用户名: 密码: 验证码:
大豆复合微生物肥料功能菌系的构建及包埋固定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学肥料的应用虽然促进了作物产量的提高,但若长期大量施用,就会破坏土壤结构、导致土壤肥力下降,不但使增产效益明显下降,甚至会污染环境。和化肥相比,微生物肥料在提高肥料利用率、增加作物产量和保护生态环境方面具有明显的优势。深入开展微生物肥料研究,对于实现农业可持续发展具有非常重要的意义。为此,本文针对目前大豆接种剂活体菌功能单一和剂型局限性的问题,采取田问取样、室内分离鉴定、盆栽试验和化验分析相结合的手段,开展了大豆复合菌剂功能菌株筛选、菌系构建及包埋固定化研究,系统地评价了包埋菌剂的综合性能,以期为大豆新型微生物肥料品种的开发应用提供理论依据。
     1.完成了田间采集样品的菌株分离、筛选、性能测试,并进行了分类鉴定:
     (1)获得3株大豆根瘤菌R12、R6和R18,其中R12在促进根瘤数、根瘤干重和固氮酶活性增加,改善大豆生长性状,促进养分吸收和提高等方面,均优于参照菌USDA110; R12抗逆性优于USDA110,且表现出解磷活性;R6和R18不具有解磷活性,其他各项指标与参照菌USDA110相比或相等、或略低、或略高;3株菌都属于根瘤菌属(Rhizobium sp.), R12为菜豆根瘤菌(Rhizobium etli), R6和R18同为热带根瘤菌(Rhizobium tropici)的不同菌株。
     (2)获得2株解磷细菌S7和S1。对测试的4种无机难溶磷酸盐溶P量S7为174.8mg/L、S1为167.3m∥L,较参照菌1203分别提高了5.87%和1.33%;对卵磷脂的解P量S7为49.33mg/L,S1为54.82mg/L,参照菌1203为52.93mg/L,解卵磷脂量S7略低于参照菌,S1略高于参照菌。相对而言,S7偏好溶无机磷,S1偏好解有机磷。S7和S1对无机和有机非溶性磷的总溶P量较参照菌分别提高了2.80%和1.88%。S7为芽孢杆菌属(Bacillus sp.)的成员,S1为假单胞菌属(Pseudomonas sp.)的成员。
     (3)获得1株解钾菌株Cl,培养7d时其解K量为21.31mg/L,较参照菌L-K提高了34.28%;Cl为芽孢杆菌属(Bacillus sp.)的胶冻样芽孢杆菌(Bacillus mucilaginosus)。
     2.对筛选获得的3类菌性能优良的菌株进行了拮抗性和生长关系试验,确定了能共处的菌株组合,优化了混合培养基质和培养条件,改进了培养方法:
     (1)明确了R12、S7和Cl之间无生长抑制现象,3种菌混合培养时的生长关系为R12和S7、R12和Cl生长上相互促进,S7与Cl为无关共栖关系。
     (2)优化后用于混合培养的基质成分为:甘露醇10g,酵母膏1.0g, NaCl0.1g,(NH4)2SO40.5g, K2HPO40.5g, KCl0.2g, MgSO4·7H2O1.0g, MnSO40.004g, CaCO35.0g, FeSO4·7H2O0.003g, CaCl20.1g,钾长石粉2.0g,磷矿粉5.0g,卵磷脂2.0g,Rh溶液4.0mL,蒸馏水1L。培养条件和培养方法为:按R12→S7→C1接种顺序,间隔12h,最适pH7.0,最适温度28℃。
     3.进行了组合菌系包埋固定化试验,考察包埋材料组成对包埋操作、颗粒基本性能等指标的影响,并进行了不同剂型之间菌体抗逆性比较:
     (1)初步确定包埋剂主料浓度及配比为SA3.0%-PVA3.0%,在此条件下,包埋的操作性、成球性,以及颗粒机械强度、传质性、包埋率、活菌数及其增殖倍数均较好。
     (2)优化的包埋剂组成为SA3.0%-PVA(2.5%-3.0%)-(SiO24.0%-CaCO30.3%),在此条件下,操作性、成球性和传质性较好,所得包埋颗粒呈规则球形,直径为3mm-4mm,机械强度为53.4g/g-59.6g/g,包埋率为91.4%-94.3%,经过72h增殖培养,活菌数达到1011个/g,增殖倍数为500倍以上,活菌释放率达到90%以上。
     (3)颗粒菌剂菌体的耐盐性、耐酸碱性、耐旱性、耐冷热性和耐药性等均较液体菌剂和草炭粉剂有明显的提高。
     4.化肥、草炭粉剂、包埋菌剂的大豆盆栽比较试验,综合评价了菌剂效果,并明确了较佳的施用方法:
     (1)菌剂的施用提高了大豆产量和品质,增加了大豆结瘤量、固氮量和养分吸收,改善了大豆生物学性状、土壤有效养分供应能力和土壤生物环境。
     (2)菌剂与化肥配施互作效应显著,好于单施菌剂和单施同量化肥。
     (3)包埋菌剂与半量化肥配施效果最好,各项指标均好于全量化肥处理;继续增加化肥配施量互作效应减弱。
     (4)不论单施或与化肥配合施用包埋菌剂均好于草炭粉剂。
The application of chemical fertilizers could increase yield of crops, but it would destroy soil structure, emaciate soil fertility, ruduce production efficiency, even pollute the environment if large amount of chemical fertilizers was used for long time. Microbial fertilizers had obvious advantages in improving utilization ratio of fertilizer, increasing crop yield and protecting the ecological environment compared with chemical fertilizers. Hence, it has a great meaning for agricultural sustainable development to study microbial fertilizers deeply. Because of single function and dosage forms limitation with soybean, the objectives of this study were to screen functional strains, select non-antagonize strains into combination and then immobilize the microbial flora into particles, and evaluate the overall performances of the compound microbial fertilizer for soybean. This objectives have been achieved by the field sampling, lab analysis and pot experiment, and the results of this study might provide the theoretical basis for application and development of new-type microbial fertilizers for soybean.
     1.Collected field samples, isolated and screened strains and tested their performances and identified:
     (l) Three rhizobia strains with higher nodulation and nitrogenase activity were obtained, which were R12, R6and R18. R12was superior to the reference strain USDA110in many respects, for example, the number of nodules, nodule dry weight, nitrogenase activity, and growth promotion for plants. R12also exhibited organic phosphorus solubilization activity. Neither R6nor R18has phosphate solubilization activity. Other characters of R6and R18were approaching to USDA110. All of them were identified as the genus Rhizobium. Among them, R12identified as Rhizobium etli, and R6and R18as different strains of Rhizobium tropici.
