用户名: 密码: 验证码:
印尼外海沉积序列及相关的沉积事件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印尼位于板块缝合带,地质构造复杂,是地球上最为活跃的构造带之一,成为地震、海啸和火山爆发等灾变事件的多发区。这些事件所形成的事件沉积广泛保存于印尼陆上及其周边海域海底的沉积物中,使得该区成为沉积事件研究的热点区域。深海环境的沉积以远洋或半远洋沉积为主,沉积速率较低,沉积相对稳定和纯粹,是长尺度古沉积事件研究的理想场所。本文以印尼周边海域深海沉积岩心(IR-GC1)为研究对象,在原有研究基础上,开展沉积学、地层学、古海洋学相关研究,揭示该海区古沉积事件,建立可靠的年龄框架,并探讨这些事件的形成机制及其对深海沉积物特征的影响。通过综合分析,获得了以下结论和认识:
     研究区沉积物组分以粉砂为主,沉积物类型主要为粘土质粉砂以及含粘土粉砂砂质泥。沉积物岩心的岩性特征、粒度特征及元素地球化学分布在垂向上变化显著,反映了沉积环境曾经发生过突变。
     利用氧同位素地层法,外加新仙女木变冷事件层和粉红色红拟抱球虫的末现面作为年代控制点,获得沉积物岩心底部年龄约为136ka,为晚更新世以来的沉积,平均沉积速率为1.23cm/ka,表现为低沉积速率半远洋沉积的特点。通过垂向比较识别出4期相对快速堆积事件,分别发生在90.1-82.0ka,75.0-70.9ka,54.8-50.4ka和20.0-11.6ka期间。并且识别出1期沉积间断事件,发生在距今118-109ka,它与浊流事件的冲刷有关。
     以沉积物粒度特征突变为主要指标,通过粒度参数的垂向变化、粒度频率曲线和概率累积曲线特征,识别出7个深海浊积层,分别对应7个浊流沉积事件,发生年代分别为:130-128ka,107-105ka,100-98ka,87-86ka,53-50ka,41-37ka,29-20ka。整个IR-GC1岩心中,深海浊流出现的频率可达54次/Ma,浊流层的总厚度达28cm,约占岩心沉积总量的16.7%。因此,该区的深海浊流事件异常发育,对正常深海沉积影响显著。
     深海浊流沉积具有粒径粗、分选差、峰态宽、频率曲线呈双峰态、沉积突变明显等特征。另外,粒度分级也是深海浊流沉积的重要特征,可作为识别浊积层的一个重要标志。
     在IR-GC1岩心中识别出3个火山灰层,它们富含火山玻璃和长石、云母及角闪石等矿物颗粒。综合火山玻璃的形貌、化学成分及其年代,认为层A来源于末次Toba火山喷发。层B成分上与层A几乎一致,认为其可能代表层A的底部,与海底滑塌、海洋底流或生物扰动对沉积物的改造有关。而层C与层A,B成分上有差异,表明它们岩浆来源不同,其具体的来源还无法确定。另外,研究发现SiO2/Al2O3和K2O/A12O3比值可以作为沉积物中酸性火山灰沉降事件的指标。
     印尼外海13.6万年以来沉积事件异常发育,其触发机制包括海啸、地震和火山爆发事件以及与冰川作用有关的海平面变化。其中,发生在130-128ka期间的深海浊流沉积事件归因于海平面的快速上升;发生在107-86ka期间的3次深海浊流沉积事件由海啸、地震等突发事件触发;而发生在53-20ka期间的3次深海浊流沉积事件则受低海平面所控制,该时期海平面下降,河口深入陆架,其搬运的陆源物质向陆架深部甚至陆坡倾泻,使得陆架边缘碎屑堆积物的稳定性极易遭受破坏,从而发生坍塌引发大规模的浊流。另外,发生在80-76ka和134ka附近的火山降落沉积事件则与巽他岛弧重大的火山喷发事件有关。
The plate tectonic setting of Indonesia is complex, and catastrophic geologic events have likely been plentiful. Event deposits induced by those catastrophic events have been widely preserved in sediments of the land and seabed. The deep-sea basin in this region is mainly documented by pelagic and himipelagic sedimentation. So the sedimentation rate of the deep-sea basin is relatively low. Thus, it can be served as an ideal situation to the long-term research on sedimentary events.
