考虑长江三角洲区域大量污染源的影响。结合后向轨迹以及区域污染源排放可为上海地区的灰霾预测提供一定的科学依据。
     气象条件决定了一个城市大气污染非常重要的指标,即大气环境容量,超过当时环境容量的颗粒物排放量将引起颗粒物污染。上海地区逆温层底高与颗粒物浓度有着一定的反比例关系,可以用公式Y=15000/(H-16)+36表达二者之间的关系,其中Y和H分别为PM10浓度(μg/m3)与逆温层底高(m);在逆温层底的高度比较低时,城市大气中的颗粒物浓度会因逆温层下方空间容量减小发生积聚增长。上海市作为中纬度沿海城市,冬季经常出现近地逆温层,这可能是上海冬季灰霾污染严重的主要原因之一。同时,高相对湿度、低风速以及较低温度均会降低大气环境容量,加速上海地区大气颗粒物的积聚,导致颗粒物浓度升高。
     二次无机气溶胶的主要成分SNA被认为是能见度降低的最重要的贡献者之一,上海地区颗粒物中的SNA倾向于在气团静滞时期的细粒径段上大量生成。论文建立基于S的XANES技术综合分析大气颗粒物中S的价态和硫酸盐存在形式的方法。使用所建立的分析方法得到上海地区灰霾期间和非灰霾期间大气颗粒物中的S元素分布特征。颗粒物中S主要以硫酸盐的形式存在(70%以上),细粒径段(<3μm)颗粒物中硫酸盐的比例更高(90%左右)。而颗粒物中的硫酸盐主要以硫酸钙和硫酸铵的形式存在,灰霾期间细颗粒中硫酸铵浓度非常高。颗粒物中高浓度的硫酸铵将会促进二次颗粒物的生成,降低大气能见度,促进灰霾发生。基于同步辐射Fe的X射线吸收谱(XAFS)技术,论文对灰霾条件下含Fe颗粒物催化氧化SO2生成硫酸盐的异相化学反应过程进行了模拟和原位检测。结果证实了灰霾条件下Fe离子催化氧化SO2的异相化学反应过程的确在颗粒物表面上发生,而且该异相化学反应与颗粒物表面的水环境有关,实际大气中的相对湿度则是形成颗粒物表面水环境的非常重要的条件,因此较高相对湿度一定程度上会促进二次颗粒物的生成。这些结果表明大气中金属元素催化氧化SO2生成硫酸盐的异相化学反应的确在颗粒物上发生,一定程度上解释了灰霾天颗粒物中部分硫酸盐成分的来源,为评估硫酸盐对灰霾形成的影响提供了科学依据。
     本文研究结果为全面评估上海地区灰霾产生的条件和机制提供相关理论和实验依据。
Haze was caused by visibility reduction which was closely related to theaccumulation of not only primary particles but also secondary particles under alimited atmosphere capacity. The increase of haze not only affects traffic safety,public health and agricultural production, but also affects the global climate change.Atmospheric haze pollution has attracted global attention. Synchrotron radiationX-ray absorption fine structure (XAFS) is a very powerful technology in analysis ofPM with its low detection limit, high accuracy and the ability of in-situ detection. Inthis thesis, based on the actual atmospheric particulate matter (PM) sampling andsmog chamber experiments, the main physical (temperature inversion layer (TIL),relative humidity (RH), air mass trajectories) and chemical problems (sulfates, nitratesand ammonium (SNA) in PM, the formation of sulfates) during haze formation inShanghai were studied by combining XAFS, ion chromatography (IC) and X-rayfluorescence (XRF).
     Located on the Yangtze River estuary, the main terrain of Shanghai is plain. Thegeographical location of Shanghai could favor the diffusion of PM, but haze event hasoccurred frequently in Shanghai. The mass concentrations of all size-fractionated PMwere higher in haze days than in non-haze days and even higher in the size of0.49-0.95and0.95-1.5μm in Shanghai. High concentrations of SNA and(NH4)2SO4were oberseved in fine (<1.5μm) PM during haze episodes. Clusteranalysis of air mass backward trajectories was calculated in this thesis to evaluate theimpact of regional pollution on PM concentration and characteristics in Shanghai.Results revealed that there are six clusters of average air mass trajectories in Shanghai.Air masses with short backward trajectories from the Yangtze River delta (YRD)region (8%in a whole year) brought serious PM pollution for Shanghai. The study ofhaze pollution in Shanghai must consider the impact of pollution sources in the YRDregion. The analysis with backward trajectory and area pollution emissions sourcescan provide some scientific basis for the prediction of haze in Shanghai.