     (2)Two bacterial strains S7and S1with higher inorganic and organic phosphorus solubilization activity were obtained. The amout of dissolving insoluble phosphates of S7and S1was respectively174.8mg/L and167.3mg/L, which was5.87%and1.33%higher than that of reference strain1203. Decomposition amount of lecithin of S7and S1was respectively49.33mg/L and54.82mg/L, and which of the reference strain1203was52.93mg/L. In general, S7preferred to dissolving inorganic phosphorus, and S1preferred to decomposing organic phosphorus. The total amout of dissolved inorganic and organic phosphorus of S7and S1was2.80%and1.88%higher than that of the reference strain1203, respectively. S7was identified as the genus Bacillus, and S1as the genus Pseudomonas.
     (3) One strain marked C1with high activity of decomposing soil potassium mineral were gotten. It could release potassium21.31mg/L into solution from soil potassium mineral when cultured seven days. The amount of decomposing soil potassium mineral of C1was34.28%higher than that of the reference strain L-K. C1was identified as Bacillus mucilaginosus of the genus Bacillus.
     2.Selected the combination of strains in good performances by the antagonistic and growth relationship test for three types of strains, optimized the condition of culture and the medium component, and improved the method of culture.
     (1)R12, S7and C1could coexist. R12-S7and R12-C1could promoting growth each other while mixed culture. However, S7-C1was in relationship of independent of habitat.
     (2)Optimized medium formula was:mannitol10g, yeast extract1.0g,(NH4)2SO40.5g, K2HPO40.5g, KC10.2g, MgSO4·7H2O1.0g, MnSO40.004g, CaCO35.0g, FeSO4·7H2O0.003g, CaCl20.1g, potassium feldspar powder2.0g, rock phosphate5.0g, lecithin2.0g, Rh solution4.0mL, distilled water1L. The optimal order of inoculation was R12→S7→C1, the interval was12h. The optimal pH of mixed culture was7.0and culture temperature of mixed culture was28℃.
     3.Immobilized the flora. Studied the influence of embedding material on embedding operation and basic characters of embedded particles, and compared the bacterial stress resistances in the different dosage forms:
     (1)The basic ingredients composition was SA3.0%-PVA3.0%. Under the composition, operability and spheronization, as well as mechanical strength, mass transfer performance, embedded rate, the number of viable cells and their proliferation times were better than other ingredients composition.
     (2) Under the optimized embedding medium [SA3.0%-PVA (2.5%-3.0%)-(SiO24.0%-CaCO30.3%)], operability, spheronization and mass transfer performance were clearly inproved. The particles presented regular ball with diameter of3-4mm, the mechanical strength was53.4-59.6g/g, and the embedded rate was91.4-94.3%. After72h proliferation, the number of viable cells reached magnitude1011per gram of the embedded particles. Proliferation multiples was500times more than no embedded strains, and the rate of releasing viable cells was90%higher than no embedded strains.
     (3) The salt tolerance, the acid-base tolerance, the drought tolerance, the hot tolerance and the drug tolerance were stronger than no embedded strains.
     4.Evaluated the effects of the microbial agents and ensured its application methods by the pot trial in which chemical fertilizer, peat inoculant and the embedded particles were respectively used.
     (1) The yield and quality of soybean were improved, the amount of nodulations, nitrogen fixation and nutrient absorption were increased, and the biological characteristics of plants, available nutrient supplication and biological environment of soil were better by using the microbial agents than control treatment.
     (2) The effects of applying the the microbial agents combined with chemical fertilizers were better than that of only using the same amount of chemical fertilizers or t the microbial agents.
     (3) That the efficiency of combining the embedded particles and half amount of chemical fertilizers was better than that of full amount of chemical fertilizer treatment. But the interaction effects were weakened while increasing the amount of chemical fertilizers continuely.
     (4) The effects of the embedded particles were always better than peat inoculant whether used alone or mixed with chemical fertilizers.
引文
1.鲍士旦.2005.土壤农化分析(第3版).北京:中国农业出版社.
    2.曹宝玲,吴细华,葛诚.2008.复合微生物肥料的生产及应用探讨.北京:中国热带农业.
    3.陈红,李平,王玲霞,等.2001.混合培养提高水稻纹枯病生防效果的研究.中国农学通报,(5):1-5.
    4.陈芳艳,梁林林,唐玉斌等.2007.PVA/累托石复合载体固定菲降解菌的研究[J].工业水处理,11,27(11):19-22.
    5.陈敏.1994.PVA包埋活性炭与微生物的固定化技术及对水胺硫磷降解的研究.环境科学,15(3):11.
    6.陈华癸,李阜棣,陈文新.1981.土壤微生物学.上海:上海科学技术出版社,225-229.
    7.陈廷伟,陈华癸.1960.钾细菌的形态生理及其对磷钙矿物的分解能力.微生物,2(3):104-112.
    8.陈廷伟,葛诚.1995.我国微生物肥料发展趋向.土壤肥料,6:16-20.
    9.陈婉华,李元芳.微生物肥料及其发展前景.北京:中国农业科学院土壤肥料研究所.
    10.陈文新.1990.土壤和环境微生物学.北京:农业大学出版社,114-121.
    11.陈文新,汪恩涛,陈文峰.2004.根瘤菌-豆科植物共生多样性与地理环境的关系.中国农业科学,37:81-86.
    12.陈文新,汪恩涛.2011.中国根瘤菌.北京:科学出版社.
    13.陈秀蓉,南志标.2002.细菌多样性及其在农业系统中的作用.草业科学,19(9):34-38.
    14.池景良,葛英华.1999.硅酸盐细菌解钾活性的研究.微生物学杂志,19(2):43-51.
    15.慈恩,高明.2004.生物固氮的研究进展.中国农学通报,20(1):25-28.
    16.崔喜安.1999.硼钼钴配合施用对大豆产量的影响.大豆科学,18(2):173-175.
    17.崔宗军,李美丹,朴哲,等.2002.一组高效稳定纤维素分解菌复合菌系MC1的筛选及功能.环境科学,(3):36-39.
    18.丁洪,李生秀.1998.磷素营养与大豆生长和固氮的关系.西北农业大学学报,26(5):67-70.
    19.东秀珠,蔡妙英.2001.常用细菌系统鉴定手册.北京:科学出版社.
    20.董昌金,蒋宝贵.复合微生物肥料高效菌株的筛选.安微农业科学,2005,33(1):56-57.
