用户名: 密码: 验证码:
抗白叶枯病转基因粳稻C418-Xα21代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白叶枯病是世界上影响水稻产量最严重的病害之一,控制这种病害最经济、最有效的方法是将抗性基因渗入水稻栽培品种。Xa21是最早克隆的水稻白叶枯病抗性基因,来源于非洲马里的长药野生稻,在分蘖后期具有广谱抗性,已广泛用于水稻基因工程育种;Xa23是从我国普通野生稻中鉴定发掘,目前已知的抗谱最广和抗性最强的显性基因,全生育期抗性,具有广阔的应用前景,虽尚未被克隆,已通过传统杂交结合分子标记辅助选择育种技术用于抗性水稻育种。
     本文首次利用基于气相色谱质谱联用(GC-MS)的代谢组学分析方法,结合主成分分析(PCA)、层次聚类分析(HCA)和偏最小二乘法-判别分析(PLS-DA)研究了海南陵水南繁育种基地和北京昌平环境释放基地不同播种期和环境对农杆菌介导的转化系统获得的转基因白叶枯病抗性粳稻恢复系C418-Xa21与非转基因易感亲本C418及分子标记辅助选择育种获得的抗性新品系C418/Xa23糙米代谢指纹的影响。研究发现无论是海南陵水南繁育种基地,或是北京昌平环境释放基地,C418-Xa21和C418糙米的代谢指纹图谱均表现为相似度更高,而C418/Xa23糙米具有与它们明显不同的、独特的代谢指纹图谱。两种抗性水稻品系分别与C418糙米代谢指纹图谱相比较,C418/Xa23糙米的代谢表型差异明显大于转基因水稻C418-Xa21。此外,海南陵水南繁育种基地独特的地理位置和气候条件对转基因水稻C418-Xa21和非转基因亲本C418糙米之间代谢水平上的差异程度具有显著影响,该产区的这两个不同基因型水稻糙米样本组间在第一个主成分(PCI)上不能完全分型,呈交叉分布,仅在第二个主成分(PC2)上能基本实现分型,而北京昌平环境释放基地产的C418-Xa21和C418糙米样本组间在PCI上能很好的获得完全区分。
     此外,两个产地不同播种期和环境对这三种水稻品系糙米代谢影响显著,与北京昌平基地相比较,发现在海南陵水南繁育种基地生产的这三种水稻品系糙米中一致下调的已鉴定差异代谢物分别为棕榈酸、硬脂酸、油酸、亚油酸、葡糖酸、丙氨酸和甘油,其中两个白叶枯病抗性水稻品系糙米中脂肪酸类成分下调趋势明显低于亲本C418。结合三种基因型水稻糙米GC-MS代谢指纹分析和GC-FID脂肪酸定量分析结果,我们证实了转基因水稻品系C418-Xa21糙米中易受播种期和环境影响而发生显著变化的代谢物主要为脂肪酸类成分,棕榈酸、硬脂酸、油酸和亚油酸等只在海南陵水南繁育种基地产的白叶枯病抗性水稻糙米中明显上调(P<0.05),而在北京昌平环境释放基地产的白叶枯病抗性水稻糙米中没有发现脂肪酸含量上的显著变化。另一个重要发现是,果糖和塔格糖在两种白叶枯病抗性水稻糙米中稳定下调(P<0.05),不受播种期和环境的影响,这类差异代谢物有可能作为白叶枯病抗性的潜在标志物。
     利用电感耦合等离子体原子发射光谱法(ICP-AES)技术对这三种基因型水稻糙米中的5种重要元素(钾、磷、钠、锌和铁)进行定量分析,结果表明,相对于C418水稻糙米钾元素含量在两种抗性品系水稻糙米中均显著降低10%;钠元素含量只在C418/Xa23糙米中显著减少17%锌元素含量分别在C418-Xa21和C418/Xa23糙米中显著增加24%和12%;磷元素含量只在C418/Xa23糙米中显著降低11%;铁元素含量没有发生明显变化。
     为了系统研究农杆菌介导转Xa21基因对粳稻C418不同组织(糙米、根和叶)代谢的影响,本文采用水稻温室水培技术,排除播种期、环境和土壤成分等因素对水稻代谢的干扰,以非转基因易感水稻品系C418和抗性水稻品系C418/Xa23为对照,实现了不同组织GC-MS代谢指纹图谱的快速判别分类和差异可视化。我们发现农杆菌介导Xa21基因转移对亲本C418水稻不同组织代谢上的干扰程度不同。Xa21转基因水稻糙米和根组织代谢受影响均较小,糙米中检测到9个差异代谢物,包括1个特有差异代谢物和2个与C418/Xa23糙米中相同下调趋势的果糖和塔格糖,验证了果糖和塔格糖可作为白叶枯病抗性潜在标志物的研究结果;根组织中检测到3个差异代谢物,含有2个特有差异代谢物和1个与C418/Xa23根中共有的差异代谢物海藻糖;叶组织受干扰程度最大,检测到18个差异代谢物,含有7个特有差异代谢物和11个C418/Xa23根中共有的差异代谢物。与非转基因易感水稻品系C418相比较,非转基因抗病水稻品系C418/Xa23在水稻的糙米、根和叶组织代谢水平上均具有独特的代谢表型,未预料显著差异代谢物均明显多于转基因水稻C418-Xa21,而转基因水稻C418-Xa21和亲本C418糙米和根的代谢指纹图谱非常相似,只在叶组织代谢水平上具有明显差异。
     此外,我们还采用基于液相色谱飞行时间质谱联用(LC-TOF/MS)的代谢组学分析方法,检测到转基因水稻C418-Xa21和亲本C418叶组织对菲律宾白叶枯病菌PX099具有不同代谢反应。感染白叶枯病菌PX099导致转基因水稻C418-Xa21叶组织代谢发生了本质变化,转基因水稻对白叶枯细菌的感染应答反应导致了抗性发生,生物碱类次生代谢产物的生物合成受到明显影响,大多数含氮显著差异代谢物在Xa21介导的对PX099的反应过程中增加,这有助于更好的理解宿主对病原菌感染的复杂应答,为抗性检测提供一种新的依据。
     总之,本研究揭示了分子标记辅助选择技术获得白叶枯病抗性新品系C418/Xa23代谢水平上的变化与农杆菌介导的转化系统产生的白叶枯病抗性品系C418-Xa21代谢上的未预料效应至少在一个可比较的幅度上。建立了以遗传背景一致的非转基因易感和抗性水稻品系为对照来评价转基因作物的未预料代谢产物变化的研究模式,广泛适用于更复杂的包含多个外源基因的转基因杂交稻代谢指纹图谱的层次聚类分析和未预料效应分析,只有超出自然变异范围的差异代谢物需要予以着重考虑,这对以后的转基因作物安全评价研究将具有重要参考价值。
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), gives rise to devastating crop losses in rice. Disease resistant rice cultivars are the most economical way to combat the disease. The C418cultivar is susceptible to infection by Xoo strain PXO99. The transgenic variety, C418-Xa21, and introgression line C418/Xa23through marker assisted selection (MAS) of Xa23gene are resistant.
