用户名: 密码: 验证码:
介质阻挡放电降解染料废水的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的高速发展,有机废水污染已成为严重的环境问题,而染料废水是典型的难降解有机污染物最主要的来源之一,尤其是当前染料朝着抗光解,抗氧化及抗生物降解等趋势发展,使得传统的废水处理技术已经难以实现对其进行达标排放处理,因此,含染料废水处理的治理研究受到国内外有关专家高度关注。近年来,以产生自由基为主的高级氧化技术在水处理领域逐渐兴起。
     针对高级氧化技术处理染料废水的发展趋势以及无机盐含量高、色度深、成分复杂、浓度高、毒性强等特点,本论文以偶氮类染料废水为处理目标,采用介质阻挡放电等离子体降解酸性大红GR模拟染料废水,考察放电电压、极板间距、电源频率、处理时间、初始pH值及染料初始浓度等参数对水中酸性大红GR降解程度的影响,采用高效液相色谱-质谱联用(LC-MS)及紫外光谱图分析酸性大红GR的主要降解产物,初步推导酸性大红GR的降解途径及机理,为介质阻挡放电技术处理染料有机废水的实际应用提供理论依据。
     本论文的主要研究成果如下:
     (1)采用一种以流动的待处理废水作为接地极的介质阻挡放电水处理反应器处理染料废水,该反应器利用强电场力作用下的液面锥形突起强化局部电场,使等离子体区域产生更多的活性粒子。通过实验发现介质阻挡放电等离子体可使酸性大红GR染料得到有效降解,电源频率f=10kHz,放电电压-极板间距为8kV-6mm,染料初始浓度C0=30mg/L,初始pH=2时,20min后脱色率达到76.4%;向介质阻挡反应体系加入Fe2+有利于提高染料废水的脱色效果,Fe2+浓度为0.48mmol/L时,20min后染料废水体系脱色率达到92.1%。
     (2)研究发现,染料溶液的CODcr值在脱色处理时间范围内,均呈现上升-下降-上升-下降的趋势;随着处理时间的延长,酸性大红GR溶液的pH值迅速降低。通过紫外可见光谱图分析可知染料分子已经遭到破坏,主要生成了无色的有机酸、醛等小分子物质。通过液质联用对酸性大红GR降解中间产物进行检测,对其降解机理进行了初步推断,发现介质阻挡放电过程中产生的OH、03主要进攻酸性大红GR分子上的C-N键,导致C-N键的断裂,从而使染料脱色。
     (3)在不同初始浓度、pH值、放电电压、极板间距和电源频率的实验条件下,溶液中酸性大红GR的浓度随着处理时间的延长呈指数性降低趋势。介质阻挡放电等离子体对染料脱色的动力学过程不仅受染料分子数量的影响,还有受到反应体系中活性粒子的多少,以及活性粒子与染料接触机率的影响。在染料脱色效率较高的实验条件下,脱色过程符合一级反应动力学。
     (4)利用介质阻挡放电处理实际染料废水24min后,废水的色度,浊度,CODcr去除率分别为97%、68.9%、83.2%。BOD5/CODcr值提高到0.67,可生化性明显得到提高,为难生化有机废水的预处理提供了条件。
     (5)介质阻挡放电反应器参数U-d=8kV-6mm, f=8kHz,采用此条件下产生的臭氧单独处理酸性大红GR染料废水,实验结果发现在溶液pH=2时的脱色效果较好。单纯采用臭氧处理染料废水25min后脱色率仅为41%,而采用介质阻挡放电处理相同浓度的酸性大红GR染料废水25min脱色率达到82%,进一步表明介质阻挡放电处理染料废水具有很大的优势。
Organic wastewater pollution has become a serious environmental problem with the rapid development of industry, and dye wastewater is one of the key sourcs of typical refractory organic pollutants, especially the dye is forward to photodegradation resistance,anti-oxidation and anti-biodegradation,which made conventional processing methods already can not satisfy the requirement of water treatment technology, therefore, the expert pay high attention in dye wastewater treatment at home and abroad. In recent years, advanced oxidation technologies which mainly produce OH radicals being applied gradually in the water treatment.