    21.董钻.1981.大豆的器官平衡与产量.辽宁农业科学,(3):14-21.
    22.董钻,谢甫绨.1996.大豆氮磷钾吸收动态及模式的研究.作物学报,22(1):90-95.
    23.窦新田.1982.生物固氮与植物的固氮作用.北京:科学出版社.
    24.段俊英.1990.生物工程学报.6(4):344.
    25.冯树,张忠泽.2000.混合菌一类值得重视的微生物资源.世界科技研究与发展,22(3):44-47.
    26.冯树,周樱桥,张忠泽.2001.微生物混合培养及应用.微生物学通报,(3):92-95.
    27.冯瑞璋,姚拓,周万海.2006.溶磷菌和固氮菌溶解磷矿粉时的互作效应.生态学报,26(8):2764-2769.
    28.高宝岩,隋华,吕伟等.2000.生物肥料的作用特性及应用前景浅析.天津农林科技,(153):27-28.
    29.高华军,林北森,王卫军,等.2012.施用生物钾肥后减少化学钾肥对土壤养分和烤烟产质量的影响.作物杂志,3:105-109.
    30.高聚林,刘克礼,李惠智,等.2004.大豆群体对氮、磷、钾的平衡吸收关系的研究.大豆科学,23(2):106-110.
    31.葛诚,吴薇.1994.我国微生物肥料的生产、应用及问题.中国农学通报,10(3):24-28.
    32,葛诚.2000.我国微生物肥料的研究生产应用和发展趋势.北京:中国农业科学院土壤肥料研究所.
    33.葛诚.2005.我国微生物肥料的发展现状和正确使用,中国农业信息.(3):6-7.
    34.葛诚.2007.微生物肥料生产及其产业化.北京:化学工业出版社.
    35.关桂兰.1991.新疆干旱地区固氮生物资源.北京:科学出版社.
    36.关晓雪,宋书宏,董丽杰,等.2009.不同结荚习性大豆的器官平衡与产量的关系.大豆科学,28(2):221-223.
    37.郭春景.2004.微生物肥料及微生态效应研究[D].东北林业大学学位论文.
    38.郭金玲,李炜,郑秋红,等.2007.微生物菌群之间配比协调关系的研究.河南农业科学,(9):106-109.
    39.海洪.1990.中国抗生素杂志,6(4):344.
    40.韩梅,李天华,彭帅,等.2012.微生物肥料的包埋固定化研究.植物营养与肥料学报,18(4):999-1005.
    41.韩晓日,马玲玲.2007.长期定位施肥对棕壤无机磷形态及剖面分布的影响.水土保持学报,21(4):51-54,144.
    42.韩艳忠,李超敏,韩梅*.2006.细胞固定化技术—海藻酸钠包埋法的研究进展.安徽农业科学,34(7):1281-1282,1284.
    43.郝晶,洪坚平,刘冰.2006.石灰性土壤中高效解磷细菌菌株的分离、筛选及组合应用.环境生物学报,12(3):404-408.
    44.何庆元,胡艳,王永雄.2002.生态环境对根瘤菌竞争结瘤影响的研究进展.大豆科学,23(1):66-70.
    45.何荣军,杨爽等.2010.SA/壳聚糖微胶囊的制备及其应用研究进展.食品与机械,26(2):166-169.
    46.胡可,李华兴,卢维盛,等.2010.生物有机肥对土壤微生物活性的影响.中国生态农业学报,18(2):303-306.
    47.胡小加,江木兰,张银波,等.2004.固定化植物促生菌的存活性研究[J].中国油料作物学报,26(3):54-56.
    48.胡学玉,曾希柏,叶志华.2000.中国生物肥料构成及开发利用.湖北农业科学,6:36-39.
    49.黄建辉,白永飞,韩兴国.2001.物种多样性与生态系统功能:影响机制及有关假说.生物多样性,1-7.
    50.黄秀梨.1999.微生物学实验指导.北京:高等教育出版社.
    51.冀世奇,刘晨光,张晓华.2010.海洋微生物包埋培养及应用研究进展.中国海洋大学学报,40(4):53-59.
    52.姜成林,徐丽华.1997.微生物资源开发利用.中国轻工业出版社,140-142.
    53.江丽华,王梅,张文军,等.2010.固氮、解磷、解钾混合菌株协同固定化技术.中国农学通报,26(12):18-21.
    54.姜瑞波,张晓霞.2002.微生物肥料的种类及其应用.磷肥与复肥,17(3):10-11.
    55.蒋先军,谢德体,杨剑虹,等.1999.硅酸盐细菌对矿粉和土壤的解钾强度及来源研究.西南农业大学学报,21(5):473-476.
    56.蒋宇红,黄霞,俞毓馨,等.1993,几种固定化细胞载体的比较.环境科学,14(2):11-15.
    57.靖元孝,陈北平.1996.广东两种决明属(Cassia)植物根瘤菌的生物学特性.热带亚热带植物学报,15(1):41-43.
    58.焦如珍,彭玉红.2010.海南岛热带木本豆科植物根瘤菌的溶磷作物.林业科学,46(10):1-5.
    59.金晓梅,Cинеегов ская B Y.赵念力.2009.根瘤菌、微肥和作物生长调节剂对大豆氮磷钾积累和产量的影响.大豆科学,28(4):751-754.
    60.康白.1988.微生态学[M].大连:大连出版社.
    61.李冰宇,陈殉,肖军,等.2011.新型生物制剂“易丰收”对大豆促生效应及根际微生物影响研究.中国农学通报,27(7):73-77.
    62.李超敏,韩梅,张良,等.2006.细胞固定化技术—SA包埋法的研究进展.安徽农业科学,34(7):1281-1282,1284,
    63.李繁,涂然,陈三凤.2006.7株解有机磷细菌的分离和鉴定.农业生物技术学报,14(4):600-605.
    64.李峰.2000.聚乙烯醇作为固定化细胞包埋剂的研究.中国给水排水,16(12):14-17.
    65.李剑锋,张淑卿,师尚礼,等.2010.低有效磷条件下溶磷根瘤菌对苜蓿幼苗结瘤和生长的影响.第八届博士生学术年会论文摘要集.
    66.李鸣雷,谷洁,高华,等.2007.不同有机肥对大豆植株性状、品质和产量的影响.西北农林科技大学学报(自然科学版),35(9)67-72.
    67.李勤生,卫翔.1998.混合培养对光合细菌生长量的影响.水生生物学报,(6):101-105.
    68.李星洪,向风鸣.1998.花生施用微生物肥的作用和增产效果初探[J].土壤肥料,(2):35-37.