     The polar compounds of brown rice were extracted, trimethylsilylated and analysis by gas chromatography-mass spectrometry (GC-MS) from Lingshui, Hainan island and Changping, Beijing. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to differentiate transgenic and non-transgenci variants. As part of our exploratory phase we performed Hierachical Cluster Analysis (HCA) by grouping the samples into clusters based on the similarity of their metabolite abundance profiles. It was found that both sowing and environment had remarkable impacts on the compositions of transgenic rice and its counterpart.
     Whether growing in Lingshui, Hainan Island or Changping, Beijing, the metabolic profiles of transgenic and non-transgenic rice were higher similarity compared with C418/Xa23. It possessed distinctive metabolite profile and were more significant differences in metabolic phenotype than transgenic rice compared with the negative control. Furthermore, unique geographical location and climatic conditions had remarkable inpacts on the brown rice metabolism of transgenic and wild rice in Lingshui, Hainan Isaland. It was found that the samples of two different genotypes growing in Hainan Island could not be discriminated on the first principle component and showd cross distribution. Meanwhile, their browen rice samples could be fully distinguished growing in Beijing.
     Another major finding from the present study was that sowing and environment had no impacts on fructose and tagatose (P<0.05) as the potential biomarkers in brown rice from the two bacterial blight resistance rice varieties. Therefore, when the risk of transgenic rice is assessed in subsequent studies, these steady changed compositions must be taken into account. The unintended compositional changes detected in our study laid a good foundation for further safety assessment of transgenic rice. The presented methodology provides a fast and nontargeted workflow as a powerful tool to discriminate related plant phenotypes. The novelty of the technique relies on the use of mass signals as markers for phenotype demarcation and not limited to recongnized and known metabolites that can be applicable to a wild range of transgenic hybrid rice with more than one foreign gene with no previous optimization.
     According to metabolic profiles analysis based on GC-MS and quantitative analysis of the resultsof GC-FID, we confirmed that the fatty acid in transgenic rice were vulnerable to the effects of the sowing and environment. It was found that palmitic acid, stearic acid, oleic acid and linoleic acid (P<0.05) only remarkably increased in the Hainan Island, but no significant differences in transgenic rice growing in Beijing. Therefore, these potentional biomarkers may not to be taken into account in futher studies. In addition, the elements (K, P, Na, Zn, and Fe) that varied between transgenic rice and non-transgenic rice growing in Hainnan Island were also analyzed by ANOVA by use of ICP-AES. Except element Fe, other elements were proved to be significantly different. This showed that in the two resistant rice variants C418-Xa21and C418/Xa23, the concentration of element K both decreased at10%, whereas the concentration of elements Na merely decreased17%. The difference of C418-Xa2Iand C418/Xa23was that the concentration of Zn increased24%and12%, respectively, whereas P content decreased11%, although still in the reference range value reported for rice.
     To rule out the effect of sowing, environment and soil compositon on the rice metabolism, Non-transgenic japonica restorer line C418and C418/Xa23were firstly as the controls under hydroponics in the green house, metabolic profiles of transgenic rice variant C418-Xa21and non-transgenic varieties were compared to assess the unintended effects related to gene modification. The polar compounds of brown rice, root and leaf were extracted, trimethylsilylated and analysis by gas chromatography-mass spectrometry (GC-MS). It was found that the degree of interference was significant differences on different tissues, least affected on brown rice and root tissues, followed by leaves in the largest. Insterestingly, fructose and tagatose (P<0.05) still decreased in brown rice from the two bacterial blight resistance rice varieties and validated them as biomarkers. In addition, C418/Xa23on the metabolism with a distinctive metabolite profile in the brown rice, root and leaf tissues, the transgenic rice C418-Xa21and its counterpart C418only in the rice leaf tissue metabolism have significantly different levels of metabolic phenotypes. However, the leaf tissue metabolic profiles of the transgenic rice and its counterpart showed stronger similarity compared with C418/Xa23. As for brown rice and root tissue, HCA results showed that the samples of transgenic rice and its counterpart were shown to cross distribution and could not be discriminated.