     Based on existing research, this paper is done to systematically analyze the sedimentary sequences of the core IR-GC1from abyssal sediments off Indonesia, recognize the sedimentary events recorded in the sediments, and discuss their trigger mechanism.
     Through comprehensive analysis, results obtained as follow:
     The sediment is mainly composed of clayey silt and clay-silt-containing sandy mud. The lithology, grain size and element geochemistry in the vertical direction changes significantly, suggesting that the sedimentary environment have occurred mutation.
     The age model for core IR-GC1was established mainly by oxygen isotope stratigraphy. Additional age markers, such as the last appearance datum (LAD) of pink-pigmented Globigerinoides ruber (127ka BP) and the occurrence of Younger Dryas cooling event (12.68-11.59ka BP), were also used for age control. Hence, the base of core IR-GC1was determined to ca.136ka. The average sedimentation rate was1.23cm/ka. Four period of relatively rapid deposition, respectively, occurred in90.1-82.Oka,75.0-70.9ka,54.8-50.4ka, and20.0-11.6ka. A sedimentary hiatus occurred in118-109ka, which is related to the erosion by turbidity current.
     Using the mutation of particle size characteristics as the main indicator, seven deep-sea turbidite layers can be clearly identified, corresponding to seven deposition events occurred in130-128ka,107-105ka,100-98ka,87-86ka,53-50ka,41-37ka, and 29-20ka respectively. The total thickness of the turbidite layers up to28cm, which is about30%of the core length. Deep-sea turbidite deposition is characterized by coarse grain size, poor sorting, wide kurtosis, bimodal frequency curve, and deposition mutation. In addition, particle size classification is also an important feature of deep-sea turbidite deposition, which can be used as an indicator to identify the turbidite layer.
     Three volcanic ash layers were identified from core IR-GC1. They were dominated by glass shards with minor mineral crystals, such as plagioclase, biotite, and hornblende. According to the morphology and major element compositions of the representative glass shards, we suggest that ash layer A is correlated to the youngest Toba Tuff (YTT,80-76ka). Layer B is thought to be a basal part of layer A and could be the result of reworking of the sediments by slumping, bottom currents, or bioturbation. Ash layer C bear different geochemistry characteristics of layers A and B suggesting it was not originated from Toba but recorded another eruption event of high-silica rhyolite in the region. In addition, SiO2/A12O3and K2O/A12O3ratio can be used as a marker for acid volcanic ash deposition events.
     Over the past136ka, turbidite deposition events occurred frequently in deep-sea off Indonesia. The possible trigger mechanism including tsunamis, earthquakes, volcanic eruptions and sea-level change.
引文
Acharyya, S.K., Basu, P.K.. Toba Ash on the Indian Subcontinent and Its Implications for Correlation of Late Pleistocene Alluvium. Quaternary Research,1993,40:10-19.
    An Zhi-sheng, Kukla, G., Porter, S.C., et al. Late quaternary dust flow on the Chinese loess plateau. Catana,1991,18:125-132.
    Anon. Recent Geoscientific studies in the Bay of Bengal and the Andaman Sea. Geological Survey of India special publication,1992,29:278.
    Atwater, B. F. Evidence for Great Holocene Earthquakes along the Outer Coast of Washington State, Science,1987,236,942-944.
    Bekki, S., Pyle, J., Zhong, W., et al. The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption. Geophysical Research Letters, 1996,23(19):2669-2672.
    Berger, A.L. Long term variation of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences,1978,35:2362-2367
    Berger, W.H., Bonneau, M.C. and Parker, F.L. Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanol. Acta.,1982,5:249-258.
    Berger, W.H., Killingley, J.S., Metzler, C.V. Two-step deglaciation:14C-Dated high-resolution δ18O records from the tropical Atlantic Ocean. Quaternary Research,1985,23(2):258-271.
    Bischoff, J.L., Heath, G.R., Leinen, M. Geochemistry of deep-sea sediments from the Pacific manganese nodule province:DOMES sites A, B, C. Bischoff, J.L., Piper, D.Z. Marine Geology and Oceanography of the Pacific Manganese Nodule Province. New York:Plenum Press,1979:397-436.
    Bond, G.C., Shower, W., et al. A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climate. Science, 1997, 278:1257-1265.