     Meteorological conditions determine an important indicator of air pollution, environmental capacity. The particulate emissions that exceed the environmentalcapacity will cause PM pollution. The inversely proportional relationship between thebase heights of TIL and PM concentrations in Shanghai was found in this thesis. Therelationship can be signified as Y=15000/(H-16)+36, where Y and H refers PM10concentration (μg/m3) and the base heights of TIL (m), respectively. As a mid-latitudecoastal city, TIL with low height often appears during winter in Shanghai, whichmight be an important reason why haze occur frequently in winter of Shanghai.Similarly, high RH, low wind velocity and low temperature would also lowerenvironmental capacity, accelerate the accumlation of PM and cause PMconcentration rise.
     As the main components of secondary inorganic aerosol, SNA are considered asone of the most important contributors to visibility impairment. Combined with airmass back-trajectories, the highest concentration of SNA in fine PM of Shanghai wasobserved during the periods of air mass stagnations. The method for speciation of theoxidation state of sulfur and different sulfate species in PM by sulfur K-edge x-rayabsorption near edge structure (XANES) were established. The PM samples duringhaze and non-haze episodes in Shanghai were analyzed by this method. Resultsrevealed that sulfur mainly existed as sulfate with a proportion (atomic basis) morethan73%in all size of PM and even higher as90%in fine particles. Sulfate mainlyexisted as (NH4)2SO4and CaSO42H2O in PM of Shanghai. Compared to non-hazedays, a dramatic increase of (NH4)2SO4content was found in fine particles on hazedays only, which suggested the promoting impact of (NH4)2SO4on haze formation. Inorder to study the formation mechanism of sulfate in PM during haze episodes, theheterogeneous chemical process of sulfate formation catalyzed by Fe-containingparticles under haze conditions was simulated and measured in-situ with synchrotronradiation XAFS techniques. Results indicated that the water content on the surface ofPM was very important, which suggested that high RH favored the secondary PMformation. Results also confirmed that this heterogeneous chemical process actuallytake place on the surface of PM. This result explained part of sulfate component source in PM during haze episodes.
     The results of this thesis can provide relevant theoretical and experimental basisfor the comprehensive assessment of haze formation in Shanghai.
引文
1.吴兑;灰霾天气的形成与演化.环境科学与技术,2011.34(3): p.157-161.
    2. P schl, U., Atmospheric aerosols: Composition, transformation, climate andhealth effects. Angewandte Chemie International Edition,2005.44(46): p.7520-7540.
    3. Kappos, A.D., et al., Health effects of particles in ambient air. InternationalJournal of Hygiene and Environmental Health,2004.207(4): p.399-407.
    4. Brunekreef, B. and S.T. Holgate, Air pollution and health. The lancet,2002.360(9341): p.1233-1242.
    5. Davidson, C.I., R.F. Phalen, and P.A. Solomon, Airborne particulate matterand human health: a review. Aerosol Science and Technology,2005.39(8): p.737-749.
    6. Tie, X., D. Wu, and G. Brasseur, Lung cancer mortality and exposure toatmospheric aerosol particles in Guangzhou, China. AtmosphericEnvironment,2009.43(14): p.2375-2377.
    7. Arden, C., et al., Lung cancer, cardiopulmonary mortality, and long-termexposure to fine particulate air pollution. Journal of the American MedicalAssociation,2002.287.
    8. Chameides, W.L., et al., Case study of the effects of atmospheric aerosols andregional haze on agriculture: An opportunity to enhance crop yields in Chinathrough emission controls? Proceedings of the National Academy of Sciences,1999.96(24): p.13626-13633.