     In addition, unsupervised and supervised classification tools clearly discriminate C418-Xa21challenged PXO99based LC-TOF/MS analysis. Unbiased, discovery-based metabolomics analyses yielded novel insights into the rice response to Xoo. Our results reveal global metabolic changes in leaf tissues of the XA21transgenic variant challenged with PXO99. While central carboncatabolism is reduced in correlationmetabolite expression in C418-Xa21rice genotype, some alkaloids were increased specifically in the XA21-mediated response to PXO99. The outcome of metabolomics studies such as these will aid in a better understanding of complex response to pathogen infection.
     In conclusion, our results suggested metabolic profiles analyses can be used to the identification and classification in the metabolic level from innovative rice varieties, and this study provides experimental evidence for application of metabolomics in genetic modified varieties satefy evaluation in the future. Furthermore, the results in the present study confirmed that a single gene change has little effect on biochemical pathway, this was interpreted as a pleiotropic effect of the primary gentic alteration but not found in pathway that were later determined to be involved in resistance to bacterial infection. According to the GC-MS data, supervised multivariate statistics demonstrated the metabolic changes caused throught marker assisted selection techniques were, in these cases, at least of a comparable magnitude to those resulting as an unintended effect of genetic engineering techniques. For the first time using non-transgenic susceptible and resistant controls with the same genetic background to evaluate the unintended effects and metabolic profiles of GM crops will be provided an important reference value in further safety assessment of GM crops.
引文
[1]许国旺.代谢组学--方法与应用[M].北京:科学出版社,2008.
    [2]VAN DER GREEF J, LEEGWATER D C. Urine profile analysis by field desorption mass spectrometry, a technique for detecting metabolites of xenobiotics. Application to 3,5-dinitro-2-hydroxytoluene [J]. Biomed Mass Spectrom,1983,10(1): 1-4.
    [3]LINDON J C, NICHOLSON J K, HOLMES E. The handbook of metabonomics and metabolomics [M]. Amsterdam: Elsevier,2007.
    [4]SAUTER H, LAUER M, FRITSCH H. Metabolic profiling of plants-a new diagnostic technique [M]. Washington, DC:American Chemical Society,1991.
    [5]OLIVER S G. From gene to screen with yeast [J]. Curr Opin Genet Dev,1997,7(3):405-409.
    [6]TWEEDDALE H, NOTLEY-MCROBB L, FERENCI T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ("metabolome") analysis [J]. J Bacteriol,1998,180(19):5109-5116.
    [7]NICHOLSON J K, LINDON J C, HOLMES E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica,1999,29(11):1181-1189.
    [8]BRINDLE J T, ANTTI H, HOLMES E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics [J]. Nat Med,2002,8(12):1439-1444.
    [9]HOLMES E, NICHOLLS A W, LINDON J C, et al. Chemometric models for toxicity classification based on NMR spectra of biofluids [J]. Chem Res Toxicol,2000,13(6):471-478.
    [10]HOLMES E, NICHOLSON J K, TRANTER G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks [J]. Chem Res Toxicol,2001,14(2):182-191.
    [11]FIEHN O, KOPKA J, DORMANN P, et al. Metabolite profiling for plant functional genomics [J]. Nat Biotechnol,2000, 18(11):1157-1161.
    [12]RAAMSDONK L M, TEUSINK B, BROADHURST D, et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations [J]. Nat Biotechnol,2001,19(1):45-50.
    [13]FIEHN O. Metabolomics--the link between genotypes and phenotypes [J]. Plant Mol Biol,2002,48(1-2):155-171.
    [14]许国旺,路鑫,杨胜利.代谢组学研究进展[J].中国医学科学院学报,2007,29(6):701-711.
    [15]BINO R J, HALL R D, FIEHN O, et al. Potential of metabolomics as a functional genomics tool [J]. Trends Plant Sci, 2004,9(9):418-425.
    [16]DE KONING W, VAN DAM K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH [J]. Anal Biochem,1992,204(1):118-123.
    [17]BUNDY J G, SPURGEON D J, SVENDSEN C, et al. Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling [J]. FEBS Lett,2002,521(1-3):115-120.
    [18]WITTMANN C, KROMER J O, KIEFER P, et al. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria [J]. Anal Biochem,2004,327(1):135-139.
    [19]CORDEIRO C, PONCES FREIRE A. Methylglyoxal assay in cells as 2-methylquinoxaline using 1,2-diaminobenzene as derivatizing reagent [J]. Anal Biochem,1996,234(2):221-224.
    [20]LARSSON G, TORNKVIST M. Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivation [J]. J Biotechnol,1996,49(1-3):69-82.
    [21]THEOBALD U, MAILINGER W, BALTES M, et al. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae:I. Experimental observations [J]. Biotechnol Bioeng,1997,55(2):305-316.
    [22]WEUSTER-BOTZ D. Sampling tube device for monitoring intracellular metabolite dynamics [J]. Anal Biochem,1997, 246(2):225-233.
    [23]MAHARJAN R P, FERENCI T. Global metabolite analysis:the influence of extraction methodology on metabolome profiles of Escherichia coli [J]. Anal Biochem,2003,313(1):145-154.
    [24]SHRYOCK J C, RUBIO R, BERNE R M. Extraction of adenine nucleotides from cultured endothelial cells [J]. Anal Biochem,1986,159(1):73-81.
