用户名: 密码: 验证码:
膜吸收—真空膜蒸馏技术分离净化甲苯/N_2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以N-甲酰吗啉(NFM)水溶液为吸收液,聚丙烯中空纤维膜接触器为吸收和再生反应器,开展了膜吸收-真空膜蒸馏组合工艺净化含甲苯废气的研究。研究内容主要包括工艺性能研究、传质理论研究及在此基础上拓展的系统能耗分析研究。工艺性能研究主要围绕甲苯-NFM水溶液体系的物性测定及工艺操作参数的优化等方面展开。传质理论研究则以双膜理论为基础,结合传质阻力方程,建立了膜吸收工艺的全微分传质模型。同时也建立了传质微分方程与传热经验关联式相结合的减压膜蒸馏传质模型,在以上两模型的基础上,又建立了系统能耗分析模型,考察了操作条件变化对系统能耗费的影响。
     首先,测定并计算了甲苯-NFM水溶液体系的物性参数,包括不同体积浓度NFM水溶液的密度、粘度、表面张力、亨利系数,及甲苯在气、膜、液相中的扩散系数等参数,通过线性拟合得到不同条件下物性常数的计算公式。结果表明NFM水溶液对甲苯有高的吸收容量和吸收速率,另外NFM具有较高的表面张力,难以湿润有机高分子膜表面,是膜吸收工艺良好的吸收液。
     在膜吸收工艺实验装置上,以NFM水溶液为吸收剂,开展了膜气体吸收净化含甲苯废气性能的实验研究,分析了气、液相流量、吸收液温度、吸收液中NFM浓度和气、液相进口浓度等操作参数对甲苯去除效率和传质通量的影响。在吸收液NFM体积浓度40%,吸收液流量20-80 mL·min-1,进口气流量50-500mL·min-1,进口气浓度16.1mg·L-1的条件下,甲苯去除率范围为54.0%-97.3%。实验结果表明采用膜吸收技术净化含甲苯废气,具有较高的去除效率和传质速率。研究还发现,在高气相流量或高气相进口浓度的条件下,气相存在较大浓度梯度的情况下,传质过程受液膜控制,在低气相流量或低气相进口浓度的情况下,传质过程受气膜控制。另外,连续运行实验表明,由聚丙烯中空纤维膜接触器-NFM水溶液组成的膜吸收工艺,具有很高的稳定性和可操作性。
     在双膜理论的基础上,建立了新的全微分膜吸收传质模型,对气相、膜相和液相的甲苯浓度分布进行了求解,着重考察了操作条件及膜组件形态变化对液相边界层中甲苯浓度分布的影响,进而对传质过程的影响。并将模拟结果与实验结果进行了对比,结果表明模型计算值与实验值平均误差为5.2%。模型可以较准确地描述膜吸收过程,可作为膜气体吸收技术工业放大的理论依据。
     在真空膜蒸馏工艺实验装置上,对膜吸收过程所产生的富甲苯NFM水溶液进行再生实验研究,以实现吸收液的循环利用。考察了减压膜蒸馏过程中,各操作参数变化对真空膜蒸馏传质过程的影响。实验结果表明料液温度是影响膜甲苯通量的决定因素,而浓度和流量是影响甲苯通量的次要因素。甲苯通量在料液入口温度为45℃,冷侧压力为2000 Pa条件下可达到3.17mol·m-2·s-1,证明减压膜蒸馏技术再生富甲苯NFM水溶液工艺具有设备体积小,再生效率高的优点。
     在真空膜蒸馏实验的基础上,提出一种新的经验微分相结合的动力学模型,描述真空膜蒸馏的传质传热过程,其特点是采用微分方程描述液相传质及浓度分布,用经验关联式描述传热过程。气液界面处的液温,通过传质微分方程的解与传热经验关联式的解相互迭代求得,然后反求得液相浓度的分布,该模型克服了无法从实验中获取界面温度的难点。
     在膜吸收及真空膜蒸馏模型的基础上,建立了系统能耗模型,建立了评价指标,考察了操作参数变化对系统能耗的影响,结果发现真空泵的能耗为整个系统能耗的关键因素,液相泵为次要因素。
In this paper, an experimental and theoretical study was carried out to evaluate the performance of a newly process which combined gas-liquid membrane absorption with vacuume membrane distillation in toluene/nitrogen separation process by using an aqueous N-Formylmorpholine(NFM) solution as absorbent. The reseaching work included process performance study, theoretical study of mass transfer and the expansion of the system based on the researching of energy consumption. The process performance researching mainly focused on the determination of physical properties of aqueous NFM solution-toluene system and the optimization of operating parameters. A total differential mathematical model which based on the double films theory and serially resistance was developed to simulate the absorption process in order to gain an insight into the experimental observation. The other mathematical model that combine differential mass transfer equation with experiential heat transfer equation was developed to simulate the heat and mass teansfer process in vacuume membrane distillation process. The third model was developed to simulate the effect of operation parameters on the system consumption.