    9.宫克;世界八大公害事件与绿色GDP.沈阳大学学报,2005.17(4): p.3-6.
    10. Fraser, M.P. and K. Lakshmanan, Using levoglucosan as a molecular markerfor the long-range transport of biomass combustion aerosols. EnvironmentalScience&Technology,2000.34(21): p.4560-4564.
    11. Xu, H., et al., Genotoxicity of total and fractionated extractable organicmatter in fine air particulate matter from urban Guangzhou: Comparisonbetween haze and nonhaze episodes. Environmental Toxicology andChemistry,2008.27(1): p.206-212.
    12. Meehl, G.A., J.M. Arblaster, and W.D. Collins, Effects of black carbonaerosols on the Indian monsoon. Journal of Climate,2008.21(12).
    13. Malm, W.C. and D.E. Day, Estimates of aerosol species scatteringcharacteristics as a function of relative humidity. Atmospheric Environment,2001.35(16): p.2845-2860.
    14. Zhu, L., et al., Transport pathways and potential sources of PM10 in Beijing. Atmospheric Environment,2011.45(3): p.594-604.
    15. Li, M., et al., Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. Science of the TotalEnvironment,2012.414: p.525-534.
    16. Masiol, M., et al., Determining the influence of different atmosphericcirculation patterns on PM10 chemical composition in asource apportionment study. Atmospheric Environment,2012.63: p.117-124.
    17. Squizzato, S., et al., A procedure to assess local and long-range transportcontributions to PM2.5 and secondary inorganic aerosol.Journal of Aerosol Science,2012.46: p.64-76.
    18.胡晏玲,陈思萍,等;乌鲁木齐市冬季近地面逆温特点及其可吸入颗粒物浓度的相关关系分析.干旱环境监测,2005.18(2): p.88-90.
    19.涂敏杰,卢志明,等;对流边界层湍流特征的数值研究.力学季刊,2005.26(3): p.354-360.
    20.李景林,郑玉萍,刘增强,等;乌鲁木齐市低空温度层结与采暖期大气污染的关系.干旱区地理,2007.30(4): p.519-525.
    21. Whitby, K.T., The physical characteristics of sulfur aerosols. AtmosphericEnvironment (1967),1978.12(1): p.135-159.
    22. Change), I.I.P.o.C., Climate Change. New York: Cambridge University Press,2001.
    23. Schichtel, B.A., et al., Haze trends over the United States,1980–1995.Atmospheric Environment,2001.35(30): p.5205-5210.
    24. Trijonis, J., Visibility in the southwest—an exploration of the historical database. Atmospheric Environment (1967),1979.13(6): p.833-843.
    25. Malm, W.C., Characteristics and origins of haze in the continental UnitedStates. Earth-Science Reviews,1992.33(1): p.1-36.
    26. Senaratne, I. and D. Shooter, Elemental composition in source identification ofbrown haze in Auckland, New Zealand. Atmospheric Environment,2004.38(19): p.3049-3059.
    27. Kang, C.-M., et al., Chemical characteristics of acidic gas pollutants andPM2.5 species during hazy episodes in Seoul, South Korea.Atmospheric Environment,2004.38(28): p.4749-4760.
    28. Chen, L.-W.A., et al., Analysis of a summertime PM2.5and haze episode inthe mid-Atlantic region. Journal of the Air&Waste Management Association,2003.53(8): p.946-956.
    29. Sisler, J.F. and W.C. Malm, The relative importance of soluble aerosols tospatial and seasonal trends of impaired visibility in the United States.Atmospheric environment,1994.28(5): p.851-862.
    30.宋宇,等;北京市能见度下降与颗粒物污染的关系.环境科学学报,2003.23(4): p.468-471.
    31. Cheung, H.-C., et al., Influence of regional pollution outflow on theconcentrations of fine particulate matter and visibility in the coastal area ofsouthern China. Atmospheric Environment,2005.39(34): p.6463-6474.
    32. Sun, Y., et al., Chemical characteristics of PM2.5and PM10in haze-fogepisodes in Beijing. Environmental science&technology,2006.40(10): p.3148-3155.