    [25]BUZIOL S, BASHIR I, BAUMEISTER A, et al. New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale [J]. Biotechnol Bioeng,2002,80(6):632-636.
    [26]MASHEGO M R, VAN GULIK W M, VINKE J L, et al. Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae [J]. Biotechnol Bioeng,2003,83(4): 395-399.
    [27]JENSEN N B, JOKUMSEN K V, VILLADSEN J. Determination of the phosphorylated sugars of the Embden-Meyerhoff-Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction [J]. Biotechnol Bioeng,1999,63(3):356-362.
    [28]SMITS H P, COHEN A, BUTTLER T, et al. Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection [J]. Anal Biochem,1998, 261(1):36-42.
    [29]ZALDIVAR J, BORGES A, JOHANSSON B, et al. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol,2002,59(4-5): 436-442.
    [30]LE BELLE J E, HARRIS N G, WILLIAMS S R, et al. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy [J]. NMR Biomed,2002,15(1):37-44.
    [31]SANA T R, FISCHER S, WOHLGEMUTH G, et al. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae [J]. Metabolomics,2010,6(3):451-465.
    [32]VISSER D, VAN ZUYLEN G A, VAN DAM J C, et al. Rapid sampling for analysis of in vivo kinetics using the BioScope:a system for continuous-pulse experiments [J]. Biotechnol Bioeng,2002,79(6):674-681.
    [33]LANGE H C, EMAN M, VAN ZUIJLEN G, et al. Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae [J]. Biotechnol Bioeng,2001,75(4):406-415.
    [34]HANS M A, HEINZLE E, WITTMANN C. Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol,2001,56(5-6):776-779.
    [35]GONZALEZ B, FRANCOIS J, RENAUD M. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol [J]. Yeast,1997,13(14):1347-1355.
    [36]CASTRILLO J I, HAYES A, MOHAMMED S, et al. An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry [J]. Phytochemistry,2003,62(6):929-937.
    [37]LISEC J, SCHAUER N, KOPKA J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants [J]. Nat Protoc,2006,1(1):387-396.
    [38]SMITH R M. Before the injection-modern methods of sample preparation for separation techniques [J]. J Chromatogr A,2003,1000(1-2):3-27.
    [39]BECKONERT O, KEUN H C, EBBELS T M, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts [J]. Nat Protoc,2007,2(11):2692-2703.
    [40]YANG J, XU G, ZHENG Y, et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1-2): 59-65.
    [41]DETTMER K, ARONOV P A, HAMMOCK B D. Mass spectrometry-based metabolomics [J]. Mass Spectrom Rev, 2007,26(1):51-78.
    [42]BRITZ-MCKIBBIN P, TERABE S. On-line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis [J]. J Chromatogr A,2003,1000(1-2):917-934.
    [43]SCHMITT J, BEEKES M, BRAUER A, et al. Identification of scrapie infection from blood serum by Fourier transform infrared spectroscopy [J]. Anal Chem,2002,74(15):3865-3868.
    [44]GAMACHE P H, MEYER D F, GRANGER M C, et al. Metabolomic applications of electrochemistry/mass spectrometry [J]. J Am Soc Mass Spectrom,2004,15(12):1717-1726.
    [45]DENKERT C, BUDCZIES J, KIND T, et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors [J]. Cancer Res,2006,66(22):10795-10804.
    [46]GLINSKI M, WECKWERTH W. The role of mass spectrometry in plant systems biology [J]. Mass Spectrom Rev, 2006,25(2):173-214.
    [47]WAGNER S, SCHOLZ K, SIEBER M, et al. Tools in metabonomics:an integrated validation approach for LC-MS metabolic profiling of mercapturic acids in human urine [J]. Anal Chem,2007,79(7):2918-2926.
    [48]WILSON I D, PLUMB R, GRANGER J, et al. HPLC-MS-based methods for the study of metabonomics [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,817(1):67-76.
    [49]YANG J, ZHAO X, LIU X, et al. High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B [J]. J Proteome Res,2006,5(3):554-561.
    [50]HALL R, BEALE M, FIEHN O, et al. Plant metabolomics:the missing link in functional genomics strategies [J]. Plant Cell,2002,14(7):1437-1440.
    [51]WANG Y, HOLMES E, TANG H, et al. Experimental metabonomic model of dietary variation and stress interactions [J]. J Proteome Res,2006,5(7):1535-1542.
    [52]KATAJAMAA M, ORESIC M. Data processing for mass spectrometry-based metabolomics [J]. J Chromatogr A,2007, 1158(1-2):318-328.
    [53]ZHANG X, ASARA J M, ADAMEC J, et al. Data pre-processing in liquid chromatography-mass spectrometry-based proteomics [J]. Bioinformatics,2005,21(21):4054-4059.
    [54]SUMNER L W, MENDES P, DIXON R A. Plant metabolomics:large-scale phytochemistry in the functional genomics era [J]. Phytochemistry,2003,62(6):817-836.
    [55]JIAO Z, SI X X, LI G K, et al. Unintended compositional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods [J]. J Agric Food Chem,2010,58(3):1746-1754.
    [56]PARVEEN I, MOORBY J M, FRASER M D, et al. Application of gas chromatography-mass spectrometry metabolite profiling techniques to the analysis of heathland plant diets of sheep [J]. J Agric Food Chem,2007,55(4):1129-1138.
    [57]BECKONERT O, BOLLARD M E, EBBELS T M D, et al. NMR-based metabonomic toxicity classification: hierarchical cluster analysis and K-nearest-neighbour approaches [J]. Anal Chin Acta,2003,490(1-2):3-15.