     Firstly, the determination of determination of physical properties of aqueous NFM solution-toluene system was carried out. The physical properties parameters included the density, viscosity, surface tension and Herry number of aqueous NFM with different volume concentration. The diffusion coefficient of toluene in different volume concentration aquous NFM and N2 were also calculated. Fitting equations of experimental data were obtained. The results showed that the absorbent has absorption Capacity for toluene and has high surface tension which made it difficult to invade into the PP membrane pores. This efficiently decreased the risk of the decreasing of mass transfer efficience which caused by the wetting of membrane. The NFM aqueous was proved as a suitable absorbent for the separation and recovering of toluene from Nitrogen in gas-liquid membrane contactor.
     An experimental study was carried out to evaluate the performance of self-made membrane absorption device.The effects of operating parameters such as the gas and liquid flow rates, the feed gas and the initial liquid concentrations, the liquid temperature, the absorbent concentration and the long term operation on the toluene flux and removal efficiency were investigated in this study. The results showed that the removal efficiency achieves 54.0%-97.3% when following conditions were used:volume ratio of NFM,40%; flow rate of absorbent,20-80 mL·min-1; flow rate of feed gas,50-500 mL·min-1; feed gas concentration,16.1mg·L-1. It was proved that membrane absorption process has high stability and operability. It was also found in this study that the liquid mass transfer process is the key process in membrane absorption process when the feed gas concentration and gas flow rate were high enough. However, the gas mass transfer process became the key process when the feed gas concentration and gas flow rate were low enough. Additionly, The long term performance test showed that the aqueous NFM solution is a suitable absorbent to be applied to the polypropylene(PP) hollow fiber gas-liquid membrane contactor.
     Based on the double-film theory, a total differential mass transfer model was established to simulate the process of mass transfer process. The solution of the model could perfectly describe the concentration distribution of toluene in both gas phase and liquid phase. The researching work was foused on the way of removal efficiency and toluene mass flux effeced by operatrion paramemters and membrane contactor formation changings by observing their effect on the concentration distribution at liquid film. The prediction values were compared with those of experiment. The results showed that the average error of touluene removal efficiency was 5.2%. The mass transfer process could be accurately simulated by the differential equations, which could be used as the theory basis for the industrial enlargement of membrane absorption technology.
     An experimental study was carried out to evaluate the performance of self-made vacuume membrane distillation device.The effects of operating parameters such as the gas and liquid flow rates, the feed liquid concentrations, the liquid temperature, the vacuume side pressure on the toluene flux and removal efficiency were investigated in this study. The result showed that liquid temperature is the most important factor for the toluene removal efficiency and mass flux and the following two factors were feed liquid concentration and liquid flow rate. The toluene flux could achieve 3.13×10-3mol·(m2·s)-1 and toluene removal efficiency could achieves 78.1% when following conditions were used:liquid flow rate of absorbent, 20mL·min-1; Vacuume side pressure,2000Pa; feed liquid concentration,350mg·L-1. It proved Vacuume membrane distillation to be a high efficiency device for recovering the toluene from absorbent.
     A newly mathematical model which combined differential mass transfer equation with experiential heat transfer equation was developed to simulate the heat and mass teansfer process in vacuume membrane distillation process. This model simulated the mass transfer in the process by using differential equation and simulated the heat transfer by experiential heat transfer equation. The temperature in the liquid surface could be gained by iterating the solutions of two equations.
     Beased on the memnbrane absorption model and vaccume membrane disllation model, the system energy consumption model was established to evalute the effect of operation parameters on the system energy consumption. The results showed that the energy consumption of vaccume pump is the key ingredients and the following factor is liquid pump energy consumption.