    33. Fu, Q., et al., Mechanism of formation of the heaviest pollution episode everrecorded in the Yangtze River Delta, China. Atmospheric Environment,2008.42(9): p.2023-2036.
    34. Shen, Z., et al., Ionic composition of TSP and PM2.5 duringdust storms and air pollution episodes at Xi'an, China. AtmosphericEnvironment,2009.43(18): p.2911-2918.
    35.吴兑;大城市区域霾与雾的区别和灰霾天气预警信号发布.环境科学与技术,2008.31(9).
    36.郑宏翔,巩志宇,等;南昌灰霾天气的气候特征分析.江西能源,2008.1.
    37.国家环保总局,中国环境状况公报,2000.
    38. Bank, T.W., Global Development Finance,1997.
    39. Yang, F., et al., Characteristics of PM2.5speciation in representativemegacities and across China. Atmospheric Chemistry and Physics,2011.11(11): p.5207-5219.
    40. Wang, X., et al., The secondary formation of inorganic aerosols in the dropletmode through heterogeneous aqueous reactions under haze conditions.Atmospheric Environment,2012.63: p.68-76.
    41. Tan, J.-H., et al., Chemical characteristics of haze during summer and winterin Guangzhou. Atmospheric Research,2009.94(2): p.238-245.
    42. Tur i, J., et al., Sulfate formation on synthetic deposits under haze conditions.Atmospheric Environment,2003.37(25): p.3509-3516.
    43. Kulmala, M., How particles nucleate and grow. Science,2003.302(5647): p.1000-1001.
    44. Zhang, R., et al., Atmospheric new particle formation enhanced by organicacids. Science,2004.304(5676): p.1487-1490.
    45. Berndt, T., et al., Rapid formation of sulfuric acid particles atnear-atmospheric conditions. Science,2005.307(5710): p.698-700.
    46. Claeys, M., et al., Formation of secondary organic aerosols throughphotooxidation of isoprene. Science,2004.303(5661): p.1173-1176.
    47. Maria, S.F., et al., Organic aerosol growth mechanisms and theirclimate-forcing implications. Science,2004.306(5703): p.1921-1924.
    48. Shooter, D., et al., Characterisation of New Zealand atmospheric aerosolsusing compound specific isotope ratios. Journal of aerosol science,2000.31: p.327.
    49. Takahashi, Y., et al., Arsenic behavior in paddy fields during the cycle offlooded and non-flooded periods. Environmental science&technology,2004.38(4): p.1038-1044.
    50. Takahashi, Y., et al., Speciation of sulfate in size-fractionated aerosol particlesusing sulfur K-edge X-ray absorption near-edge structure. Environmentalscience&technology,2006.40(16): p.5052-5057.
    51. Zeng, J., et al., Sulfur speciation and bioaccumulation in camphor tree leavesas atmospheric sulfur indicator analyzed by synchrotron radiation XRF andXANES. Journal of Environmental Sciences,2013.25(3): p.605-612.
    52. Liang-Man, B., et al., Investigation of sulfur speciation in particles from smallcoal-burning boiler by XANES spectroscopy. Chinese Physics C,2009.33(11):p.1001.
    53. Lin, J., et al., Size distribution of sulfur species in fine and ultrafine aerosolparticles using sulfur K-edge XANES. Chinese Physic C,2009.33(11): p.965-968.
    54.毛晓琴;上海地区灰霾天气气溶胶物理特性研究(硕士论文).东华大学,2010.
    55. Oatis, S., et al., Heterogeneous nucleation of a common atmospheric aerosol:ammonium sulfate. Geophysical research letters,1998.25(24): p.4469-4472.
    56. Trochkine, D., et al., Mineral aerosol particles collected in Dunhuang, China,and their comparison with chemically modified particles collected over Japan.Journal of Geophysical Research: Atmospheres (1984–2012),2003.108(D23).
    57. Bauer, S. and D. Koch, Impact of heterogeneous sulfate formation at mineraldust surfaces on aerosol loads and radiative forcing in the Goddard Institutefor Space Studies general circulation model. Journal of Geophysical Research:Atmospheres (1984–2012),2005.110(D17).