    Bondevik, S., Svendsen, J.I., Mangerud, J. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology, 1997,44:1115-1131.
    Boschi, E., Casarotti, E., Devoti, R., et al. Coseismic deformation induced by the Sumatra earthquake. Journal of Geodynamics, 2006, 42(1-3):52-62.
    Bouma, A.H. Sedimentology of some flysch deposits. Amsterdam, Elsevier,1962,168.
    Brauer, A., Endres, C., Giinter, C., Litt, T., Stebich, M., Negendank, J.F.W. High resolution sediment and vegetation responses to Younger Dryas climate changes in varved lake sediments from Meerfelder Maar, Germany, Quaternary Science Previews,1999,18:321-329.
    Brauer, A., Endres, C., Gunter,C., et al. High resolution sediment and vegetation responses to Younger Dryas climate changes in varved lake sediments from Meerfelder Maar, Germany, Quaternary Science Previews, 1999, 18:321-329.
    Burning, C., Sarnthein, M. Toba ash layers in the South China Sea:Evidence of contrasting wind directions during eruption ca.74 ka. Geology, 2000, 28:275-278.
    Chesner C.A., Rose, W.Ⅰ., Deino, A., et al.Eruptive history of earth's largest quaternary caldera (toba, indonesia) clarified. Geology, 1991,19(3):200-203.
    Chesner, C.A., Rose, W.I., Deino, A., Drake, R. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified. Geology,1991,19:200-203.
    Cita, M.B., Aloisi, G. Deep-sea tsunami deposits triggered by the explosion of Santorini(3500 y BP), eastern Mediterranean. Sedimentary Geology,2000,135: 181-203.
    Cita, M.B., Camerlenghi, A., Kastens, K.A. New findings of Bronze Age homogenities in the Ionian Sea:geodynamic implications for the Mediterranean. Marine Geology, 1984,55:47-62.
    Cita, M.B., Maccagni, A., Pirovano, J. Tsunami as triggering mechanism of homogenites recorded in areas of the Eastern Mediterranean characterised by the cobblestone topography. In:Saxov, S.E., Niewenhuis, J.K. (Eds.), Marine Slides and other Mass Movements. Plenum Press, New York,1982:233-260.
    Clague, J.J., Bobrowsky, P.T., Hutchinson, I. A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Review, 2000,19:849-863.
    Clifton, H.E. Sedimentologic consequences of convulsive geological events. Geological Society of Amer,1988,229:157.
    Coplen, T. B., Kendall, C, and Hopple J. Comparison of stable isotope reference samples. Nature,302:236-238.
    Curray, J.R., Moore, D.G. Growth of Bengal Deep-Sea Fan and denudation in the Himalayas. Geological Society of America Bulletin,1971,82:563-572.
    Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al. Evidence for general instability of past climate from 250-kyr ice-core record. Nature,1993,364,218-220.
    Dawson, A.G., and Stewart, I. Tsunami deposits in the geological record. Sedimentary Geology,2007,200(3-4):166-183.
    Dawson, A.G., Shi, S. Tsunami deposits. Pure and applied geophysics,2000,157, 875-897.
    Dawson, A.G., Shi, S., Dawson, S., et al. Coastal Sedimentation associated with the June 2nd and 3rd,1994 Tsunami in Rajegwesi, Java. Quaternary Science Review.1996,15, 901-912.
    Dean, W.E., Gardner, J.V., and Piter, D.Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin.Geochimica et Cosmochimica Acta,1997, 61(21):4507-4518.
    Dehn, J., Farrell, J. W., and Schmincke, H.-U. Neogene tephrochronology from Site 758 on northern Ninetyeast Ridge:Indonesian arc volcanism of the past 5 Ma. Proceedings Ocean Drilling Program, Scientific Results,1991,121,273-295.
    Diehl, J.F., Onstott, T.C., Chesner, C.A., et al. No short reversals of Brunhes age recorded in the Toba tuffs, north Sumatra, Indonesia. Geophysical Research Letters, 1987,14:753-756.
    Ding Zhong-li, Yu Zhi-wei, Rutter, N.W., et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 1994, 13:39-70.
    Dominey-Howes, D.T.M. Sedimentary deposits associated with the July 9th 1956 Aegean Sea tsunami. Physics and Chemistry of the Earth, 1996, 21(12):51-55.