引文
[1]李清雪,王冬云,冯如彬.生物滴滤池处理甲苯废气研究.河北建筑科技学院学报,2004,21(1):1-4
    [2]吕阳,刘京,吕炳南等.生物法处理苯/甲苯废气的工艺性能及动力学研究.化学工程,2008,36(7):55~58
    [3]黄华存,张小平.活性碳纤维吸附甲苯废气吸附等温方程的研究.环境污染治理技术与设备,2006,7(4):56~59
    [4]Poddar T K, Majumdar S, Removal of VOCs from air by absorption and stripping in hollow fiber devices. Journal of Membrane Science.1996,120:221~237
    [5]Chan Y C, Chiang P C, Huang C P. Effect of pore structure and tTemperature on VOCs adsorption on activated cCarbon. Carbon,2001,39:523~534
    [6]Victor S. Updates on choices of appropriate technology for control of VOCs emission. mental finishing,2000,98:433~445
    [7]King C J, Separation process, MCGraw-Hill, New York,1971
    [8]Hanhart J, Kramers H, Westerterp K R. The residence time distribution of the gas in an agitated gas-liquid contactor, Chemical Engineering Science,1963,18(4):503~524
    [9]汪多仁.新型膜分离气体技术进展.过滤与分离,1998,3:19~21
    [10]Poddar T K, Sirkar K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions. Journal of Membrane Science,1997,132:229~233
    [11]王学松.膜分离技术及其应用,北京:化学工业出版社,1994
    [12]李志荣,赵津.催化燃烧技术机理及其研究进展初探.科技情报开发与经济,2005,15(15):163~164.
    [13]Lahousse C, Bernier A, Grange P. Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a noble metal cCatalyst. Journal of Catalysis,1998,178(8):214~225
    [14]李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择.环境污染治理技术与设备,2001,5(2):41-46
    [15]刘书海,吴彦,王宁会等.电晕等离子体活化法脱硫脱硝的研究进展.环境科学进展,1994,5(2):75~81
    [16]何鹰,程代云,史喜成等.非平衡等离子体技术对有害气体污染物的降解研究进展.环境污染治理技术与设备,2002,3(4):12~17
    [17]Chang M B, Lee C C. Destruction of formaldehyde with dielectric barrier discharge plasmas. Environmental science and technology,1995,29 (1):181~186
    [18]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996
    [19]Mulder M,李琳译,膜技术基本原理,第二版.北京:清华大学出版社,1999
    [20]Qi Z, Cussler E L. Microporous hollow fibers for gas absorption. Ⅱ:mass transfer across the membrane, Journal of Membrane Science.1985,23:333~345
    [21]Dindore V Y, Brilmanb D W F. Hollow fiber membrane contactor as a gas-liquid model contactor, Chemical. Engeering. Science.2005,60:467~479.
    [22]Park H H, Deshwal B R., Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas liquid contactor. Journal of membrane Science,2008,319:29~37
    [23]杨广华.用中空纤维膜进行酸性气体吸收的研究.北京化工大学学位论文,2001.32
    [24]郭占虎.中空纤维膜组件分离酸性气体的研究.北京化工大学学位论文,1999,46
    [25]张冬冬.中空纤维膜吸收SO2过程中传质性能的研究.北京化工大学学位论文,2005.6
    [26]衣新宇,赵修华,朱登磊.表面活性剂吸收法治理甲苯废气的中试实验.化学工业,2004,34(3):157~59.
    [27]陈定盛,岑超平,曾环木.乙酸钠及添加剂吸收净化甲苯废气的实验研究.环境卫生工程,2009,17:4~6
    [28]陈定盛,岑超平,曾环木.提高柠檬酸钠净化甲苯废气效率的实验研究.环境科学与技术,2009,32:28~31
    [29]Heymes F, Demoustier P M, Charbit F, et al.. Treatment of gas containing hydrophobic VOCs by a hybrid absorption-pervaporation process:The case of toluene. Chemical Engineering Science,2007,62:2576~2589.
    [30]曹春城,吴燕翔,王良恩.工业含甲苯废气几种吸收剂的初步评价,福州大学学报(自然科学版),1992,20:105~108.
    [31]Montigny D, Tontiwachwuthikul P, Chakma.A. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. Journal of Membrane Science,2006,277:99~107.