    58. Huffman, G., et al., Quantitative analysis of all major forms of sulfur in coalby X-ray absorption fine structure spectroscopy. Energy&Fuels,1991.5(4): p.574-581.
    59. Vairavamurthy, A., Using X-ray absorption to probe sulfur oxidation states incomplex molecules. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,1998.54(12): p.2009-2017.
    60. Waldo, G.S., et al., Sulfur speciation in heavy petroleums: Information fromX-ray absorption near-edge structure. Geochimica et Cosmochimica Acta,1991.55(3): p.801-814.
    61. Frank, P., et al., A large reservoir of sulfate and sulfonate resides withinplasma cells from Ascidia ceratodes, revealed by X-ray absorption near-edgestructure spectroscopy. Biochemistry,1987.26(16): p.4975-4979.
    62.王其武,刘汉文;X射线吸收精细结构及其应用.北京:科学出版社,1994.
    63. Huffman, G., et al., Investigation of the molecular structure of organic sulfurin coal by XAFS spectroscopy. Energy&Fuels,1989.3(2): p.200-205.
    64. Pingitore Jr, N.E., G. Meitzner, and K.M. Love, Identification of sulfate innatural carbonates by X-ray absorption spectroscopy. Geochimica etCosmochimica Acta,1995.59(12): p.2477-2483.
    65. Solomon, E.I., et al., Ligand K-edge X-ray absorption spectroscopy: covalencyof ligand–metal bonds. Coordination chemistry reviews,2005.249(1): p.97-129.
    66. Rolph, G., Real-time Environmental Applications and Display sYstem (READY)Website (http://www. arl. noaa. gov/ready/hysplit4. html). NOAA AirResources Laboratory, Silver Spring.2003: Md.
    67. Draxler, R.R. and G. Rolph, HYSPLIT (HYbrid Single-Particle LagrangianIntegrated Trajectory) model access via NOAA ARL READY website(http://www. arl. noaa. gov/ready/hysplit4. html). NOAA Air ResourcesLaboratory, Silver Spring.2003, Md.
    68. Stohl, A., Computation, accuracy and applications of trajectories—A reviewand bibliography. Atmospheric Environment,1998.32(6): p.947-966.
    69. Wojcik, G.S. and J.S. Chang, A re-evaluation of sulfur budgets, lifetimes, andscavenging ratios for eastern North America. Journal of atmosphericChemistry,1997.26(2): p.109-145.
    70. Xu, X., X. Zhou, and X. Shi, Spatial structure and scale feature of theatmospheric pollution source impact of city agglomeration. Science in ChinaSeries D–Earth Science,2005.48(Suppl II): p.1-24.
    71. Wang, Y., et al., The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment,2006.40(16): p.2935-2952.
    72. Du, H., et al., Insights into summertime haze pollution events over Shanghaibased on online water-soluble ionic composition of aerosols. AtmosphericEnvironment,2011.45(29): p.5131-5137.
    73. Yang, F., et al., Evolution of the mixing state of fine aerosols during hazeevents in Shanghai. Atmospheric Research,2012.104: p.193-201.
    74. Lü, S., et al., Size distribution of chemical elements and their sourceapportionment in ambient coarse, fine, and ultrafine particles in Shanghaiurban summer atmosphere. Journal of Environmental Sciences,2012.24(5): p.882-890.
    75. Wang, J., et al., Contamination characteristics and possible sources of PM10and PM2.5in different functional areas of Shanghai, China. AtmosphericEnvironment,2013.68: p.221-229.
    76. Ye, B., et al., Concentration and chemical composition of PM2.5in Shanghai for a1-year period. Atmospheric Environment,2003.37(4): p.499-510.
    77. Ye, X., et al., Hygroscopic growth of urban aerosol particles during the2009Mirage-Shanghai Campaign. Atmospheric Environment,2013.64: p.263-269.
    78. Yao, X., et al., The water-soluble ionic composition of PM2.5in Shanghai andBeijing, China. Atmospheric Environment,2002.36(26): p.4223-4234.