    69.李元芳.1994.硅酸盐细菌肥料的特性和作用.土壤肥料,(2):48-49.
    70.李远明,申庆龙,张凤泉,等.2002.生物有机肥在优质大豆生产中应用效果的研究.大豆通报,3:7.
    71.李振高,罗永明,滕应.2008.土壤与环境微生物研究法.北京:科学出版社.
    72.连宾.1998.硅酸盐细菌的解钾作用研究.贵阳:贵州科技出版社,95-102.
    73.连宾,傅平秋,莫德明,等.2002.硅酸盐细菌解钾作用机理的综合效应.矿物学,22(2):179-183.
    74.林启美,孙炎鑫.2001.细菌解磷能力测定方法的研究.微生物学通报,28(1):1-4.
    75.林启美,王华,赵小蓉,等.2001.一些细菌和真菌的解磷能力及其机理初探.微生物学通报,28(2):26-30.
    76.刘春梅,张兴梅,王鹏,等.2010.不同施肥处理对大豆生理性状及产量的影响.辽宁农业科学,(4):28-30.
    77.刘健等.2001.微生物肥料作用机理的研究新进展.微生物学杂志,21(1):33-36.
    78.刘建红,王雷荣.2009.SA、PVA包埋固定化技术对紫色非硫光合细菌脱氢酶活性影响的试验研究.安全与环境工程,16(3):54-56
    79.刘克礼,高聚林,王立刚.2004.大豆对氮、磷、钾的平衡吸收动态的研究,中国油料作物,16(1):51-54.
    80.刘蕾.2005.生物固定化技术中的包埋材料.净水技术,24(1):40-42.
    81.刘蕾,姜灵彦.2008.包埋固定化微生物的特性研究.环境科学与管理,33(6):56-58.
    82.刘丽丽,李淑高.1994.PK菌肥的菌种筛选及应用研究.南开大学学报,27(3):82-86.
    83.刘丽丽,王金华.1995.磷细菌和钾细菌混合培养的研究.南开大学学报(自然科学版),28(3):21-25.
    84.刘丽生.2001.生物肥料的作用特点和发展趋势.黑龙江农业科学,(5):30-31.
    85.刘莉.周俊初,陈华癸.1998.不同化合态氮浓度对大豆根瘤菌结瘤和固氮作用的影响.中国农业科学,31(4):87-89.
    86.刘灵芝,陈玉玲,陈志刚,等.2007.北方地区大豆根瘤菌生物学特性.土壤通报,38(1):141-144.
    87.刘清海,姚拓,马从,等.2011.6株溶磷菌和4株固氮菌混合培养条件的研究.草原与草坪,31(6):1-6。
    88.刘晓云,陈文新,陈文峰.2002.根瘤菌的系统发育及其分类研究进展.微生物学通报29(5):73-76.
    89.龙健,李娟,龙明兰,等.2000.硅酸盐细菌对含钾矿粉和土壤的解钾作用研究进展.贵州师范大学学报(自然科学版),18(1):77-81.
    90.龙苏,李洪峰,陈明,等.2000.氮球形芽孢杆菌与大豆根瘤菌的混合增效作用.14(6):337-341.
    91.吕学斌,孙亚凯,张毅民.2007.几株高效溶磷菌株对不同磷源溶磷活力的比较.农业工程学报,23(5):195-197.
    92.陆引罡,钱晓刚,龙健.1999.硅酸盐细菌对含钾矿物的解钾作用.贵州农业科学,27(3):26-28.
    93.罗明文,启凯,慕玉俊,等.2001.不同施肥措施对新疆地区棉田土壤磷细菌及磷转化强度的影响.土壤与环境,10(4):316-318.
    94.马放,杨基先,金文标.2004.环境生物制剂的开发与应用.化学工业出版社,78-91.
    95.马旅雁,李季伦.1997.巴西螺菌Yu62 draTG基因启动子区域的核着酸序列分析及其功能分析.生物工程学报,13(4):343-349.
    96.梅汝鸿.1998.植物微生态学.北京:农业出版社.
    97.苗淑杰,乔云发,韩晓增.2009.磷和根瘤菌交互作用对大豆结瘤和生长的影响.大豆科学,4(2):271-274.
    98.闵航,郑耀通,钱泽澍,等.1994.PVA包埋厌氧活性污泥处理废水的最优化条件[J].环境科学,15(5):10-14.
    99.宁国赞,刘惠琴,马晓彤.1998.豆科根瘤菌及其应用技术.河南:中原农民出版社.
    100.裴海燕,胡文荣,李力,等.2001.聚氧化乙烯作为固定化的研究.山东工业大学学报,31(6):511-518.
    101.蒲一涛,钟毅沪,正宗坤.2000.混合培养对固氮菌和纤维素分解菌生长及固氮的影响.氨基酸和生物资源,22(1):1-4.
    102.仇志华,徐振桐,冷如新.1999.施用阿姆斯生物肥土壤养分的变化研究[J].中国农学通报,15(4):59-60.
    103.丘元盛,莫小真.1981.稻根联合固氮菌的研究Ⅰ:菌种的分离.微生物学报,21(4):468-472.
    104.盛下放,黄为一,殷永娴.2000.硅酸盐菌剂的应用效果及其解钾作用的初步研究.南京农业大学学报,23(1):43-46.
    105.盛下放,黄为一.2002.硅酸盐细菌N B T菌株解钾机理初探.土壤学报,39(6):863-871.
    106.师尚礼.2005.甘肃寒旱区苜蓿根瘤菌促生能力影响因子分析及高效促生菌株筛选研究.甘肃农业大学博士学位论文.
    107.孙建光,陈婉华,谢应先,等.1995.我国微生物肥料、螺旋藻的生产应用现状和展望.北京:中国农科院土壤肥料研究所.
    108.孙淑荣,吴海燕,杨天宇等.2005.大豆根瘤菌吸附剂的选择及样品检测.吉林农业科学,30(5):51-53.
    109.孙亚凯.2006.功能性微生物菌株的筛选及组合菌群活性研究[M].天津:天津大学学位论文.
    110.孙焱鑫,姚军刑,礼军.2001.解钾菌与解磷菌及固氮菌的相互作用.生态学杂志,21(2):71-73.
    111.唐勇,陆玲,杨启银,等.2001.解磷微生物及其应用的研究进展.天津农业科学,7(2):1-5.
    112.陶光灿,周立刚.2004.细菌组合的固氮、解磷与抗病能力及不同培养条件的影响.中国农业大学.