    Dott, R.H. Episodic sedimentation-how normal is average? How rare is rare? Does it matter? Journal of Sedimentary Petrology, 1983,53:5-23.
    Einsele, G., Chough, S.K., Shiki, T. Depositional events and their records--an introduction. Sedimentary Geology, 1996, 104(1-4):1-9.
    Einsele, G, Ricken, W. and Seilacher, A. Cycles and events in stratigraphy-basic concepts and terms. In:G Emsele, W. Ricken and A. Seilacher (Editors), Cycles and Events in Stratigraphy. Springer, Berlin, 1991:1-19.
    Emiliani, C. Pleistocene temperature. Journal of Geology,1955,63:538-578.
    Emiliani, C. Temperature of Pacific bottom waters and polar superficial waters during the Tertiary. Science, 1954, 119:853-855.
    Folk, R.L., and Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 1957, 27:3-26.
    Fujiwara, O., Masuda, F., Sakai, T., et al. Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. Sedimentary Geology,2000, 135:219-230.
    Gasparotto, G., Spadafora, E., Summa, V., et al. Contribution of grain size and compositional data from the Bengal Fan sediment to the understanding of Toba volcanic event. Marine Geology,2000,162:561-572.
    Gelfenbaum, G, Jaffe, B. Erosion and sedimentation from the 17 July,1998 Palua New Guinea tsunami. Pure and Applied Geophysics,2003,160:869-1999.
    Giancarlo, G.B., Nicholas, M.I. Holocene periodicity in North Atlantic climate and deep-ocean flow south of iceland. Nature, 1999, 397:515-517.
    Goff, J., Mcfaden, B.G., Chague-Goff, C.Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology, 2004, 204:35-250.
    Gorsline, D.S. Depositional events in Santa Monica Basin, California Borderland, over the past five centuries. Sedimentary Geology, 1996, 104(1-4): 73-88.
    Goto, K., Tada, R., Tajika, E., et al. Lateral lithological and compositional variations of the Cretaceous/Tertiary deep-sea tsunami deposits in northwestern Cuba. Cretaceous Research,2008,29(2):217-236.
    Gower, J. Jason 1 Detects the 26 December 2004 Tsunami. Eos, Transactions American Geophysical Union,2005,86(4):37-38.
    Gusiakov, V.K. Tsunami generation potential of different tsunamigenic regions in the Pacific. Marine Geology, 2005,215(1-2):3-9.
    Hamilton, W.印度尼西亚地区的俯冲作用.见:M.塔尔沃尼等编.郭令智等译校.岛弧、海沟和弧后盆地.北京:海洋出版社,1984:18-35.
    Hand B M. Differentiation of beach and dune sands, using setting ve-locities of light and heavy minerals. Journal of Sedimentary Petrology, 1967, 37:514-520.
    Heenzen, B.C., Dyke, C.L. Grand bank slump. Bulletin of the American Association of Petrolleum Geologists, 1964, 48(2):321-225.
    Hemphill-Haley, E. Diatom evidence for earthquake induced subsidence and tsunami 300 years ago in southern coastal Washington. Geological Society of America Bulletin, 1995a,107:367-378.
    Hemphill-Haley, E. Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene,1996,6 (4):439-448.
    Hemphill-Haley, E. Intertidal diatoms from Willapa Bay, Washington: application to studies of small-scale sea-level changes. Northwest Science, 1995b, 69,29-45.
    Imbrie, J., Hays, J.D., Martinson, D.G., et al. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In:Berger, A.L. (Ed.), Milankovitch and Climate, vol.1.D. Reidel Publishing Company, Norwell, MA, 1984: 269-305.
    Ishiga, H., Nakamura, T., Sampei, Y., et al. Geochemical record of the Holocene Jomon transgression and human activity in coastal lagoon sediments of the San'in district SW Japan.Global and Planetary Change, 2000, 25:223-237.
    Kastens, K.A., Cita, M.B. Tsunami-induced transport in the abyssal Mediterranean Sea. Geological Society of America Bulletin,1981,92:845-857.
    Lay, T., Kanamori, H., Ammon, C.J., et al. The Great Sumatra-Andaman Earthquake of 26th December 2004. Science,2005,308:1127-1133.