    79. Fu, X., et al., Emission inventory of primary pollutants and chemicalspeciation in2010for the Yangtze River Delta region, China. AtmosphericEnvironment,2013.70: p.39-50.
    80. Zhang, Q., et al., Asian emissions in2006for the NASA INTEX-B mission.Atmospheric Chemistry and Physics,2009.9(14): p.5131-5153.
    81.黄侃;亚洲沙尘长途传输中的组分转化机理及中国典型城市的灰霾形成机制(博士论文).复旦大学,2010.
    82.范雪波;灰霾天大气颗粒物组分的粒径特征(硕士论文).中国科学院上海应用物理研究所,2011.
    83.王广华;上海市大气含碳颗粒物的研究(博士论文).中国科学院上海应用物理研究所,2012.
    84.于建华,虞统,杨晓光,等;北京冬季PM2.5中元素碳、有机碳的污染特征.环境科学研究,2004.17(1): p.48-50.
    85.庄国顺,等;2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响及其对全球环境的影响.科学通报,2001.46(3): p.191-197.
    86.孙业乐,庄国顺,袁蕙,等;2002年北京特大沙尘暴的理化特性及其组分来源分析.科学通报,2002.49(4): p.340-346.
    87. Guo, J., K.A. Rahn, and G. Zhuang, A mechanism for the increase of pollutionelements in dust storms in Beijing. Atmospheric environment,2004.38(6): p.855-862.
    88. Huang, K., et al., Mixing of Asian dust with pollution aerosol and thetransformation of aerosol components during the dust storm over China inspring2007. Journal of Geophysical Research: Atmospheres (1984–2012),2010.115(D7).
    89. Hwang, H. and C.U. Ro, Single‐particle characterization of four aerosolsamples collected in ChunCheon, Korea, during Asian dust storm events in2002. Journal of Geophysical Research: Atmospheres (1984–2012),2005.110(D23).
    90. Wang, Y., et al., The evolution of chemical components of aerosols at fivemonitoring sites of China during dust storms. Atmospheric Environment,2007.41(5): p.1091-1106.
    91. Wang, Y., et al., Water-soluble part of the aerosol in the dust stormseason—evidence of the mixing between mineral and pollution aerosols.Atmospheric Environment,2005.39(37): p.7020-7029.
    92. Jalilehvand, F., Sulfur: not a “silent” element any more. Chemical SocietyReviews,2006.35(12): p.1256-1268.
    93.肖正辉,邵龙义,张宁,等;兰州沙尘暴过程对PM10组成变化的影响.辽宁工程技术大学学报(自然科学版),2010.29(3): p.506-508.
    94.曾建荣,包良满,龙时磊,等;结合XANES和IC技术测量大气颗粒物中硫的形态分布及其含量.核技术,2011.34(1): p.65-69.
    95.刘利娟,崔明启,赵佳,等;同步辐射中能X射线近边吸收谱方法研究不同施肥制度对土壤中硫形态的影响.核技术,2010.33(1): p.5-9.
    96. Hien, P., V. Bac, and N. Thinh, Investigation of sulfate and nitrate formationon mineral dust particles by receptor modeling. Atmospheric Environment,2005.39(38): p.7231-7239.
    97. Wang, Y., et al., The ion chemistry and the source of PM2.5aerosol in Beijing. Atmospheric Environment,2005.39(21): p.3771-3784.
    98. Mori, I., M. Nishikawa, and Y. Iwasaka, Chemical reaction during thecoagulation of ammonium sulphate and mineral particles in the atmosphere.Science of the Total Environment,1998.224(1): p.87-91.
    99. Myneni, S.C., Formation of stable chlorinated hydrocarbons in weatheringplant material. Science,2002.295(5557): p.1039-1041.
    100. Myneni, S.C.B., Soft X-ray spectroscopy and spectromicroscopy studies oforganic molecules in the environment, in Applications Of SynchrotronRadiation In Low-Temperature Geochemistry And Environmental Sciences,P.A. Fenter, et al., Editors.2002. p.485-579.
    101.吴兑;再论都市霾与雾的区别.气象,2006.32(4): p.9-15.
