用户名: 密码: 验证码:
大跨度双线铁路钢桁梁斜拉桥受力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
某新建铁路跨长江大桥设计为(81+135+432+135+81)m五跨两塔连续钢桁梁斜拉桥,通行两线铁路,采用正交异性板整体钢桥面结构,整体钢桥面参与主桁共同作用,受力复杂。斜拉桥在纯铁路桥梁中的应用较少,到目前为止,国内外还没有建成这种大跨度铁路专用斜拉桥的实例。本文对该桥的受力性能进行了研究,主要完成了以下工作:
     1、采用空间板梁法建立全桥空间有限元模型,对该桥在恒载、最不利活载及附加力作用下的受力性能进行了分析。结果表明:该桥受力合理,刚度和强度均满足要求。
     2、对混凝土道碴槽板是否设置断缝进行了对比研究。结果表明:将混凝土板在节点横梁上方设置断缝,可释放该处混凝土板的峰值拉应力,但对离断缝0.5m以外的混凝土板和全桥的钢结构应力几乎无影响。
     3、对混凝土板的合理浇注顺序进行了研究。结果表明:混凝土板的浇注顺序主要影响混凝土板自重作用下的应力,主跨跨中区域的混凝土板拉应力最大,应最后浇注,使该区域混凝土板在自重作用下不产生拉应力。
     4、研究了混凝土道碴槽板对桥梁刚度及受力状态的影响。结果表明:考虑混凝土道碴槽板抗力后,桥梁的竖向刚度及横向刚度分别提高了约1.8%和7.5%,桥面系钢构件的应力有较明显的降低,主桁杆件受力变化不大;增加混凝土板的厚度或宽度,桥梁竖向刚度和主桁杆件的受力变化较小,桥梁横向刚度增加和桥面系钢构件的应力降低较明显。
     本文的研究成果为该桥设计提供了依据,对其他类似桥梁也有参考价值。
Hanjiat Yangtze River Railway Bridge is a double tower, five-span continuous steel truss cable-stayed bridge with span arrangement (81+135+432+135+82) m. The bridge allows two lines railway. Orthotropic monolithic steel deck is adopted, which works together with the main truss. So far, cable-stayed bridges have seldom been applied in railway bridges. There is no railway cable-stayed bridge with span as long as Hanjiat Yangtze River Railway Bridge at home and abroad. The mechanical behavior of the bridge was studied in this paper. Main work of this paper is as follows:
     1.Space finite element model of the full bridge was established adopting SPB(Space Plate-Beam)method. The mechanical characteristics of the bridge under dead load, worst-case of living load and additional forces were studied. The results show that the working condition of the bridge is reasonable and the stiffness and strength meet the requirements.
     2.The effects of the break joints in concrete slab were studied. The results show that the break joints of the concrete slab above cross beams at chord joints, can effectively decrease the peak tensile stress of the concrete slab nearby the break joints, but they have no effect on the stress of the concrete slab 0.5m away from the break joints and the steel structure.
     3.The reasonably pouring sequence for the concrete slab was studied. The results show that, the pouring sequence of concrete slab mainly affects the self-weight stress of the concrete slab. The tensile stress of the middle midspan area is largest. Therefore, the reasonably pouring sequence is to pour the concret slab in this area at last, so that the self-weight of the concrete slab would not creat tensile stress in this area.
     4. The effects of the concrete slab on the bridge stiffness and mechanical behavior were studied. The results show that, the concrete slab can increase the vertical stiffness and the lateral stiffness of the bridge by 1.8% and 7.5% respectively, effectively decrease the stress of the steel decks, but little change the stress of of the main trusses.With the thickness and width of the concrete slab increased, the lateral stiffness of the bridge increased and the stress of the steel decks increased, while the vertical stiffness and the stress of the main trusses changed little.
     The research results in this paper not only service design of Hanjiat Yangtze River Railway Bridge but also provide references for other similar structures.
引文
[1]刘士林.斜拉桥.北京:人民交通出版社,2002.1-4
    [2]Rene Walther,Bernard Houriet,Walmar Isler.Cable-Stayed Bridges. London:Thoms Telford Ltd,1988.1-15
    [3]严国敏.现代斜拉桥.成都:西南交通大学出版社,1996.1-6
    [4]Michel Virlogeux.Recent evolution of cable-stayed bridges. Engineering Structures,1999,21(8):737-755