    Le Maitre, R. W. (Ed.) A classification of Igneous Rocks and Glossary of Terms, recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Oxford, Blackwell,1989:193.
    Liang, X., Wei, G., Shao, L., et al. Records of Toba eruptions in the South China Sea. Science in China Series D:Earth Sciences,2001,44:871-878.
    Lisiecki, L.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography,2005,20(PA1003):1-17.
    Liu, Z., Colin, C, Trentesaux, A. Major element geochemistry of glass shards and minerals of the Youngest Toba Tephra in the southwestern South China Sea. Journal of Asian Earth Sciences,2006,27:99-107.
    Martinson, D.G., Pisias, N.G., Hays, J.D., et al. Age dating and the orbital theory of the ice ages:development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research,1987,27:1-29.
    McManus, J., Berelson, W.M., Klinkhammer, G.P., et al. Geochemistry of barium in marine sediments:Implications for its use as a paleo-proxy. Geochimica et Cosmochimica Acta,1998,62(21-22):3453-3473.
    Mutti, E., Ricci Lucchi, R, Seguret, M., et al. Seismoturbidites:a new group of resedimented deposits. Marine Geology,1984,55(1-2):103-116.
    Nakajima, T., Kanai, Y. Sedimentary features of seismoturbidites triggered by the 1983 and older historical earthquakes in the eastern margin of the Japan Sea. Sedimentary Geology, 2000,135(1-4):1-19.
    Nanayama, F., Shigeno, K., Satake, K., et al. Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology, 2000, 135:255-264.
    Ninkovich, D. Distribution, age and chemical composition of tephra layers in deep-sea sediments off western Indonesia. Journal of Volcanology and Geothermal Research, 1979,5:67-86.
    Ninkovich, D., Sparks, R., Ledbetter, M. The exceptional magnitude and intensity of the Toba eruption, Sumatra: An example of the use of deep-sea tephra layers as a geological tool. Bulletin of Volcanology, 1978,41:286-298.
    Nishimura, S., Abe, E., Yokoyama, T., et al. Danau Toba—he outline of Lake Toba, North Sumatra, Indonesia, Paleolimnology Lake Biwa Japan Pleistocene, 1977, 5: 313-332.
    Paris, R., Lavigne, F., Wassmer, P., et al. Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Marine Geology.2007, 238(1-4):93-106.
    Paris, R., Wassmer, P., Sartohadi, J., et al. Tsunamis as geomorphic crises:Lessons from the December 26,2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Geomorphology.2009,104(1-2):59-72.
    Passega R.Grain size representation by CM patterns as a geological tool. Jour. Sed. Petrology,1964, 34:830-847.
    Pattan, J.N., Shane, P., Banakar, V.K. New occurrence of Youngest Toba Tuff in abyssal sediments of the Central Indian Basin. Marine Geology, 1999, 155:243-248.
    Prins, M.A., George, P. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea. Geology.2000, 28(4): 375-378.
    Rampino, M.R., Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 1992,359:50-52.
    Rhodes, B., Martitia, T., Benjamin,H., et al. Paleoteunami research. Eos, Transactions American Geophysical Union, 2006, 87(21):205-209.
    Rose, W.I., Chesner, C.A. Dispersal of ash in the great Toba eruption. Geology,1987,15: 913-917.
    Sakai, T., Masuda, F. Slope turbidite packets in a fore-arc basin fill sequence of the Plio-Pleistocene Kakegawa Group, Japan:their formation and sea-level changes. Sedimentary Geology.1996,104(1-4):89-98.
    Schulz, H., Emeis, K., Erlenkeuser, H., et al. The Toba Volcanic Event and Interstadial/Stadial Climates at the Marine Isotopic Stage 5 to 4 Transition in the Northern Indian Ocean. Quaternary Research,2002,57:22-31.
    Schwalbach, J.R., Edwards, B.D, Gorsline, D.S. Contemporary channel-levee systems in active borderland basin plains, California Continental Borderland. Sedimentary Geology,1996,104(1-4):53-72.
    Sejrup, H.P., Haflidason, H., Aarseth, I., et al. Late Weicheselian glacialtion history of the northern North Sea. Boreas,1994,23:1-13.