    [32]Dindore V Y, Brilman D W F, Geuzebroek F H, et al.. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors, Separation and Purification Technology,2004,40:133~145
    [33]Asimakopoulou A G, Karabelas A J. A study of mass transfer in hollow-fiber membrane contactors:The effect of fiber packing fraction. Journal of membrane science,2006,282:430~441
    [34]王志,龚彦文,袁力.中空纤维膜吸收器中CO2吸收过程模拟.化工学报,2003,54:1564~1568
    [35]Chen H L, Sun L, Zhou Z J, et al.. Study on CO2 removal from air by hollow-fiber membrane contactor. International symposium on membrane technology and environmental protection, Beijing:China,2000:146~151
    [36]Cooney D C, Jackson C C,. Gas absorption in a hollow fiber device. Chemical Engineering Communication,1989,79:153~163
    [37]Supakorn A, Ratana J, Wang R. Separation of CO2 from CH4 by using gas-liquid membrane contacting process. Journal of Membrane Science,2007,304:163~172
    [38]叶向群,孙亮,张林.中空纤维膜基吸收法脱除空气中二氧化碳的研究,高校化学工程学报,2003,17:237~241
    [39]Klaus L E. Pilot-plant and laboratory studies on vapor permeation removal of VOCs from waste gas using silicone-coated hollow fibers. The oil and gas journal, 1982,80(140):210~214
    [40]郑英峨,赵维彭.芳烃回收用高效溶剂NFM.炼油设计,1998,6:21~25
    [41]Awwad A M, Al-Dujaili A H, Syriagh S R. Dielectric studies of binary mixtures of N-formylmorpholine and an aromatic hydrocarbon. Comparison with theory. Journal of molecular liquids,2002,100(2):129~141
    [42]Hans D J, Vollmer K G, N-formylmorphline the superior solvent for aromatics recovery.10th Chisa Congress Pragne 1990(8),26~31
    [43]高振,朱春英,徐世昌.真空膜蒸馏过程影响因素研究.海湖盐与化工2005,34:10~13
    [44]Li J M, Xu Z K, Liu Z M, et.al.. Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination. Desalination,2003,155:153~156
    [45]刘茂林,霍中心,陈定江等.冷侧真空度对减压膜蒸馏过程影响的研究.膜科学与技术,1997,17:65~68
    [46]杜军,刘振华,陶长元等.减压膜蒸馏法处理含铬离子水溶液的实验研究,水处理技术,2000,26:264~266
    [47]阎建民,马润宇.用减压膜蒸馏测定对流传热系数的研究.北京化工大学学报,2000,27:1-4
    [48]Banat F, F. Rub A A, Melhem K B. Desalination by vacuum membrane distillation: sensitivity analysis, Separation and purification technology,2003,33:75~87
    [49]陈冰冰,高增梁,郑三龙.乙醇水溶液真空膜蒸馏分离过程的模拟分析,膜科学与技术,2007,27:61-66
    [50]Lagana F, Barbieri G., Drioli E. Direct contact membrane distillation:modeling and concentration experiments, Journal of Membrane Science,2000,166:1~11
    [51]沈志松,钱国芬.减压膜蒸馏技术处理丙烯腈废水研究.膜科学与技术,2000,20(2):55~60
    [52]刘金山.膜蒸馏法对含甲醇废水的处理实验研究.特种油气藏.2003,10(4):87~90
    [53]马玖彤,张凤君.膜蒸馏法处理甲醇水溶液的研究.水处理技术,2003,1:19~21
    [54]钟世安,李宇萍.减压膜蒸馏法处理多酚类制药废水的研究.水处理技术,2003,23(4):44~46
    [55]Banat F A, Simandl J. Removal of benzene traces from contaminated water by vacuum membrane distillation. Chemical Engineering Science,1996,51:1257~1265
    [56]Sarti G C, Gostol C. Extraction of organic components from aqueous streams by vacuum membrane distillation. Journal of membrane science,1993,80:21~23
    [57]Urtiaga A M, Ruiz G. Kinetic analysis of the vacuum membrane distillation of chloroform form aqueous solutions. Journal of membrane Science,2000,165:99~110
    [58]唐建军,周康根.实验条件对减压膜蒸馏法脱除水溶液中MIBK的影响.水处理技术,2002,25(1):22~24
    [59]Couffin N, Cabassud C. A new process to remove halogenated VOC for drinking water production:Vacuum membrane distillation. Desalination,1998,117:233~245
    [60]陆建刚,王连军,刘晓东等.湿润率对疏水性膜接触器传质性能的影响.高等学校化学学报,2005,26:912~917
    [61]孙承贵,曹义鸣,左莉等.中空纤维致密膜基吸收C02传质过程.高等学校化学学报,2005,26:2097~2102