    [58]BEGER R D, SCHNACKENBERG L K, HOLLAND R D, et al. Metabonomic Models of Human Pancreatic CancerUsing 1D Proton NMR Spectra of Lipids in Plasma. [J]. Metabolomics,2006,2(3):125-134.
    [59]YI L Z, HE J, LIANG Y Z, et al. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA [J]. FEBS Lett,2006,580(30):6837-6845.
    [60]TRYGG J. O-PLS for Qualitative and Quantitative Analysis in Multivariate Calibration [J]. Journal of Chemom,2002, 16(6):283-293.
    [61]MAO H L, XU Y, WANG B. Evaluation of filtering effects of Orthogonal signal correction on metabonomic analysis of healthy human serum [J]. Acta Chimica Sinica,2007,65(2):152-158.
    [62]PONGSUWAN W, FUKUSAKI E, BAMBA T, et al. Prediction of Japanese Green Tea Ranking by Gas ChromatographyMass Spectrometry-Based Hydrophilic Metabolite Fingerprinting [J]. Journal of Agricultrue and Food Chemistry,2007,55(2):231-236.
    [63]白天,周春光,王喆,等.代谢组学中机器学习研究进展[J].吉林大学学报(信息科学版),2008,26(2):163-168.
    [64]PONGSUWAN W, FUKUSAKI E, BAMBA T, et al. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting [J]. J Agric Food Chem,2007,55(2): 231-236.
    [65]GAVAGHAN MCKEE C L, WILSON I D, NICHOLSON J K. Metabolic phenotyping of nude and normal (Alpk:ApfCD, C57BL10J) mice [J]. J Proteome Res,2006,5(2):378-384.
    [66]NICHOLSON J K, FOXALL P J, SPRAUL M, et al.750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma [J]. Anal Chem,1995,67(5):793-811.
    [67]GAWEDA A E, JACOBS A A, BRIER M E, et al. Pharmacodynamic population analysis in chronic renal failure using artificial neural networks--a comparative study [J]. Neural Netw,2003,16(5-6):841-845.
    [68]KELL D B. Metabolomics and machine learning:explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules [J]. Mol Biol Rep,2002,29(1-2):237-241.
    [69]LU H, DUNN W B, SHEN H, et al. Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS [J]. Trends in Analytical Chemistry,2008,27(3):215-227.
    [70]HAGAN S O, DUNN W B, BROWN M, et al. Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations [J]. Anal Chem,2005,77(1):290-303.
    [71]KIND T, TOLSTIKOV V, FIEHN O, et al. A comprehensive urinary metabolomic approach for identifying kidney cancerr [J]. Anal Biochem,2007,363(2):185-195.
    [72]VORST O, VOS. R D C, LOMMEN A, et al. Non-directed approach to the differential analysis of multiple LC-MS derived metabolic profiles [J]. Metabolomics,2005,1:169-180.
    [73]KATAJAMAA M, MIETTINEN J, ORESIC M. MZmine:toolbox for processing and visualization of mass spectrometry based molecular profile data [J]. Bioinformatics,2006,22(5):634-636.
    [74]LINDON J C, NICHOLSON J K, HOLMES E, et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project [J]. Toxicol Appl Pharmacol,2003,187(3):137-146.
    [75]BAIS P, MOON S M, HE K, et al. PlantMetabolomics.org:a web portal for plant metabolomics experiments [J]. Plant Physiol,2010,152(4):1807-1816.
    [76]REZZI S, RAMADAN Z, MARTIN F P, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals [J]. J Proteome Res,2007,6(11):4469-4477.
    [77]HALL R D. Plant metabolomics:from holistic hope, to hype, to hot topic [J]. New Phytol,2006,169(3):453-468.
    [78]RISCHER H, OKSMAN-CALDENTEY K M. Unintended effects in genetically modified crops:revealed by metabolomics? [J]. Trends Biotechnol,2006,24(3):102-104.
    [79]CELLINI F, CHESSON A, COLQUHOUN I, et al. Unintended effects and their detection in genetically modified crops [J]. Food and Chemical Toxicology,2004,42(7):1089-1125.
    [80]ARBONA V, IGLESIAS D J, TALON M, et al. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling [J]. J Agric Food Chem,2009,57(16):7338-7347.
    [81]WAKASA K, HASEGAWA H, NEMOTO H, et al. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile [J]. J Exp Bot,2006,57(12):3069-3078.
    [82]李灏,姜颖,贺福初.代谢组学技术及其在临床研究中的应用[J].遗传,2008,30(4):389-399.
    [83]CRAIG A, SIDAWAY J, HOLMES E, et al. Systems toxicology:integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat [J]. J Proteome Res,2006,5(7):1586-1601.
    [84]翟文学,朱立煌.水稻白叶枯病抗性基因的研究与分子育种[J].生物工程进展,1999,19(6):9-14.
    [85]MOMMA K, HASHIMOTO W, OZAWA S, et al. Quality and safety evaluation of genetically engineered rice with soybean glycinin:analyses of the grain composition and digestibility of glycinin in transgenic rice [J]. Biosci Biotechnol Biochem.1999,63(2):314-318.
    [86]OBERDOERFER R B, SHILLITO R D, DE BEUCKELLEER M, et al. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the non-transgenic counterpart. [J]. J Agric Food Chem,2005,53(1457-1465.