    113.童群义,陈坚等.2000.PVA-卡拉胶混合载体固定华大肠杆菌酵母菌混合体系生产谷光甘肽.工业微生物,30(4):1-5.
    114.王光华,赵英,周德瑞等.2003.解磷菌的研究现状与展望.生态环境,12(1):96-101.
    115.王光祖.2005.微生物肥料对土壤肥力的影响.上海农业科技,(1):101-102.
    116.王晶,许修宏.2008.不同根瘤菌、大豆品种、土壤类型对固氮酶活性的影响.东北农业大学学报,39(9):36-39.
    117.王康林,韩效钊,张雪琴,等.2005.硅酸盐细菌的选育与解钾性能研究.化工矿物与加工,(2):25-27.
    118.王立刚,李维炯,邱建军,等.2004.生物有机肥对作物生长、土壤肥力及产量的效应研究.土壤肥料,(5):12-16.
    119.王连铮,郭庆元.2007.现代中国大豆。北京:金盾出版社出版、总发行.
    120.王梅,刘兆辉,江丽华,等.2009.巨大芽孢杆菌固定化包埋材料的初步研究.江西农业学报,(12):57-59.
    121.王庆胜.2010.根瘤菌对大豆产量及品质的影响.黑龙江农业科学,(9):138,147.
    122.王卫卫,胡正海,2003.几种生态因素对西北干旱地区豆科植物结瘤固氮的影响.西北植物学报,23(7):1163-1168.
    123.王新,李培军,巩宗强,等.2001.固定化细胞技术的研究与进展[J].农业环境保护,20(2):120-122.
    124.王志,花爱军.2003.固氮、解磷、解钾细菌制剂的肥效试验.辽宁农业科学,6:7-8.
    125.翁庆北,纪黔生.2000.固定化酵母发酵废糖蜜生产酒精.贵州师范大学学报,18(3):49-51.
    126.吴建峰,林先贵.2002.我国微生物肥料研究现状及发展趋势.土壤,34(2):68-73.
    127.吴李国,章悦庭,胡绍华.2001.PVA水凝胶的制备及应用进展.东华大学学报(自然科学版),27(6):114-118.
    128.吴思方,陈九武.1996.固定化酵母载体的研究及应用.武汉食品工业学院学报,3:26-35.
    129.吴薇,葛诚.1995.我国微生物肥料生产和应用现状的调查和研究.微生物学通报,23(2):104-107.
    130.吴晓磊,刘建广,黄霞,等.1993.海藻酸钠和聚乙烯醇作为固定微生物包埋剂的研究.环境科学,14(2):28-31.
    131.吴鑫颖,邱树毅.2008.磷酸根离子对固定化酵母细胞传质效果改善的研究。酿酒,35(1):82-84.
    132.向达兵,郭凯,杨文钰,等.2010.磷、钾营养对套作大豆钾素积累及利用效率的影响.植物营养与肥料学报,16(3):668-674.
    133.肖美燕,徐尔尼,陈志文.2003.包埋法固定化细胞技术的研究进展.食品科学,24(4):158-161.
    134.谢航,邱宏端,李中伟,等.2007.多菌种微生物混合培养的条件及生长关系研究.福州大学学报(自然科学版),35(2):302-307.
    135.谢运河,李小红,王同华,等.2011.玉米/大豆间作条件下根瘤菌与氮肥互作对大豆产量和品质的影响.作物杂志,4:54-57.
    136.熊春林,黄隆广,丁磊,等。1989.根瘤菌新载体及其接种效果的研究.微生物学通报,16(2):66-69.
    137.熊海燕,王卫国,王存文等.2004.混合菌培养及其在工业上的应用.贵州化工,29(3):16-18.
    138.徐传瑞,2004.高效固氮大豆根瘤菌的筛选和鉴定.南京:华中农业大学硕士论文.
    139.徐大勇,李峰,贺雪丽.2006.硅酸盐细菌的分离及其解钾活性的初步研究.淮北煤炭师范学院学报,27(4):42-44。
    140.许光辉,郑洪元主编.1986.土壤微生物分析方法手册.北京:农业出版社.
    141.许前欣.2000.微生物肥料农业应州的效益评价.大津积业科学,6(2):44-46.
    142.薛红.2009.增施氮、磷、钾和有机肥对大豆产量、品质的影响及经济效益分析.安徽农学通报,15(7):109-110.
    143.薛泉宏,张宏娟,蔡艳等.2002.钾细菌对江西酸性土壤养分活化作用研究.西北农林科技大学学报,30(1):38-42.
    144.薛伟明,于炜婷,刘袖洞等.2004.载细胞SA/壳聚糖微胶囊的化学破囊方法研究.高等学校化学学
    报,25(7)1342-1346.
    145.薛晓昀,冯瑞华,关大伟,等.2011.大豆根瘤菌与促生菌复合系筛选及机理研究.大豆科学,30(4):613-620.
    146.薛智勇,汤江武,钱江等.1996.硅酸盐细菌在不同土壤中的解钾作用及对甘薯的增产效果.土壤肥料,(2):23-26.
    147.B.T.亚历山大罗夫著(叶维青译).1955.硅酸盐细菌,北京:科学出版社.
    148.杨翠红,邱慧珍,李亚娟.2007.溶磷细菌对不同性质磷矿粉的溶磷效果研究.土壤通报,38(6):1240-1242.
    149.杨海波,于媛,张欣华.2001.小球藻固定化培养的研究.水产科学,20(5):4-7.
    150.杨江科,周琴,周俊初.2001.pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响.应用生态学报,8(12):639-640.
    151.杨新玉,王纯立,谢志刚,等.2008.微生物肥对土壤微生物种群数量的影响.新疆农业科学,45(S1):169-171.
    152.杨延春,刘德斌,殷汝成.2007.常青藤复合微生物肥在棉花生产中应用研究.上海农业科技,(2):35-36.
    153.饶正华,林启美,孙炎鑫.2002.解钾菌与解磷菌及固氮菌的相互作用.生态学杂志,21(2):71-73.
    154.殷永娴,李冬梅.1995.一株钾细菌形状与功能研究.南京农业大学学报,15(增刊):62-67.
    155.尹瑞玲.1985.我国旱地土壤溶磷微生物:土壤,20(5):243-246.
    156.尤崇构等,1987.生物固氮.北京:科学出版社.
    157.于彩虹,许前欣,孟兆芳.2000.生物菌肥对蔬菜品质的影响.天津农业科学,6(2):20-29.
    158.袁田,熊格生,刘志,等.2009.微生物肥料的研究进展.湖南农业科学,(7):44-47.