    102. Zheng, M., et al., Seasonal trends in PM2.5source contributions in Beijing,China. Atmospheric Environment,2005.39(22): p.3967-3976.
    103.吴兑,邓雪娇;环境气象学与特种气象预报.气象,2001.26(8): p.121-130.
    104. Ball, F., The theory of strong katabatic winds. Australian Journal of Physics,1956.9(3): p.373-386.
    105. Dabberdt, W., et al., Atmosphere-surface exchange measurements. Science,1993.260(5113): p.1472-1481.
    106.吴兑,吴晟,毛夏,等;沿海城市灰霾天气与海盐氯损耗机制的关系.环境科学与技术,2011.34(S1): p.44-49.
    107. Arimoto, R., et al., Relationships among aerosol constituents from Asia andthe North Pacific during PEM‐West A. Journal of Geophysical Research:Atmospheres (1984–2012),1996.101(D1): p.2011-2023.
    108. Charlson, R., Atmospheric visibility related to aerosol mass concentration:review. Environmental Science&Technology,1969.3(10): p.913-918.
    109.张云海,王扬锋,洪也,等;冬季典型灰霾天气过程的特征分析.安徽农业科学,2010.38(15): p.8016-8017.
    110. Carrico, C.M., et al., Hygroscopic growth behavior of a carbon-dominatedaerosol in Yosemite National Park. Atmospheric Environment,2005.39(8): p.1393-1404.
    111. Chan, Y., et al., Source apportionment of visibility degradation problems inBrisbane (Australia) using the multiple linear regression techniques.Atmospheric Environment,1999.33(19): p.3237-3250.
    112. Ramanathan, V., et al., Aerosols, climate, and the hydrological cycle. science,2001.294(5549): p.2119-2124.
    113.赵美萍,邵敏;环境化学.北京大学出版社,2005.
    114. Zhao, X., et al., Analysis of a winter regional haze event and its formationmechanism in the North China Plain. Atmospheric Chemistry and Physics,2013.13(11): p.5685-5696.
    115. Tan, J., et al., Chemical characteristics of PM2.5 during atypical haze episode in Guangzhou. Journal of Environmental Sciences,2009.21(6): p.774-781.
    116. Cheng, S.-h., et al., Size-fractionated water-soluble ions, situ pH and watercontent in aerosol on hazy days and the influences on visibility impairment inJinan, China. Atmospheric Environment,2011.45(27): p.4631-4640.
    117. Watson, J.G., Visibility: Science and regulation. Journal of the Air&WasteManagement Association,2002.52(6): p.628-713.
    118. Moosmüller, H., R. Chakrabarty, and W. Arnott, Aerosol light absorption andits measurement: A review. Journal of Quantitative Spectroscopy and RadiativeTransfer,2009.110(11): p.844-878.
    119. Lee, H.S. and B.-W. Kang, Chemical characteristics of principal PM2.5 species in Chongju, South Korea. Atmospheric Environment,2001.35(4): p.739-746.
    120. Kiehl, J. and B. Briegleb, The relative roles of sulfate aerosols and greenhousegases in climate forcing. Science,1993.260(5106): p.311-314.
    121. Baek, B.H., V.P. Aneja, and Q. Tong, Chemical coupling between ammonia,acid gases, and fine particles. Environmental Pollution,2004.129(1): p.89-98.
    122. Pathak, R.K., W.S. Wu, and T. Wang, Summertime PM2.5ionic species infour major cities of China: nitrate formation in an ammonia-deficientatmosphere. Atmospheric Chemistry and Physics,2009.9(5): p.1711-1722.
    123. Brown, G.E. and N.C. Sturchio, An overview of synchrotron radiationapplications to low temperature geochemistry and environmental science.Reviews in mineralogy and geochemistry,2002.49(1): p.1-115.
    124. Galbreath, K.C., et al., Nickel speciation of residual oil fly ash and ambientparticulate matter using X-ray absorption spectroscopy. Journal of the Air&Waste Management Association,2000.50(11): p.1876-1886.
    125. Chan, C.K. and X. Yao, Air pollution in mega cities in China. Atmosphericenvironment,2008.42(1): p.1-42.
    126. Pickering, I.J., et al., Analysis of sulfur biochemistry of sulfur bacteria usingX-ray absorption spectroscopy. Biochemistry,2001.40(27): p.8138-8145.