    [87]LI X, HUANG K, HE X, et al. Comparison of nutritional quality between Chinese Indica rice with sck and crylAc genes and its nontransgenic counterpart. [J]. J Food Sci,2007,72(6):S420-S424.
    [88]CATCHPOLE G S, BECKMANN M, ENOT D P, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops [J]. Proc Natl Acad Sci U S A,2005, 102(40):14458-14462.
    [89]TAYLOR J, KING R D, ALTMANN T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning [J]. Bioinformatics,2002,18 Suppl 2:S241-248.
    [90]FERNIE A R, TRETHEWEY R N, KROTZKY A J, et al. Metabolite profiling:from diagnostics to systems biology [J]. Nat Rev Mol Cell Biol,2004,5(9):763-769.
    [91]SCHAUER N, STEINHAUSER D, STRELKOV S, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples [J]. FEBS Lett,2005,579(6):1332-1337.
    [92]KIND T, WOHLGEMUTH G, LEE DO Y, et al. FiehnLib:mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry [J]. Anal Chem,2009,81(24):10038-10048.
    [93]SKOGERSON K, HARRIGAN G G, REYNOLDS T L, et al. Impact of genetics and environment on the metabolite composition of maize grain [J]. J Agric Food Chem,58(6):3600-3610.
    [94]XIE L, YING Y, YING T, et al. Discrimination of transgenic tomatoes based on visible/near-infrared spectra [J]. Anal Chim Acta,2007,584(2):379-384.
    [95]FRANK T, MEULEYE B S, MILLER A, et al. Metabolite profiling of two low phytic acid (lpa) rice mutants [J]. J Agric Food Chem,2007,55(26):11011-11019.
    [96]章琦.水稻白叶枯病抗性基因鉴定进展及其利用[J].中国水稻科学,2005,19(5):453-459.
    [97]GU K, YANG B, TIAN D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice [J]. Nature,2005,435(7045):1122-1125.
    [98]IYER A S, MCCOUCH S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance [J]. Mol Plant Microbe Interact,2004,17(12):1348-1354.
    [99]SONG W Y, WANG G L, CHEN L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 [J]. Science,1995,270(5243):1804-1806.
    [100]KHUSH G S, BACALANGCO E, OGAWA T. Anew gene for resistance to bacterial blight from O. longistaminate [J]. Rice Genet Newslett,1990,7(121-122.
    [101]章琦,李道远.普通野生稻的抗水稻白叶枯病(Xanthomonas oryzae pv. oryzae)新基因Xa23[J].作物学报,2000,26(5):536-542.
    [102]STASKAWICZ B J, MUDGETT M B, DANGL J L, et al. Common and constrasting themes of plant and animal diseases [J]. science,2001,292(5525):2285-2289.
    [103]PARK C J, PENG Y, CHEN X, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity [J]. PLoS Biol,2008,6(9):e231.
    [104]PARK C J, BART R, CHERN M, et al. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice [J]. PLoS One,5(2):e9262.
    [105]CHEN X, CHERN M, CANLAS P E, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity [J]. Proc Natl Acad Sci U S A,107(17):8029-8034.
    [106]WANG G L, RUAN D L, SONG W Y, et al. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution [J]. Plant Cell,1998,10(5):765-779.
    [107]LI J, ZHAO-HUI C, BATOUX M, et al. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR [J]. Proc Natl Acad Sci U S A,2009,106(37):15973-15978.
    [108]CHEN X, CHERN M, CANLAS P E, et al. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity [J]. J Biol Chem, 285(14):10454-10463.
    [109]WANG X, CHORY J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane [J]. Science,2006,313(5790):1118-1122.
    [110]PENG Y, BARTLEY L E, CHEN X, et al. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice [J]. Mol Plant,2008,1(3):446-458.
    [111]PENG Y, BARTLEY L E, CANLAS P, et al. OsWRKY Ⅱa transcription factors modulate rice innate immunity. [J]. Rice,2010,3(1):36-42.
    [112]PARK C J, HAN S W, CHEN X, et al. Elucidation of XA21-mediated innate immunity [J]. Cell Microbiol,12(8): 1017-1025.
    [113]耿立召,刘传亮,李付广.农杆菌介导法与基因枪轰击法结合在植物遗传转化上的应用[J].西北植物学报,2005,25(1):0205-0210.
    [114]翟文学,李晓兵,田文忠,等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种[J].中国科学(C辑),2000,43(2):361-368.
    [115]HIEI Y, OHTA S, KOMARI T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J,1994,6(2):271-282.
    [116]SHAO C G, WU J H, ZHAO G Y, et al. Ectopic expression of the spike protein of Rice Ragged Stunt Oryzavirus in transgenic rice plants inhibits transmission of the virus to insects [J]. Mol Breed,2003,11(295-301.
    [117]PAINE J A, SHIPTON C A, CHAGGAR S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content [J]. Nat Biotechnol,2005,23(4):482-487.
    [118]ARIIZUMI T, KISHITANI S, INATSUGI R, et al. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings [J]. Plant Cell Physiol,2002,43(7):751-758.
    [119]MEW T W. Current status and future prospects of research on bacterial blight of rice [J]. Ann Rev Phytopathol,1987, 25(359-382).
    [120]白辉,李莉云,刘国振.水稻抗白叶枯病基因Xa21的研究进展[J].遗传,2006,28(6):745-753.
    [121]WANG G L, SONG W Y, RUAN D L, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants [J]. Mol Plant Microbe Interact,1996,9(9):850-855.