     Acorrding to the development trend of the advanced oxidation technology in the dye wastewaterr which characterized with high mineral concentration, high colority, complications of organic components,high pollution concentration and poison.The paper take acid scarlet GR as target pollutants, dielectric barrier discharge(DBD) plasma could be utilized to degrade the simulation acid scarlet GR wastewater.this paper investigated the factors of discharge voltage, electrode distance,power frequency, reaction time,initial solution concentrations and pH.Farther more, to get the degradation mechanism of acid scarlet GR, the intermediate products in the process of treatment were analyzed by means of high efficiency liquid chromatography and mass spectrography (LC-MS),which provide the scientific basis for the practical application.
     The results and conclusions of research are as follows:
     (1)a new-style dielectric barrier discharge(DBD) reactor in which the flowing wastewater being treated was used as the ground plate was used on the degradation of dye wastewater,the partial electric fields were strengthened by the liquid cone induced by the electric field force in the reactor, more active particles were pruducted with the stronger discharge in the discharge space,At the same time, the interfacial mass transfer was enhanced highly with liquid level disturbance.The result show that, acid scarlet GR could be degradated efficiently by DBD.The 76.4% of colorization was removed after 20min DBD decomposition with 10kHz power frequency,8kV discharge voltage,6mm electrode distance,30mg/L initial concentration and 2.0 initial pH;Fe2+ ion could effectively promote decolorization rate of dye wastewater, decolorization rate is increased to 92.1% after 20min with 0.48mmol/L of Fe2+ ion by DBD.
     (2) The degrading process of acid scarlet GR was determined and analyzed.lt was found that the Variation of CODcr with treatment time was rise-down-rise-down; pH of solution quickly declined along treating time increasing. The UV-Vis spectra show that dye molecules had been destroyed and generated colorless organic acid、aldehyde and so on.The varies of the possible intermediates during the degradation process were monitored with LC-MS,the possible mechanism of acid scarlet GR is proposed,the result show that Hydroxyl radical and ozone mainly attack and destroy C-N of acid scarlet GR molecule,thus making dye decolorization.
     (3) The concentration of the acid scarlet GR dye in solution decreases exponentially with the lengthening reaction time in the experimental conditions of the different discharge voltage,electrode distance,power frequency,initial concentrations and pH.The kinetic process of the DBD plasma degradation of dyes is not only limited by the number of molecular dyes、active particles and contact effects of both molecular dyes and active particles.In the effectively decolorization experimental conditions,the degradation process accords with the first-order reaction kinetics.
     (4) DBD was utilized to treat actual dyestuff wastewater,the removal rate of chrominance,turbidity and CODcr is 92.5%,83.3%,52.6% after 24min DBD treatment,the value of BOD5/CODcr was increased to 0.67,biodegradation was improved greatly, which provides conditions for the pre-treatment of the nonbiodegradable organic wastewater.
     (5) Using ozone which was produced under 8kHz power frequency,8kV discharge voltage and 6mm electrode distance reactor parameters of DBD to treat acid scarlet GR dye, it was founded that dye solution nature of 2.0 initial pH has achieved better result;Respectively using dielectric barrier discharge technology and ozone technique alone for treating the same initial concentration of acid scarlet GR, the decolorization rate of dye was only 41% by ozone alone,but the decolorization rate reached 82% by DBD treatment,which further show that using DBD for treating dye wastewater is of great advantage.
引文
[1]李家珍,染料/染色工业废水处理[M].北京:化学工业出版社,1997.06.
    [2]Chumg king-Thom et,al.Degradation of azo dyes by environmental Micro-organisms and belminthes Environ.Toxical.Chen,1993,13(11):2121-2132.
    [3]刘华丽,印染废水的生物处理技术,环境科学与技术,1996,72(1):42-45.
    [4]谢锐.我国染料行业几种主要废水的治理技术概况.化工环保,1994,14(3):139-143.
    [5]Rozzi A. Ficara E. Cellamare C. M. and Bortone G., Characterization of Textile Wastewater and Other Industrial Wastewaters by Respirometric and Titration Biosensors[J],Wat. Sci. Tech.,1999,40(1):161-168.
    [6]Venceslau M. C., Tom S. and Simon J. J., Characterisation of Textile Wastewater-A Revies[J], Environ. Tech.,1994,15(9),917-929.
    [7]Gulays H., Process for the Removal of Recalcitrant Organics from Industrial Wastewater[J], Wat. Sci. Tech.,1997,36(2-3):9-16.
    [8]侯文俊,余健.印染废水处理技术的研究新进展[J].化工环保,2004,24(增):105-107.