    127. Pickering, I.J., et al., Sulfur K-edge X-ray absorption spectroscopy fordetermining the chemical speciation of sulfur in biological systems. FEBSletters,1998.441(1): p.11-14.
    128. Ravel, á. and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: dataanalysis for X-ray absorption spectroscopy using IFEFFIT. Journal ofsynchrotron radiation,2005.12(4): p.537-541.
    129. Finlayson-Pitts, B.J. and J.N. Pitts Jr, Chemistry of the upper and loweratmosphere: theory, experiments, and applications.1999: Academic press.
    130. Andrews, E., et al., Concentration and composition of atmospheric aerosolsfrom the1995SEAVS experiment and a review of the closure betweenchemical and gravimetric measurements. Journal of the Air&WasteManagement Association,2000.50(5): p.648-664.
    131. Chow, J.C., et al., PM2.5chemical composition and spatiotemporalvariability during the California Regional PM10/PM2.5Air Quality Study(CRPAQS). Journal of Geophysical Research: Atmospheres (1984–2012),2006.111(D10).
    132. Seinfeld, J.H. and S.N. Pandis, Atmospheric chemistry and physics: from airpollution to climate change.2012: John Wiley&Sons.
    133. Hillamo, R., et al., Mass Size Distributions and Precursor Gas Concentrationsof Major Inorganic Ions in'Antarctic Aerosol. International journal ofenvironmental analytical chemistry,1998.71(3-4): p.353-372.
    134. Shen, Z., et al., Seasonal variations and evidence for the effectiveness ofpollution controls on water-soluble inorganic species in total suspendedparticulates and fine particulate matter from Xi’an, China. Journal of the Air&Waste Management Association,2008.58(12): p.1560-1570.
    135. Spurny, K.R., Aerosol chemical processes in the environment.2000: CRCPress.
    136. Squizzato, S., et al., Factors determining the formation of secondary inorganicaerosol: a case study in the Po Valley (Italy). Atmospheric chemistry andphysics,2013.13(4): p.1927-1939.
    137. Pierson, W.R., W.W. Brachaczek, and D.E. McKee, Sulfate emissions fromcatalyst-equipped automobiles on the highway. Journal of the Air PollutionControl Association,1979.29(3): p.255-257.
    138. Wolff, G.T., On the nature of nitrate in coarse continental aerosols.Atmospheric Environment (1967),1984.18(5): p.977-981.
    139. Ravishankara, A., Heterogeneous and multiphase chemistry in the troposphere.Science,1997.276(5315): p.1058-1065.
    140. Goodman, A., et al., Heterogeneous uptake of sulfur dioxide on aluminum andmagnesium oxide particles. The Journal of Physical Chemistry A,2001.105(25): p.6109-6120.
    141. Zhuang, G., et al., Link between iron and sulphur cycles suggested bydetection of Fe (n) in remote marine aerosols.1992.
    142.武山,等;大气模拟烟雾箱系统的研究进展.环境科学学报,2007.27(4): p.529-536.
    143. Zuo, Y. and J. Zhan, Effects of oxalate on Fe-catalyzed photooxidation ofdissolved sulfur dioxide in atmospheric water. Atmospheric Environment,2005.39(1): p.27-37.
    144. Conklin, M.H. and M.R. Hoffmann, Metal ion-sulfur (IV) chemistry.3.Thermodynamics and kinetics of transient iron (III)-sulfur (IV) complexes.Environmental science&technology,1988.22(8): p.899-907.
    145. Martin, L., et al., The iron catalyzed oxidation of sulfur (IV) in aqueoussolution: Differing effects of organics at high and low pH. Journal ofGeophysical Research: Atmospheres (1984–2012),1991.96(D2): p.3085-3097.
    146. Martin, L.R. and T.W. Good, Catalyzed oxidation of sulfur dioxide in solution:The iron-manganese synergism. Atmospheric Environment. Part A. GeneralTopics,1991.25(10): p.2395-2399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700