    [122]TU J, ONA I, ZHANG Q, et al. Transgenic rice variety "IR72" with Xa21 is resistant to bacterial blight [J]. Theor Appl Genet,1998,97(1-2):31-36.
    [123]ZHANG S, SONG W Y, CHEN L, et al. Transgenic elite Indica rice varieties, resistant to Xanthomonas oryzae pv. oryzae [J]. Molecular Breeding,1998,4(6):551-558.
    [124]周永力,翟文学,章琦,等.Xa21转基因水稻对白叶枯病的抗性及其遗传[J].植物病理学报,2001,31(2):123-129.
    [125]MAZZOLA M, LEACH J E, NELSON R, et al. Analysis of the interaction between Xanthomonas oryzae pv. oryzae and the rice cultivars IR24 and IRBB21 [J]. Phytopathology,1994,84(4):392-397.
    [126]CENTURY K S, LAGMAN R A, ADKISSON M, et al. Short communication:developmental control of Xa21-mediated disease resistance in rice [J]. Plant J,1999,20(2):231-236.
    [127]杨振玉,张宗旭,魏耀林,等.粳型特异亲和恢复系CA18的选育及其特性[J].杂交水稻,1998,13(2):31-32.
    [128]李晓兵,裔传灯,翟文学,等.经基因工程改良的抗白叶枯病水稻梗型恢复系"CA18-Xa21”及其杂交稻[J].生物工程学报,2001,17(4):380-384.
    [129]章琦,刘俊君,卢德赵,等.携有抗白叶枯病新基因Xa23水稻近等基因系的构建及应用[J].中国水稻科学,2002,16(3):206-210.
    [130]夏志辉,赵显峰,范海阔,等.分子标记辅助选择Xa23基因改良杂交稻亲本的白叶枯病抗性[J].分子植物育种,2010,8(4):652-656.
    [131]阳海宁,韦绍丽,李孝琼,等.标记辅助培育水稻抗稻褐飞虱和稻白叶枯病基因聚合系[J].分子植物育种,2010,8(1):11-19.
    [132]陈建民,付志英,权宝权,等.分子标记辅助培育双抗稻瘟病和白叶枯病杂交稻恢复系[J1.分子植物育种,2009,7(3):465-470.
    [133]郑家团,涂诗航,张建福,et al.含白叶枯病抗性基因Xa23水稻恢复系的分子标记辅助选育[J].中国水稻科学,2009,23[4):437-439.
    [134]李进波,王春连,夏明元,等.分子标记辅助选择Xa23基因培育杂交稻抗白叶枯病恢复系[J].作物学报,2006,32(10):1423-1429.
    [135]淡墨,高先富,谢国祥,等.代谢组学在植物代谢研究中的应用[J].中国中药杂志,2007,32(22):2337-2341.
    [136]HOEKENGA O A. Using metabolomics to estimate unintended effects in transgenic crop plants:problems, promises, and opportunities [J]. J Biomol Tech,2008,19(3):159-166.
    [137]ZHAI W, CHEN C, ZHU X, et al. Analysis of T-DNA-Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice [J]. Theor Appl Genet,2004,109(3):534-542.
    [138]LIANG Y, HUA H, ZHU Y G, et al. Importance of plant species and external silicon concentration to active silicon uptake and transport [J]. New Phytol,2006,172(1):63-72.
    [139]潘海军,王春连,赵开军,等.水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择[J].作物学撤,2003,29(4):501-507.
    [140]ZENG Y W, WANG L X, SUN Z H, et al. Determination of mineral elements in brown rice of near-isogenic lines population for Japonica rice by ICP-AES [J]. Guang Pu Xue Yu Guang Pu Fen Xi,2008,28(12):2966-2969.
    [141]何龙飞,莫长明,李创珍,等.转sck和hpt基因对水稻不育系及其组合农艺性状的影响[J].分子植物育种,2008.6(2):227-232.
    [142]NICOLETA G. HADARUGA, HADARUGA D I, VIRGIL PAUNESCUC, et al. Thermal stability of the linoleic acid/a-and P-cyclodextrin complexes [J]. Food Chem,2006,99(3):500-508.
    [143]GUBITOSI-KLUG R A, MANCUSO D J, GROSS R W. The human Kvl.1 channel is palmitoylated, modulating voltage sensing:Identification of a palmitoylation consensus sequence [J]. Proc Natl Acad Sci U S A,2005,102(17): 5964-5968.
    [144]MARENGO E, ACETO M. Statistical investigation of the differences in the distribution of metals in Nebbiolo-based wines [J]. Food Chem,2003,81(4):621-630.
    [145]毛碧增.转基因水稻抗病性的遗传和对发育调控的机理研究[M].博士学位论文.2008.
    [146]LYNCH P T, JONES J, BLACKBALL M R. The phenotypic characterization of R2 generation transgenic rice plants under field and greenhouse condition. [J]. Euphytica,1995,85(395-401.
    [147]OARD J H, LINSCOMBE S D, BRAVERMAN M P, et al. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. [J]. Mol Breed,1996,2(4):359-368.
    [148]崔海瑞,舒庆尧,项友斌.转cryIAb基因水稻的田间表现[M].生命科学探索与进展.杭州;杭州大学出版社.1998.
    [149]LI X, HE X, LUO Y, et al. Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart [J]. Journal of Food Composition and Analysis,2008,21(7):535-539.
    [150]KUSANO M, FUKUSHIMA A, KOBAYASHI M, et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2007,855(1):71-79.