    [62]陈澍,张卫东,张泽廷等.酸性气体膜吸收过程的数学模型及模拟.北京化工大学学报(自然科学),2005,32(5):14~18
    [63]杨明芬,方梦祥,张卫风等.膜吸收法脱除电厂模拟烟气中的C02.环境科学,2005,26:24~29
    [64]金美芳,曹义鸣,邢丹敏等.膜吸收法脱除二氧化硫.膜科学与技术,1999,19:44~47
    [65]Yan S P, Fang M X, Zhang W F. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel processing technology,2007,88:501~511
    [66]Gabelman A, Hwang S T. Hollow fiber membrane contactors.1999,159:61~106
    [67]Wickramasinghe S R, Semmens M J, Cussler E L. Mass transfer in various hollow fiber geometries. Journal of membrane science,1992(69):235~250
    [68]Johnson D W, Semmens M J, Gulliver J S. Diffusive transport across unconfined hollow fiber membranes. Journal of membrane science,1997(128):67~81
    [69]Xia B, Majumdar S, Sirkar K K. Regenerative Oil Scrubbing of Volatile Organic Compounds from a Gas Stream in Hollow Fiber Membrane Devices. Index of. Engineering and chemical research,1999,38(9):3462~3472.
    [70]Majumdar S, Bhaumik D, Sikar K K, Simes G. Membrane-Based Absorption Stripping Process for Removal and Recovery of Volatile Organic Compounds. Environmental progress,2001,20(1):27~35.
    [71]徐峰,钟秦.生物滴滤塔净化甲苯废气的研究.南京理工大学学报,204,28(3):299~302
    [72]岑超平,陈定盛,蓝如辉.吸收法脱除甲苯废气的实验研究.环境工程,2007,25(6):40~42
    [73]陈炜,朱宝库,王建黎等.中空纤维膜接触器分离CO2/N2混合气体的研究.膜科学与技术,2004,24(1):32~37.
    [74]Wickramasinghe S R, Semmens M J, Cussler E L. Mass transfer in various hollow fiber geometries. Journal of membrane science,1992,69:235~250
    [75]陆建刚,王连军,刘晓东等.膜基复合溶液吸收CO2过程模拟.化工学报,2005(56):1439~1444
    [76]Young S K., Seung M Y. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Separation and purification technology, 2000,21:101~109
    [77]Zhang H Y, Wang R, Liang D T, et al. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. Journal of membrane science,2006, 279:301~310
    [78]Wang R, Li D F, Liang D T. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chemical engineering and processing, 2004,43:849~856
    [79]Marzouqi M A, Naas M E, Marzouk S, et al. Modeling of chemical absorption of CO2 in membrane contactors. Separation and purification Technology,2008,62:499~506
    [80]Happel J. Viscous flow relative to arrays of cylinders. American Institute of Chemical Engineers,1959,5:174~177
    [81]Leon L. Digital computation for chemical engineers. New York:McGraw-Hill,1962
    [82]Poling B E, Prausnitz J M, O'Connell J P. The Properties of Gases and Liquids, New York:McGraw-Hill,2001
    [83]Xu J, Li R., Wang L J. Removal of benzene from nitrogen by using polypropylene hollow fiber gas-liquid membrane contactor. Separation and purification technology, 2009,68(30):75~82
    [84]David M, Tontiwachwuthikul P, Chakma A. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. Journal of membrane Science,2006,277:99~107
    [85]Bandini S, Gostoli C, Sarti G C. Separation efficiency in Vacuum membrane distillation. Journal of membrane Science,1992,73(2-3):217~229.
    [86]Bandini S, Saavedra A, Sarti G C. Vacuum Membrane distillation:experiments and modeling. American institute of chemical engineers,1997,43(2):398~408.
    [87]Lawson K W, Lloyd D R. Membrane Distillation. I. Module design and performance evaluations using vacuum membrane distillation. Journal of membrane Science,1996, 120:111~121.
    [88]Bandini S, Sart G. C. Heat and mass transport resistances in vacuum membrane distillation per drop. American institute of chemical engineers,1999,45(7): 1422~1433.