    159.曾定.1987.固氮生物学.厦门:厦门大学出版社.
    160.曾小红,马焕成.2005.根瘤菌的抗旱性研究进展.西南林学院学报,25(3):80-83.
    161.占新华.1999.微生物制剂促进植物生长机理的研究进展.植物营养与肥料学报,1999,5(2):97-105.
    162.张华峰,胡建成,黄巨富,等.2002.生物固氮在农业生产中的应用现状与展望.自然杂志,24(3):136.
    163.张辉,李维炯,倪永珍.2006.生物有机无机复合肥对土壤性质的影响.土壤通报,37(2):273-277.
    164.张克旭.1986.海藻酸钠作为固定化微生物包埋剂载体的研究.生物工程学报,2(3):66-69.
    165.张书祥,李宁等.1999.固定化酵母连续发酵生产酒精工业应用的研究.生物学杂志,16(3)27-28.
    166.张希涛,康丽华,马海滨,等.2007.具有溶磷能力的相思根瘤菌16SrDNA序列分析.安徽农业科学,24:7427-7429.
    167.张希涛,康丽华,马海滨,等.2008.具有溶磷能力的相思根瘤菌的筛选.林业科学研究,21(5):619-624.
    168.张亚玉,孙海,吴连举.2010.多功能微生物制剂对农田栽参土壤容重及人参皂苷的影响研究.特产研究,(1):35-48.
    169.张毅民,万先凯.2003.微生物菌群在生物有机肥制备中的进展.化学工业与工程,20(6):521-527.
    170.赵晨曦,刘前刚,张志元.2004.解钾细菌解磷解钾能力的研究.湖南农业大学学报(自然科学版),30(6):519-521.
    171.赵小蓉,林启美.2000a.四种不同生态环境中解磷细菌的数量及种群分布.土壤与环境,9(1):34-37.
    172.赵小蓉.2000b.微生物解磷的机理及其影响因素的研究[D].北京:中国农业大学.
    173.赵小蓉,林启美,李保国.2002.溶磷菌对4种难溶性磷酸盐溶解能力的初步研究.微生物学报,42(2):236-241.
    174.赵小蓉,林启美,孙焱鑫,等.2001.细菌解磷能力测定方法的研究.微生物学通报,28(1):1-4.
    175.赵艳,张晓波,郭伟.2009.不同土壤胶质芽孢杆菌生理生化特征及解钾活性.生态环境学报,18(6):2283-2286.
    176.钟传青.2005.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化,土壤学报,(2):286-294.
    177.中华人民共和国农业部.2007.中华人民共和国农业行业标准(肥料合理使用准则微生物肥料NY1535-2007).
    178.钟姬铃,汤岳琴.1996.PVA混合载体固定化枯草杆菌的研究.化学反应工程与工艺,12(1):96-100.
    179.中野.1990.水处理技术,31(3):13-16.
    180.周剑平,祝英,王治业,等.2011.固定化微生物细胞技术研究及应用.第三届全国微生物资源学术暨国家微生物资源平台运行服务研讨会会议论文摘要.
    181.周克琴,王光华,金剑,等.2003.土壤微生物对提高植物磷素营养的作用.农业系统科学与综合研究,19(3):232-236.
    182.朱宝国,于中和,王囡囡,等.2010.有机肥和化肥不同比例配施对大豆产量和品质的影响.大豆科学,29(1):97-100.
    183.朱昌雄,孙东园,姬红军.2006.微生物与农业可持续发展.北京:中国农业科学院生物防治研究所.
    184.朱鸣.2001.硝化细菌包埋固定化及其在废水处理中的应用.环境保护,16:4-6.
    185.邹来福,占志祥.1993.生物钾肥在农作物上的应用技术研究.江西农业科学,(5):16-18.
    186.左元梅,刘永秀,张福锁.2003.N03-态氮对花生结瘤与固氮作用的影响.生态学报,23(4):758-764.
    187. Aaea P E A, Kucey R M N, Stewart J W B.1988. Inorganic phosphate solublization by two Penicillium species in solution culture and soil. Soil Boil Biochem,20:459-464.
    188. Ahlawat A, Jain V, Nainawatee H S.1998. Effect of low temperature and rhizospheric application Of narillgenin on pea-Rhizobium leguminosarum biovar viciae symbiosis. Journal of Plant Biochemistry and Biotechnology,7(1):35-38.
    189. Alva A K, Edwards D G.,Asher C J et al,1987. Effects of acid soil infertility factors on growth and nodulation of soybean. Agronomy Journal,79:302-306.
    190. A. V. Rao, B. venkateswarelu and P.icaul.1982. Isolation of phosphate dissolving soil actinomycete. Curr Sci(Bongalore),51(23):1117-1118.
    191. Aaea P E A, Kucey R M N, Stewart J W B.1988. Inorganic phosphate solublization by two penicillium species in solution culture and soil. Soil Boil Biochem,20:459-464.
    192. Agnihotri V P,1970. Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can. J. Microbiol,877-880.
    193. Andreev P I, Andrccva G S, Sidyakina G G.1992. Biofolation, its possibilitics and prospects. Razucd okhr Nedr,2:27-28.
    194. Andrew H Bosworth, Mark K.,1994. Williams, KennethA. Albrecht. Alfalfa yield response to inoculation with Recombinant strains of rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Applied and Environmental Microbiology,60:3815-3832.
    195. Barbara Krajewska.2004. Application of chitin-and chitosan-based materials for enzyme immobilizations:a review. Enzyme and Microbial Technology,35:126-139.
    196. Barbora Pivni c kova, Eli s ka Rejmdnkova, Jenise M. Snyder, et. al.2010. Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities:the effects of phosphorus addition and plant species. Plant Soil 336:49-63.
    197. B. S. Kundu and A.. A. Gaur.1980.Effect of phosphor bacteria on the yield and phosphate uptake of potato crop. Current Science,49:159-160.
    198.Bashan Y,Holguin G.1997.Azospirillum-plant relationships:environmental and physiological advance(1990-1996).Can J Microbiol,43:103-121.
    199. Bashan Y.1998. Inoculant of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances,16(4):729-770.
    200. Belimov A A, Kojemiakov A P, Chuvarliyeva C V.1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant and Soil, 173:29-37.
    201.Brewin N J.1991. Development of the legume root nodule. Ann Rev Cell Biol, (7):191-226.
    202. Brockwell J, Bottomley P J,1995. Recent advances in Inoculant technology and prospects for the future. Soil Biochem.,27(4):683-697.