    [151]VARLET V, KNOCKAERT C, PROST C, et al. Comparison of odor-active volatile compounds of fresh and smoked salmon [J]. J Agric Food Chem,2006,54(9):3391-3401.
    [152]LEFEVERE M F, VERHAEGHE B J, DECLERCK D H, et al. Metabolic profiling of urinary organic acids by single and multicolumn capillary gas chromatography [J]. J Chromatogr Sci,1989,27(1):23-29.
    [153]ROESSNER U, LUEDEMANN A, BRUST D, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems [J]. Plant Cell,2001a,13(1):11-29.
    [154]FIEHN O. Metabolic networks of Cucurbita maxima phloem [J]. Phytochemistry,2003,62(6):875-886.
    [155]WECKWERTH W, WENZEL K, FIEHN O. Process for the integrated extraction identification, and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks [J]. Proteomics,2004,4(78-83.
    [156]FIEHN O, WOHLGEMUTH G SCHOLZ M, et al. Quality control for plant metabolomics:reporting MSI-compliant studies [J]. Plant J,2008,53(4):691-704.
    [157]ROESSNER U, WAGNER C, KOPKA J, et al. Technical advance:simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry [J]. Plant J,2000,23(1):131-142.
    [158]SHEPHERD T, DOBSON G, VERRALLS R, et al. Potato metabolomics by GC-MS:what are the limiting factors? [J]. Metabolomics,2007,3:475-488.
    [159]FRENZEL T, MILLER A, ENGEL K H. Metabolite profiling-a fractionation method for analysis of major and minor compounds in rice grains [J]. Cereal Chem,2002,79:215-221.
    [160]HAJSLOVA J, HOLADOVA K, KOCOUREK V, et al. Matrix-induced effects:a critical point in the gas chromatographic analysis of pesticide residues [J]. J Chromatogr A,1998,800:283-295.
    [161]KOEK M M, MUILWIJK B, VAN DER WERF M J, et al. Microbial metabolomics with gas chromatography/mass spectrometry [J]. Anal Chem,2006,78:1272-1281.
    [162]LUENGWILAI K, FIEHN O E, BECKLES D M. Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids [J]. J Agric Food Chem,2010,58(22):11790-11800.
    [163]SUMNER L W, AMBERG A, BARRETT D, et al. Proposed minimum reporting standards for chemical analysis [J]. Metabolomics,2007,3(3):211-221.
    [164]SMITH C A, WANT E J, O'MAILLE G, et al. XCMS:processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification [J]. Anal Chem,2006,78(3):779-787.
    [165]STYCZYNSKI M P, MOXLEY J F, TONG L V, et al. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery [J]. Anal Chem,2007,79:966-973.
    [166]FIEHN O, WOHLGEMUTH G, SCHOLZ M. Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata [J]. LNCS,2005,3615:224-239.
    [167]NICHOLSON J K, CONNELLY J, LINDON J C, et al. Metabonomics:a platform for studying drug toxicity and gene function [J]. Nat Rev Drug Discov,2002,1(2):153-161.
    [168]李晶,吴晓健,刘昌孝,等.代谢组学研究中数据处理新方法的应用[J].药学学报,2006,41(1):47-53.
    [169]TAYLOR J, KING R D, ALTMANN T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning [J]. Bioinformatics,2002,18 (Suppl 2):S241-S248.
    [170]COEN M, LENZ E M, NICHOLOSON J K. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy [J]. Chem Res Toxicol,2003,16(3):295-303.
    [171]YANG J, XU G, HONG Q, et al. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004, 813(1-2):53-58.
    [172]IDBORG-BJORKMAN H, EDLUND P O, KVALHEIM O M, et al. Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis [J]. Anal Chem,2003,75(18):4784-4792.
    [173]ZHOU J, MA C, XU H, et al. Metabolic profiling of transgenic rice with crylAc and sck genes:an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS [J]. J Chromatogr B Analyt Technol Biomed Life Sci. 2009,877(8-9):725-732.
    [174]DIXON R A, GANG D R, CHARLTON A J, et al. Applications of metabolomics in agriculture [J]. J Agric Food Chem, 2006,54(24):8984-8994.
    [175]KIM H K, CHOI Y H, ERKELENS C, et al. Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis [J]. Chem Pharm Bull (Tokyo),2005,53(1):105-109.
    [176]ROESSNER U, WILLMITZER L, FERNIE A R. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies [J]. Plant Physiol,2001b,127(3):749-764.
    [177]MORCUENDE R, KRAPP A, VAUGHAN H, et al. Sucrose-feeding leads to an increased rates of nitrate assimilation, increased rates of α-oxoglutarate, and increased synthesis of a wild spectrum of amino acid in tobacco leaves. [J]. Planta, 1998,206(3):394-409.
    [178]GODDIJN O, SMEEKENS S. Sensing trehalose biosynthesis in plants. [J]. Plant Journal,1998,14(2):143-146.
    [179]M LLER J, WIEMKEN A, AESCHBACHER R. Trehalose metabolism in sugar sensing and plant development. [J]. Plant Sci,1999,147(1):37-47.
    [180]WANG G L, WU C, ZENG L, et al. Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. oryzae [J]. Theor Appl Genet,2004,108(3):379-384.
    [181]LUO Y, LV G L, WU W T, et al. Analysis of genome expression in the response of Oryza granulata to Xanthomonas oryzae pv oryzae [J]. Mol Biol Rep,37(2):875-892.
    [182]李明辉,王贵学,王凤华,等.水稻抗白叶枯病基因及其抗病机理的研究进展[J].中国农学通报,2005,21(11):307-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700