    [9]程云,周启星,等.染料废水处理技术的研究与进展[J].环境污染治理技术与设备2003,4(6):56-60.
    [10]洪颖,陈国松,等.葸醌类染料废水处理的研究进展[J].工业水处理,2004,24(10):5-8.
    [11]Neamtu M,Yediler A,Siminiceanu I,Macoveanu M.,Kettrup A.,Decolorization of disperse red 354 azo dye in water by several oxidation processes-a comparative study,Dyes and pigments 2004,60:61-68.
    [12]Surpateanu Mioara,Zaharia Carmen. Advanced oxidation processes for decolorization of aqueous solution containing Acid Red G azo dye. CEJC,2004,2(4):573-588.
    [13]Slokar Y.M, Le Marechal A.M.Methods of decoloration of textile wastewaters. Dyes and Pigments,1998,37:335-356.
    [14]张建英,梁缘东,等.染色废水脱色混凝效应研究[J].环境污染与防治,1998;20(3):9-12.
    [15]彭书传.硅藻土复合净水剂处理印染废水[J].环境科学与技术,1998,(1):24.
    [16]王金梅,王庆生,等.粉煤灰的改性及吸附作用的研究[J].工业用水与废水,2005,36(1):44-47.
    [17]王静,张雨山.超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势[J].工业水处理,2001,21(3):4-7.
    [18]吕鑑,阎光明,等.纳滤膜在水处理中的应用[J].环境工程,2001,19(1):23~25.
    [19]Pignon H.Brasquet C,Cloirec P Le. Coupling ultrafiltration and adsorption onto activated carbon cloth:application to the treatment of highly coloured wastewaters[J].Water Science and Technology,2000,42(5-6):355-362.
    [20]刘梅红,姜坪.膜法染料废水处理试验研究[J].膜科学与技术,2001,21(3):50-52.
    [21]骆广生,吕阳成,等.萃取-电泳萃取复合过程用于回收染料[J].化学工程,2000,28(5):36-38.
    [22]Sihvone M,Jarvenpna E,etal.Advances in supercritical carbon dioxide technologies[J].Trends in food science&technology,1999,(10):217-222.
    [23]蔡晓,洪金德.聚铁处理印染废水实验研究[J].华侨大学学报(自然科学版),1998,19(2):189-192.
    [24]卢俊瑞.溴氨酸活性染料生产废水治理[J].工业水处理,1999;19(3):20-21
    [25]苏玉萍,林颖,等.以活性染料为主要成分的印染废水的混凝脱色试验[J].化工环保,2000,20(2):7-10.
    [26]卢宁川,府灵敏.臭氧处理印染废水的方法研究[J].江苏环境科技,2002,15(2):1-2.
    [27]陈武,杨昌柱,等.三维电极化学方法处理印染废水实验研究[J].工业水处理,2004,24(8):43-45.
    [28]赵少陵,贾金平.活性碳纤维电极法处理印染废水的应用研究[J].上海环境科学,199716(5):24-27.
    [29]汪慧群.复合性粒子群电极用于印染废水的处理[J].南京化工学院学报,1990;12(3)69-71.
    [30]许佩瑶,王淑娜,等.高浓度印染废水的电解-内电解复合处理[J].印染,2004,(8):26-28.
    [31]张林生,汪晓军,等.染料废水的脱色方法[J].化工环保,2000;20(1):14~18.
    [32]安虎仁,钱易,等.染料在好氧条件下的生物降解性能[J].环境科学研究,1994,7(3);36~39.
    [33]沈东升,刘新文.常温厌氧真丝印染废水的技术研究[J].浙江大学学报:农业与生命科学版,2005,319(6):750~754.
    [34]Bras R, Gomes A, etal.Monoazo and diazo dyedecolourisation studies in a methanogenic UASB reactor [J]Journal of Biotechnology,2005,115:57-66-
    [35]徐向阳,郑平,等.厌氧处理含氯酚废水的颗粒污泥形成过程研究[J].环境科学学报,1998,18(2):153,159.
    [36]杨虹,李道棠,.不完全厌氧-好氧反应器处理印染废水的研究[J].上海环境科学,1998,17(12):31-32.
    [37]Luangdilok W,Panswad T.Effect of chemical structures of reactive dyes on color removal by an anaerobic-aerobic process[J].Water Science and Technology,2000,(34):377~382.