    203. Carbery JB.1992. Model of algal bacterial clay wastewater treatment system. Water Science and Technology,26:7-8.
    204. Catrinus van der Sluis et. al.2000. immobilized soy-sauce yeasts development and characterization of a new polyethylene-oxide support. Biotechnology,80,179-188.
    205. Chien-Hung Liu, Jane-Yii Wu, Jo-Shu Chang.2008. Diffusion characteristics and controlled release of bacterial fertilizers from Modified calcium alginate capsules.Bioresour. Technol., (99):1904-1910.
    206. Chabot R.1996.Root colonization of maize and lettuce by bioluminescent Rhizobium Leguminosarum biovar phaseoli. Appl. Envion. Microbiol,62(8):2767-2772.
    207. Cline G R.1990. Kaul K lnhibitory effects of acidified soil on the soybean Bradyrhizobium symbiosis. Plant and Soil,127(2):243-249.
    208. Cunningham J E, Kuiack C.1992. Production of citric and oxalic acids and solubilization of calcium phosphate solublization by two Penicillium bilaii, Applied and Environmental Microbiology,58(5):1451-1458.
    209. Cooper R.1993. Bacterial fertilizers in the Soviet Union. Soils and feitilizer,22(5):327-333.
    210. Cosgrove D J.1977. Microbial transformations in the phosphorus cycle. Advances in Microbial Ecology, (1):95-134.
    211. Cunningham J E, Kuiack C.1992. Production of citric and oxalic acids and solubilization of calcium phosphate by penicillium bilaii. Applied and Environmental Microbiology, 58(5):1451-1458.
    212. Denarie J, Roche P. Rhizobium nodulation signals. In:Verma D P S.1991. Molecular Signals in Plant-Microbe Communications. Boca Raton/Ann Arber/London:CRC Press,296-324.
    213. Dursun Saraydm, H. Nursevin ztop, Erdener Karadag, A. Yasemin ztop et. al.2002. The use of immobilized saccharomyces cereisiae on radiation crosslinked acryl amide-maiefic acid hydmgel carriers for production of ethyl alcohol. Process Biochemistry,37:1351-1357.
    214. Ellott J M, Mathre D E, Sand D C.1978. Identification characterization of rhizosphere competent bacteria of wheat. Appl Environ Microbiol,53:2793-2799.
    215. Ellott J M, Mathre D E, Sand D C.1987. Identifiation and characterization of rhizospere-competent bacteria of wheat. Appl Environ Microbiol,53:2793-2799.
    216. E Elkoca, F Kantar, F Sahin.2007. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition,31(1):157-171.
    217. Erdal Elkoca, Metin turan & M. Figen Donmez.2010. Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv.phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean(Phaseolus vulgaris L. cv.'ELKoca-05'). Journal of Plant Nutrition,33(14):2104-2119.
    218. Ertola R.J., et al.1966. Process for Per Parillgviable bacteria and molds Soil.U. S. Patent,108:373-380.
    219. Erygin G D, Pchelkina V V.1995. Influence of nutritional medium treatment of microoraganisms by a magnetic field on growth and development Prikl. Biokhim. Mikrobiol, 24(2):257-263.
    220. Feng-Yan Li, Yan-Jun Xing, Xin Ding.2007. Immobilization of papain on cotton fabric by sol-gel method. Enzyme and Microbial Technology 40:1692-1697.
    221. Friedrich S.1991. Chemical and micro-biological solubilization of silicates. Acta Biotechnologica,11(3):187-196.
    222. Fuentes E R, Constantino C L, Silva E E, et al.2002. Characteristics and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time. Bioresource Technology,85:179-187.
    223. Galal Y G M.1997. Dual inoculation with strains of Bradyrhizobium japonicum and Azospirillumbrasilen.se to improve growth and biological nitrogen fixation of soybean. Boil fertile soils,24:317-322.
    224. Glukhova A A.1993. Physiloogical and biological characteristics of growth of Bacillus mucilaginosus. Mikrobiol,29(6):862-868.
    225. Geurts R T, Bisseling T. Rhizobium Nod factor perception and signaling. Plant Cell,2002,14 (2):239-249.
    226. Guo J H, Qi H Y, Guo Y H, et al.2004. Biocontrol of tomato wilt by plant-growth-promotingrhizobacteria. Biol Control,29(1):66-72.
    227. Holguin G..Bashan Y., et. al.1996. Nitrogen fixing by Azospirillum brasilense Cd is provided when co-culture with a mangrove rhizosphere bacteria. Soio Biol Biochem,28(12):1651-1660.
    228. Isono Yasuyuki, Araya Gen-ichiro, Hoshino Akira.1995. Immobilization of Saccharomyces cerevisise for ethanol fermentation on galumina particles using a spray-dryer Process Biochem,30(8):743-746.
    229. Ivanova R, Bojinova D and Nedialkova K (2006) Rock phosphate solubilization by soil bacteria. J. of the Univ. of Chemical Technol. And Metallurgy,41(3):297-302.
    230. JarSveld C. M. Van, Smit M. A.,2002. Interaction amongst soybe Genotype, soil type and inoculant strain with regard to N2 fixation. Journal of agronomy and crop science,188(3):206-211.
    231. J K.2003. Plant-growth-promotin-rhizobacteria as biofertilizeis. PlantSoil,255:571-586.
    232. J. I. Sperber.1958. Solubilization of apatite by soil microorganisms producing organic acids. Agriculture Research,9:782-787.
    233. J. P. Sharma and M. Singh.1971. Effect of phosphobacterin culture on the efficiency of phosphatic fertilizers and on the yield of maize. Indian J. of Agronomy,16(4):422-424.
    234. Jung G, Mugnier J, Diem H G, et al.1982. Polymer entrapped rhizobium as inoculant for legumas. Plant and soil,65(5):219-231.
    235. J. Yang, J. W. Kloepper, Choong-Min Ryu.2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. (14):1-4.
    236. Katznelson H, Peterson E A, Rouatt J W.1962. Phosphate-dissolving microorganisms on seed and in the root zone of plants. Can J Bot,40:11812-1186.
    237. Khannas K M, Kaiser P.1992. Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Can J Microbiol,38:794-797.
    238. Kim K Y, Jordand, Krishnan H B.1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiology Letters, 153:273-277.
    239. Kostov O, Lynch J M.1998. Composted sawdust as a carrier for Bradyhizobium, Rhizobium and Azospirillum in crop inoculation. World Journal of Microbiology& Biotechnology, 14:389-397.