    [89]Yamaguchi T, Suzuki T, Kai T, Nakao S. Hollow-fiber-type pore-filling membranes made by plasma-graft poly merization for the removal of chlorinated organics from water. Journal of membrane science,2001,194:217~228.
    [90]李玲,匡琼芝,闵犁园等.减压膜蒸馏淡化罗布泊地下苦咸水研究.水处理技术,2007,33(1):67~70
    [91]唐娜,陈明玉,袁建军.海水淡化浓盐水真空膜蒸馏研究.膜科学与技术,2007,27(6):93~96
    [92]李欢,陈华艳,吕晓龙.减压膜蒸馏法淡化渤海海水的研究.水处理技术,2009,35(4):65~73
    [93]李凭力,曹明利,张学岗等.真空膜蒸馏用于多元醇水溶液分离的研究.水处理技术,2008,34(1):31~33
    [94]钟世安,李宇萍,李勃等.减压膜蒸馏处理茶多酚-乙醇-水溶液.膜科学与技术,2003,23(1):21~24
    [95]FAWZI A B., JANA S. Removal of benzene traces from contaminated water by vacuum membrane distillation. Chemical Engineering Science,1996,51(8): 1257~1265
    [96]Honda Z, Komada H, Okamoto K, et al. Noni- sothermal mass transport of organic aqueous solution in hyd rophobic porous membrane. Proc Europe-Japan Congress on membranes and membrane process, stresa, italy,1984
    [97]Hoffmann E. Evaporation of alcohol/water mixtures through hydrophobic porous membranes. Journal of membrane science,1985,34:199~206
    [98]Taylor R., Webb D R. Film models for multicomponent mass transfer, computational methods I:the exact, solution of the maxwell-stefan equations. Computers & Chemical Engineering,1981,5(1):61~73
    [99]Smith L. W., Taylor R. Film models for multicomponent mass transfer:a statistical comparison. Industrial and Engineering Chemistry Fundamentals,1983,22(1):97~104
    [100]Gostoli C, Sarti G. C. Separation of liquid mixtures by membrane distillation, Journal of membrane science,1989,41:211~224
    [101]Soni V, Abildskov J, Jonsson G., et al. Modeling and analysis of vacuum membrane distillation for the recovery of volatile aroma compounds from black currant juice. Journal of membrane science,2008,(320):442~455
    [102]杜军.减压膜蒸馏法处理含铬离子水溶液的实验研究.北京化工大学学位论文,2002.
    [103]Kevin W. L., Douglas R. L. Membrane distillation. Ⅰ. Module design and performance evaluation using vacuum membrane distillation. Journal of membrane science, 1996,120:111~121
    [104]Phattaranawik J, Jiraratananon R, Fane A.G. Heat transport and membrane distillation coefficients in direct contact membrane distillation. Journal of membrane science, 2003,212:177~193
    [105]Fortunato L, Giuseppe B, Enrico D. Direct contact membrane distillation:modelling and concentration experiments. Journal of membrane science,2000,166:1~11
    [106]Nazely D, Oana C V, Ane U, et al. Vacuum membrane distillation of the main pear aroma compound:Experimental study and mass transfer modeling. Journal of membrane science,2009,326:64~75
    [107]Perry R H. Chemical Engineers Handbook, McGraw Hill, New York,2001
    [108]Poling B E, Prausnitz J M, O'Connell J P. The properties of gases and liquids:fifth edition, Translated by ZHAO Hong-Lin, Beijing:Industry Press,2006
    [109]晏水平,方梦祥,王金莲.烟气CO2吸收分离工艺再生能耗的分析与模拟.动力工程,2007,27:969~974
    [110]Norifumi M., Masaaki T., Satoshi K., et.al.. Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution, Separation and Purification Technology,2005,46: 26~32
    [111]Kagaku Kogaku Benran, Handbook of Chemical Engineering, fifth ed., Society of Chemical Engineers of Japan,1998
    [112]田春山,利用新型超声波传感器测定空气绝热系数实验,青海大学学报(自然科学版),2003,21:52~53
    [113]于布,水力学(第二版),广州:华南理工大学出版社.2007
    [114]The report of project of CO2 fixation and utilization catalytic hydrogenation reaction, Research Institute of Innovative Technology for the Earth,1995
    [115]杨乃恒,对油封机械泵一些主要性能的分析,真空,2005,42:1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700