    [38]林春绵,潘志彦.超临界氧化技术在有机废水处理中的应用[J].浙江化工,1996,27(2):16-20.
    [39]Model M. Processing Methods for the Oxidation of Organics in Supercritical Water[P].US Patent:4543190,1985-09-24.
    [40]Entezari M,Kruus P,et al.Effect of frequence on sonochemical reaction Ⅱ Nissociation of carbon disulfide. Ultrasonics Sonochemistry[J],1997,4(1):49-61.
    [41]Inez Hua et.al.Optimization of ultrasonic irradiation as an advancedoxidation technology. Environ.Sci.Technol[J],1997,31:2237-2248.
    [42]Stock Naomi L, Peller Julie, et.al. Combinative sonolysis and photocatalysis for textile dye degradation.Environmental Science and Technology,2000,34(9):1747-1750.
    [43]T Kurbus,A M Marechal, et.al.Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ process for the decolorisation of vinylsulphone reactive dyes[J].Dyes and Pigments,2003,58:245-252.
    [44]吴跃辉,吴少林,等.工业有机废水高级处理的方法与技术[J].江西化工,2003,2:21-26.
    [45]S Antonaraki,B E Androulaki, et al,Photolytic degradation of all chlorophenols with polyoxometallates and H2O2[J]. Journal of Hazardous Materials,2003,98:241-255.
    [46]王世琴,刘宝生,等.印染废水催化氧化处理技术的研究进展.广西纺织技术,2009,38(2):25-29.
    [47]秦玉春,王海涛,等.TiO2纳米晶材料光催化降解印染废水的研究[J].东北电力学院学报,2002,22(4):45-47.
    [48]SYLWIA M,MARIA T, et.al.Photo-catalytic degradation of azo-dye acid red [J]. Desalination, 2005,185:449-248.
    [49]Zanoni V B,Sene J J, et.al.Chatacterization and pHotocatalytic activity of Au/TiO2 thin films for azo-dye degradation[J].Joumal of Catalysis.2003,220(1):127-135.
    [50]韩月,卢徐节,等.印染废水处理技术现状研究.工业安全与环保,2008,34(7):12-14.
    [51]姚培芬,张更,等.难降解有机物的高级氧化技术.河北化工,2007,30(10):24-26.
    [52]A K Sharma,B R Locke,et al.A Prelilminary study of pulse streamer corona discharge for the degradation of phenol in aqueous solutions[J].Hazardous Waste & Hazardous Material,1993, 10(2):201-219.
    [53]杜鸿章,戴锡,等.催化湿式氧化处理碱渣废水的研究[J].环境工程,2001,19(1):13-15.
    [54]Q Q Wang,A T Lemley.Oxidation degradation and detoxification of aqueous carbonfuran by membrane anodic Fenton treatment[J]. Journal of Hazardous Materials,2004,98:211-215.
    [55]李绍锋,张秀忠,等.Fenton试剂氧化降解活性染料的实验研究[J].给水排水,2002,28(3):46-49.
    [56]徐向荣,王文华,等.Fenton试剂处理酸性染料废水的研究[J].环境导报,1999,12(4):228-230.
    [57]顾晓扬,汪晓军,等.Fenton试剂-曝气生物滤池处理酸性玫瑰红印染废水[J].工业水处理,2006,26(11):28-31.
    [58]崔淑兰,王峰云.铁屑-双氧水氧化法处理染料废水[J].环境保护,1990,(12):10-11.
    [69]张林生,蒋岚岚.染料废水的脱色方法[J].化工环保,2000;20(1):14-18
    [60]相欣奕,郑怀礼..Fenton反应处理染料废水研究进展[J].重庆建筑大学学报,2004,26(4):126-130.
    [61]赵化侨.等离子体化学与工艺[M].合肥.中国科学技术大学出版社,1993.
    [62]Yan K, Hui H, Cui M,et al.Corona induced non-thermal plasmas:fundamental study and Industrial appliCations[J).Electrostat,1998,44:17-39.
    [63]Aklyama H.Streamer discharges in liquids and their applieations[J].IEEE Trans Electr Insul, 2000,7(5):646-653.
    [64]Sidney J, Clements.Preliminary investigation of prebreak down phenomena and chemical reaction using a pulsed high-voltage discharge in water.IEEE Transaction on Industry Application,1987, IA-23(2):224.