    [5]M. Ito,Y.Fujino,T.Miyata,N.Narita.Cable-Stayed Bridges:Recent Developments and their Future.Amsterdam:B.V.,1991.56-63
    [6]杨新宝,曹雪琴.大跨度铁路斜拉桥竖向刚度的研究.上海铁道学院学报,1995,16(2):12-20
    [7]易伦雄.大跨度铁路桥梁桥型方案构思与设计.桥梁建设,2005,(2):33-36
    [8]成井信,松下貞义,山根哲雄,八田政仁,戴振藩.柜石岛·岩黑岛公铁两用斜拉桥的设计.国外桥梁,1982,(01):25-55
    [9]杨义东,胡定成.厄勒海峡大桥的详细设计.国外桥梁,1999,(03):8-11
    [10]左明福.厄勒海峡大桥的设计与施工.中国港湾建设,2001,(01):5-9
    [11]方秦汉.芜湖长江大桥.华中科技大学学报,2002,19(1):1-3
    [12]秦顺全.芜湖长江大桥板桁组合结构斜拉桥建造技术.土木工程学报,2005,38(9):94-98
    [13]刘东芳.武汉天兴洲公铁两用长江大桥空间几何非线性仿真分析:[硕士学位论文].长沙:中南大学,2007
    [14]高宗余.武汉天兴洲公铁两用长江大桥总体设计.桥梁建设,2007,(1):5-9
    [15]高宗余.跨长江黄河的高速铁路大跨度桥梁.中国工程科学,2009,11(1):17-21
    [16]叶梅新,江峰.芜湖桥板桁组合结构的研究.铁道学报,2001,23(5):65-69
    [17]陈玉骥.高速铁路下承式钢桁结合梁桥的计算理论及其应用研究:[博士论文].长沙:中南大学,2004
    [18]彭岚平,徐升桥,高静青.钢桁梁有碴桥面结构设计研究.铁道勘察,2007,(S1):14-19
    [19]马坤全,吴定俊,曹雪琴.高速铁路钢结构桥梁桥面结构布局探讨.铁 道标准设计,2003,(12):56-58
    [20]李锐.高速铁路钢桥桥面系方案研究.四川建筑,2008,28(4):146-147
    [21]梅大鹏.南京大胜关长江大桥道碴整体桥面结构方案比选:[硕士学位论文].长沙:中南大学,2008
    [22]周胜利,林亚超.高速铁路钢桁梁桥桥面结构设计及减小噪音的结构措施.国外桥梁,1996(3):22-32
    [23]刘桂红,易伦雄.采用正交异性钢桥面板的铁路钢桁梁设计.桥梁建设.2007,(S2):1-8
    [24]张晔芝.高速铁路下承式钢桁结合桥研究.铁道学报.2004,26(6):71-74
    [25]叶梅新,秦绍清.既有线路提速改造中下承式钢桁结合桥的应用研究.铁道科学与工程学报,2004,1(2):69-74
    [26]陈玉骥、叶梅新.钢桁梁桥纵梁和横梁的受力分析.中国有色金属学报,1996,(6)2:151-155
    [27]Hyeong-Yeol Kim, Youn-Ju Jeong. Experimental investigation on behaviour of steel-concrete composite bridge decks with perfobond ribs. Journal of Constructional Steel Research,2006,62(5):463-471
    [28]Jacques Brozzetti.Design development of steel-concrete composite bridges in France. Journal of Constructional Steel Research, 2000,55(1-3):229-243
    [29]周胜利,林亚超.日本北陆新干线犀川桥.国外桥梁.1996,(3):1-11
    [30]陈玉骥、叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报(自然科学版),2004,35(5):849-855
    [31]张哗芝.下承式铁路钢桁结合桥的桥式结构比较.铁道学报,2005,27(5):107-110
    [32]韩衍群,叶梅新.连续钢桁结合梁桥桥面系受力状态及与桥面系刚度的关系,中南大学学报,2008,39(2):1-7
    [33]彭月桑.下弦杆和钢桥面结合的低高度桥面系铁路桁梁桥.国外桥梁,1995(2):105-107
    [34]L.Fryba.Design of steel orthotropic decks on railway bridges. Journal of Constructional Steel Research,1998,46(1-3):48-49
    [35]L. Fryba, L. Gajdos.Fatigue properties of orthotropic decks on railway bridges. Engineering Structures,1999,21(7):639-652
    [36]侯文崎,叶梅新.南京大胜关长江大桥三主桁钢正交异性板整体桥面 结构受力特性的试验研究.铁道科学与工程学报,2008,5(3):11-17
    [37]刘春彦.有碴正交异性板钢桥面系铁路钢桥的设计研究及优越性的探讨,铁道标准设计通讯.1989,(02):11-16
    [38]韩衍群.三主桁道碴整体桥面板桁组合梁桥分析理论及计算方法研究:[博士学位论文].长沙:中南大学,2008
    [39]程庆国,金东灿,吴亮明,周祖里,莫拔颖,揭更荣.红水河铁路斜拉桥设计、施工和试验研究.土木工程学报,1982,(02):1-18
    [40][日]小西一郎.钢桥(第一分册).北京:人民铁道出版社,1981.4-20
    [41]林国雄.正交异性板与桁梁结合桥梁第一反应系统应力及有效宽度计算.桥梁建设,1978,(4):51-64
    [42]铁道部大桥工程局科学研究院.芜湖长江大桥关键技术研究,板桁结构受力特性试验及空间分析方法研究.2000.12
    [43]王荣辉,程纬,王海龙等.板桁组合结构计算模式与动力特性研究.铁道学报,2000,22(2):72-76
    [44]何畏,强士中.板桁组合结构中混凝土桥面板有效宽度计算分析.中国铁道科学,2002,23(5):55-61
    [45]王应良等.芜湖长江大桥桥面板的有效宽度分析.桥梁建设,1998,28(3):13-15
    [46]何畏,李乔.板桁组合结构体系受力特性及计算方法研究.中国铁道科学,2001,22(5):66-72
    [47]吴冲.现代钢桥.北京:人民交通出版社,2006.56-72
    [48]罗如登,叶梅新.高速铁路钢桁梁桥正交异性整体钢桥面板有效宽度的计算原则.钢结构,2005,24(5):38-41
    [49]铁道部第三勘测设计院.铁路桥涵设计基本规范(TB10002.1-05),北京:中国铁道出版社,2005
    [50]黄琼,叶梅新,韩衍群.钢-混凝土叠合板组合桥面的徐变和应力重分布研究.铁道科学与工程学报,2006,3(3):15-20
    [51]中铁工程设计咨询集团有限公司.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-05),北京:中国铁道出版社,2005
    [52]侯文崎,叶梅新.连续结合梁桥负弯矩区混凝土板裂缝宽度控制方法研究.铁道学报,2003,25(1):109-112
    [53]侯文崎,罗如登,叶梅新.钢-高配筋现浇混凝土结合梁裂缝宽度试验研究.中国铁道科学,2001,22(5):54-59
    [54]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002),北京:中国建筑工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700