    240. Krinarii G A.1995. Effect of bacillus intermedius RNase on the growth and development of Bacillus mucilaginosus. Microbiology,64(1):18-22.
    241. Kundu B S, Gaur A C.1984. Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant and Soil,79:227-234.
    242. LibbenGa K R, Bogers R J.1974. Root nodule morphogenesis in the biology of nitrogenfixation.A Quispel. Amster-dam:North Holland,427-430.
    243.Malinovskaya I M, Kosenko L V, Votselko S K, et al.1990. The role of Bacillus mucilaginosus polysaccharide in the destruction of silicate minerals. Mikrobiologiya, 59(1):70-78.
    244. Michael Collins, Duke, S. H..1981. Influence if potassium-fertilization rate and form on photosynthesis and N2 fixation of alfalfa. Crop science,21:481-485.
    245. Molla M, Chowdhury A.1984. Microbial mineralization of organic phosphate in soil. Plant and soil,78(1):393-399.
    246. Moulin L..Muniev A.,2001. NoduIation of legumes by members of the β-subelass of protcobacteria. Nature,411:948-950.
    247. Munusamy Govindarajan, Jacques Balandreau, Soon-Wo Kwon, et al.2008. Effects of the Inoculation of Burkholderia vietnamensis and Related Endophytic Diazotrophic Bacteria on Grain Yield of Rice. Microbial Ecology,55,21-37.
    248. Murray WD.1986. Appl Environ Microbiol.51(4):710-714.
    249. Narsian V, Patel H H.2000. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem,32:559-565.
    250. Nikolay Vassilev, Maria Vassileva, Rosario Azcon, et al.2001. Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil-plant system. Journal of Biotechnology,91:237-242.
    251. N. Kokalis-Burelle,J. W. Kloepper, M. S. Reddy.2006. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl. Soil Ecol.31:91-100.
    252. Palus J. A, Tiplett E. W, Ludden P. W, et al.1996. A diazotrophic bacterialendophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant and Soil,186 (1):135-142.
    253. Paul N B, Sundara R W V B.1971. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil,35:127-132.
    254. P. C. Vong,O. Dedourge, A. Guckert.2004. Immobilization and mobilization of labelled sulphur in relation to soil arylsulphatase activity in rhizosphere soil of field-grown rape, barley and fallow. Plant and Soil,258:227-239.
    255. Peix A. Rivas R. Santa-Regina I. Mateos P F, Martinez-Molina E, Rodriguez-Barrueco C and Velazquez E Pseudomonas lutea sp. nov..2004. A novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. International Journal of Systematic and Evolutionary Microbiology,54:847-850.
    256. Perret X..Staehelin C, WJ Broughton.2000. Molecular basis of symbiotic Promiscuity. Microbial and Mol. Biol. Reviews,64:180-201.
    257. Popavath Ravindra Naik.2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Mcrobiology,8:230.
    258. P. Y. Yang, H. J. Chen, S. J. Kim.2003. Integrating entrapped mixed microbial cell (EMMC) process for biological removal of carbon and nitrogen from dilute swine wastewater. Bioresource Technology,86:245-252.
    259. Raj J, Bagyaraj D J and Manjunath A.1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate dissolving bacterium on plant growth and 32P-uptake.Soil Biol Biochem,13:105-108.
    260. Ramakrishnan Srinivasan. Ajjanna R. Alagawadi. Mahesh S.2011. Characterization of phosphate-solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants. Ann of Microbiol.
    261. Reddy M S, Kumar S, Babita K, et al.2002. Biosolubilization of poorly soluble rock phospates by Aspergillus tubingensis and Asperillus niger. Bioresource Technology, 84:187-189.
    262. Reyes I, Bernier L, Simard R R, et al.1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology,28:281-290.
    263. Rivas R. Trujillo M E. Sanchez M.Mateos P F, Martinez-Molina E and Velazquez E.2004. Microbacterium ulmi sp. nov.,a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. International Journal of Systematic and Evolutionary Microbiology,54:513-517.
    264. Roos W, Luckner M.1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microb,130:1007-1014.
    265. Sanli,E. K. Solak.2009. Controlled release of naproxen from sodium alginate and poly (vinyl alcohol)/sodium alginate blend beads crosslinked with glutaraldehyde. J. Appl. Polym. Sci.112:2057-2065.
    266. S. Banik and B. K. Dey.1982. Available phosphate content of an alluvial soil asinfuenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant and Soil, 69:353-364.
    267. Slatery J. F., Pearce D. J., Slatery W J.2004. Effects of resident Rhizobiuml communities and soil type on the efective nodulation of pulse legumes. Soil Biology & Biochemistry,36:1339-1346.
    268. S. M. Nadeem, Z. A. Zahir, M. Naveed.2010. Rhizobacteria capable of producing accdeaminase may mitigate salt stress in wheat[J].Soil Sci. Soc. Am. J,74:533-542.
    269. Sommariva Corrado, Converti Attilio, Borghi,Ferraiolo Giuseppe.1992. A theorem to the evaluation of the effectiveness factor in an entrapped yeast cell column. Chem. Eng. J.,49 (2):23-28.
    270. Sperber J I.1958, Solution of apatite by soil microorganisms producing organic acids.Australia Journal of Agricultural Research,9:782-789.
    271. Sprent J. I.,1985.刘永定译.固氮生物学.北京:农业出版社.
    272. Stephens J H G, Rask H M.2000. Inoculant production and formulation. Field Crops Reseach, 65:249-258.
    273. Sundara R W V B, Sinha M K.1963. Phosphate dissolving microorganisms in the rhizosphere and soil. India J Agric Sci,33(4):272-278.
    274. Tan Z Y, Kan F L, Chen W X, et al.2001. Rhizobium yanglinggense sp. nov., isolated from arid and semi-arid regions in China. Int. J. Syst. Bacteriol.,51:909-914.
    275. Wilson D.0., Reiesnauer H. M.,1970. Root knot nematodes and legume nodules. Bacteriol.,107:257-262.
    276. Xiufang Hu, et al.2006. Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Journal of Microbiology & Biotechnology, 22:983-990.
    277. YOAV BASHAN.1986. Alginate beads as synthetic inoculant carriers forslowre-ease of bacteria that affect plant growth. Appl. Environ. Microbiol.,51(5):1089-1098.
    278. Zhansheng Wu,Yafeng Zhao, Imdad Kaleem,et al.2011. Preparation of calciumealginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eur. J. Soil Biolo., (47):152-159.
    279. Zabran H H.,1999. Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol. Mol.Biol. Rev, (63):968-969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700