    [65]Anto T, Shunsuke I.Oxidative decoloration of dyes by pulsed discharge plasma in water. Journal of Electrostatics,58(2003):135-145.
    [66]张丽,孙冰,等.脉冲放电等离子体技术处理偶氮染料废水[J].大连海事大学学报,2007,33(2):67-70.
    [67]李胜利,李劲,等.脉冲放电对印染废水脱色效果的实验研究[J].环境科学,1996,17(1):13-16.
    [68]陈银生,张新胜,袁渭康.高压脉冲放电低温等离子体法降解废水中4-氯酚[J].华东理工大学学报(自然科学版),2002,28:232-234,244.
    [69]李瑞芳,吴广宁,等.尖端-尖端的火花放电路径的选择性[J].天津大学学报,2009(6):497-501.
    [70]徐学基,诸定昌.气体放电物理[M].上海.复旦大学出版社,1996.
    [71]莫玉琴,张志霞,等.辉光放电等离子体降解生物燃料橙黄G[J],温州大学学报(自然科学版),2009;30(5):40-45.
    [72]陆泉芳,俞洁.辉光放电等离子体降解模拟染料废水的研究[J],环境科学学报,2006,26(11):1799-1803.
    [73]高锦章,马东平,等,辉光放电等离子体处理阳离子染料结晶紫废水[J],应用化学,2007,24(5):534-539.
    [74]刘亚纳,严建华,等.滑动弧等离子体在废水处理应用中的研究进展[J].高电压技术,2007,33(2):159-162.
    [75]刘亚纳,严建华,等.滑动弧等离子体处理酸性橙Ⅱ废水[J],化工学报,2008,59(1):221-227.
    [76]李晓东,杜长明,等.气液滑动弧等离子体降解高浓度有机废水的研究[J],工程热物理学报,2006,27(2):237-239.
    [77]左莉,侯立安.介质阻挡放电与脉冲电晕放电净化气态污染物的试验研究[J].洁净与空调技术,2003(3):43-45.
    [78]Young Sun Mok,Jin-Oh Jo,Heon-Ju Lee etal.Applicaton of dielectric barrierdischarge reactorimmersed in wasewater to the oxidative degradation of organic contaminant[J]. Plasma Chem Plasma Process, (2007)27:51-64.
    [79]郑光明,朱承驻,等.平行板双介质阻挡放电处理水相中氯酚的脱氯机理[J].环境科学学报,2004,24(6):962-968.
    [80]杨长河,余秋梅,等.介质阻挡放电处理含喹啉废水实验[J].高电压技术,2010,36(9):2316-2323.
    [81]王占华,许德玄,等.放电极雾化介质阻挡放电低温等离子体对染料溶液的脱色研究[J].环境科学研究,2007,20(6):126-130.
    [82]刘强,李杰,等.新型介质阻挡放电反应器同时处理废气和废液研究[J].环境科学报,2009,29(7):1400-1404.
    [83]靳承铀.介质阻挡放电反应器在水处理中的实验研究[D].大连:大连理工大学,2003.
    [84]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社,2001:34-38.
    [85]候毓汾,朱正华,等.染料化学,北京:化学工业出版社,1994,04.
    [86]Wang Kan(王侃)Degradation of dye pollutant s onsupported TiO2 photocatalyst under visible light irradiation[D]. Hangzhou:Zhejiang University,2004
    [87]Jelka Donlagic, Janez Levec, Comparison of catalyzed and noncatalyzed oxidation of azo dye and effect on biodegradability. Environ Sci Technol,1998,32:1294-1302
    [88]依成武,吴春笃,等.臭氧合成及其应用的研究进展[J].现代化工,2007,27(6)93-96.
    [89]刘钟阳.放电等离子体合成臭氧及应用中一些问题的研究[D].大连理工大学,2002.
    [90]李清泉,马磊.影响介质阻挡放电的因素[J].高电压技术,2007,9:9-12.
    [91]陈艳梅,凌一呜.介质阻挡放电制备臭氧的实验研究[J].电子器件,2004,27(12):653-657
    [92]Oda T.J Elect rost,2003,57(324).
    [93]冀滨弘.染料工业废水处理的现状与进展.污染防治技术[J].1998,11(4):250-253.
    [94]胡文容,钱梦路,等.超声强压臭氧氧化偶氮染料的脱色效能.中国给排水.1999,15(11):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700