    Shackleton, N.J., and Opdyke, N.D. Oxygen isotopic and paleomagnetic stratigraphy of equatorial Pacific core, V28-238:Oxygen isotope temperatures and ice-volume on a 105 year and 106 year scale.1973,3:39-55.
    Shackleton, N.J. Oxegen isotope, ice volume and sea level. Quaternary Science reviews, 1987,6:183-190.
    Shane, P., Westgate, J., Williams, M., et al. New Geochemical Evidence for the Youngest Toba Tuff in India. Quaternary Research,1995,44:200-204.
    Song, S.R., Chen, C.H., Lee, M.Y., et al. Newly discovered eastern dispersal of the youngest Toba Tuff. Marine Geology,2000,167:303-312.
    Srisutam, C, Wagner, J. Reconstructing tsunami run-up from the characteristics of tsunami deposits on the Thai Andaman Coast. Coastal Engineering.2009,257(1-4): 54-64.
    Stow, D.A.V., Cochran, J.R., and ODP Leg 116 Shipboard Scientific Party. The Bengal Fan:some preliminary results from ODP drilling. Geo-Mar. Lett.1989,9: 1-10.
    Sun, D.H., Bloemendal, J., Rea, D.K., et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian envi-ronments, and numerical partitioning of the sedimentary compo-nents. Sedimentary Geology,2002,152:263-277.
    von Stackelberg, U.Faziesverteilung in Sedimenten des indischpakistanischen Kontinentalrandes (Arabisches Meer). "Meteor" Forsch.-Ergebnisse, Reihe,1972, C9:1-73. [In German]
    Wang, C.H., Chen, M.P., Lo, S.C. et al. Stable isotope records of late Pleistocene sediments from the South China Sea. Bull. Inst. Earth Sci., Academia. Sinica, Taipei, 1986,6:185-195.
    Weaver, P.P.E., Kuijpers, A. Climatic control of turbidite deposition on the Madeira Abyssal Plain. Nature.1983,306:360-363.
    Westgate, J.A., Shane, P.A.R., Pearce, N.J.G., et al. All Toba Tephra Occurrences across Peninsular India Belong to the 75,000 yr B.P. Eruption. Quaternary Research,1998, 50:107-112.
    Williams, D.F., Thunell, R.C., Tappa, E.J., et al. Chronology of the Pleistocene oxygen isotope record:0-1.88 Ma before present. Palaeogeography, Palaeoclimatology, Palaeoecology,1988,64:221-240.
    Xiao Ju-le, Zheng Hong-bo, Zhang Hua. Variation of winter monsoon intensity on the Loess Plateau, Central China during the last 130000 years:evidence from the grain size distribution. Quaternary Research,1992,31:13-19.
    Young, R. W., Bryant, E. A. Coastal Rock Platforms and Ramps of Pleistocene and Tertiary Age in Southern New South Wales, Australia. Zeitschrift fur Geomorphologie, 1993,37:257-272.
    Young, R. W., Bryant, E. A. Coastal Rock Platforms and Ramps of Pleistocene and Tertiary Age in Southern New South Wales, Australia. Zeitschrift fur Geomorphologie, 1993,37:257-272.
    陈芳,李学杰,刘坚等.南海西部深海平原SA1434岩心浊流沉积特征.南海地质研究.2007(1):31-39.
    党皓文,翦知滑,Franck B西菲律宾海末次冰期以来的浊流沉积及其古环境意义.第四纪研究,2009,29(6):1078-1085.
    邓宏文,钱凯.沉积地球化学与环境分析.兰州:甘肃科学技术出版社,1993:10-31.
    杜远生,韩欣.论震积作用和震积岩.地球科学进展,2000,15(4):389-394.
    方念乔,陈学方,胡超涌等.东北印度洋深海记录基本特征及其对青藏高原隆升的响应.第四纪研究,2001,21(6):490-498.
    方习生,石学法,王昆山等.琉球群岛以东海域表层沉积物元素地球化学特征.海洋科学进展,2006,24(1):9-16.
    国家技术监督局.海洋调查规范(GB/T 13909-92),附录D,1992.
    何起祥,李绍全,刘健.海洋碎屑沉积物的分类.海洋地质和第四纪地质,2002,22(1):115-121.
    翦知湣,成鑫荣,赵泉鸿等.南海北部近6Ma以来的氧同位素地层与事件.中国科学(D辑),2001,31(10):816-822.
    金秉福,林晓彤,季福武等.东海钓鱼岛北侧Q43柱状样上更新统的沉积.海洋地质与第四纪地质,2005,25(1):25-31.
    金秉福,林振宏,季福武.海洋沉积环境和物源的元素地球化学记录释读.海洋科学进展,2003,21(1):99-106.
    李国胜,杨锐,张洪瑞.中太平洋第四纪沉积物地球化学特征及沉积环境.沉积及特提斯地质,2007,27(3):33-43.
    李军,高抒,孙有斌.冲绳海槽南部A23孔浊流沉积层的粒度特征.海洋地质与第四纪地质.2005,25(2):11-16.
    李绍全,李西双,陈正新等.东海外陆架EA01孔末次冰期最盛期的三角洲沉积.海洋地质与第四纪地质,2002,22(3):19-25.
    李双林.海洋事件地球化学:一门很有前途的发展学科.海洋地质动态,1997,12:1-4.
    刘嘉麒,倪云燕,储国强.第四纪的主要气候事件.第四纪研究,2001,21(03): 239-248.
    刘建国,李安春,徐兆凯.全新世以来渤海湾沉积物的粒度特征.海洋科学,2006,30(3):60-64.
    刘勇勤.晚中新世以来东北印度洋赤道海岭的远洋沉积记录及其环境意义.北京:中国地质大学,2002.
    梅西,郑洪波,黄恩清等.南海南部近50万年来沉积物特点及古环境意义.海洋地质与第四纪地质,2007,27(4):77-84.
    孟宪伟,王永吉,吕成功.冲绳海槽中段沉积地球化学分区及其物源指示意义.海洋地质与第四纪地质,1997,17(3):37-43.
    欧阳自远,王世杰.地外物体撞击与地球演化.科学(上海),1996,48(2):24-28.
    秦蕴珊,赵一阳,陈丽蓉等.东海地质.北京:科学出版社,1987:28-91.
    邱中炎,韩喜球,王叶剑等.海啸预警与第四纪古海啸沉积记录研究进展.海洋学研究,2009(3):67-73.
    饶孟余,钟建华,赵志根等.浊流沉积研究综述和展望.煤田地质与勘探,2004,32(6),1-4.
    石学法,陈丽蓉.西菲律宾海晚第四纪沉积地球化学特征.海洋与湖沼,1995,26(2):124-131.
    隋淑珍,刘嘉麒,郭正府等.火山灰的提取及测试技术.地学前缘,2003,10(1):111-116.
    陶春辉,戴黎民,孙耀等.印尼附近海域地震海啸发生的构造背景综述.海洋学研究,2008,26(2):59-66.
    汪品先,闵秋宝,卞云华等.十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义.地质学报,1986,60(3):215-225.
    王承书.东南亚的活动俯冲和碰撞.沉积与特提斯地质,2002,22(1):92-112.
    王璞君,刘万洙,单玄龙等.事件沉积:导论实例应用.长春:吉林省科学技术出版社,2001:181.
    徐杰,高祥林,陈国光等.2004年12月26日印度尼西亚8.7级大地震构造背景的初步分析.地震地质,2005,27(2):324-331.
    阎军,苍树溪,秦蕴珊.冲绳海槽Z14-6孔氧同位素地层学研究.海洋与湖沼,1990, 21(5):442-448.
    姚伯初,蓝先洪,邱燕.西沙西南海域表层沉积物的地球化学特征.海洋地质与第四纪地质,1999,18(1):23-35.
    尹秀珍,刘万洙,蓝先洪等.南黄海表层沉积物的碎屑矿物、地球化学特征及物源分析.吉林大学学报(地球科学版),2007,37(3):491-499.
    余华,李巍然,刘振夏等.冲绳海槽晚更新世以来高分辨率古海洋学研究进展.海洋科学,2005,29(1):54-58.
    张富元,章伟艳,杨群慧.南海东部海域沉积物粒度分布特征.沉积学报,2003,21(3):452-460.
    赵一阳,鄢明才.中国浅海沉积地球化学.北京:科学出版社,1994,1-203.
    周建平,陶春辉,顾春华等.印尼海啸区附近海域沉积物声速测量及声学特性分析.海洋学报,2008(3):56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700