用户名: 密码: 验证码:
大跨径缆索承重桥梁梁端位移及组合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度缆索承重桥梁由于刚度小,在荷载和自然因素作用下的梁端位移较大。梁端位移不仅是梁端附属装置和梁端构造的一个重要设计参数,也是缆索承重体系桥梁健康监测的重要参数之一。因此,研究影响梁端位移的作用因素、结构因素及梁端位移作用效应的组合方法有重大的工程价值和意义。论文以斜拉桥和悬索桥体系为研究对象,采用有限元方法系统研究了产生梁端位移的作用因素;基于可靠度理论研究了梁端位移作用效应组合及组合的分项系数;提出了梁端附属装置和梁端构造位移参数的设计方法。论文的主要研究成果如下:
     1、系统研究了温度、汽车、静风和地震作用对斜拉桥和悬索桥梁端位移和转角的影响。针对不同的缆索承重桥梁结构形式,明确了需计算的梁端位移和转角类别及计算时应考虑的作用因素。其中关于梁端转角的研究表明:目前梁端附属装置横桥向轴的转角限值(±0.02rad)不能满足所有缆索承重桥梁的要求,需进行针对性的设计。
     2、系统研究了辅助墩、支座摩阻力和塔梁连接方式对梁端位移和转角的影响,明确了缆索承重桥梁的梁端位移预测时需考虑的结构因素。其中采用刚-塑性刚度模型研究了支座摩阻力对静态下梁端位移的影响,指出在斜拉桥梁端纵向位移计算时需考虑支座摩阻力的影响。塔梁之间弹性索能有效减小汽车、静风和桥塔梯度温差作用下的梁端纵向位移;由于地震动频谱的影响,弹性索并不总是减小地震作用下的梁端纵向位移。
     3、针对影响梁端位移的作用因素,首次基于可靠度分析的一次二阶矩理论建立了梁端位移作用效应组合方法。根据梁端附属装置的特点确立了梁端附属装置的设计基准期和目标可靠度指标,利用作用的概率分布函数推导了梁端附属装置设计基准期内的最大值分布,并确定了作用效应组合的分项系数。该组合方法的突出优点是充分考虑了作用效应的特性和概率分布,具有明确的可靠度指标,方便和实用。
     4、基于梁端位移的影响因素和作用效应组合的研究成果,充分考虑了梁端各方向的变位,改进了梁端附属装置和梁端构造的位移参数的设计方法。
As the stiffness of long-span cable supported bridges is low, the displacement of the girder always large under load and natural function. Beam-ends displacement is a important design parameters for construction and devices of girder end, and for the bridge health monitoring. So, study on the effect action, construction factor, and the combination for action effects of beam-ends displacement that has great engineering values and important meaning. In the paper, it take cable-stayed bridge and suspension bridge as object of study, action and structure factor that effect beam-ends displacement was analyzed using FEM method, and the combined effect of girder displacement has studied based on the reliability theory. In turn, design method of displacement parameters for devices of girder end was put forward. The main conclusions are as follows:
     1. Systematically study the influencing factor such as temperature, vehicle, static wind and earthquake which how to influence beam-ends displacements. For different cable surpported bridge, displacements and rotation angles which need calculation in bridge design was definited. which action is must be take into account when calculating beam-ends displacements was also provided. The results of studied on rotation angle show that the current limit rotation angle(±0.02rad) can not meet the needs of all of cable surpported bridges, it must be specific design.
     2. The structure factor, such as auxiliary pier, supports frictional resistance, connections between tower and beam, which how to infuence on displacements and rotation angles was studied Systematically, and which structure factor is must be take into account when calculating beam-ends displacements of cable supported bridges was definited. Rigid-plastic model was used to analyze the effection of supports frictional resistance on beam-ends displacement and results indicated that the supports frictional resistance should be include During the cable-stayed bridge displacement prediction. Flexible cable between tower and beam can efficiently decrease the beam-ends longitudinal displacement caused by vehicle, static wind and temperature longitudinal gradient of tower. but it may be enlarge the beam-ends longitudinal displacements under the excitations of earthquake with designated frequency spectrum.
     3. Based on First-order Second-moment Method on reliability analysis, set up the action effects combination method of beam-ends displacement effects, direct towards the influence factors of beam-ends displacement. Defined the design reference period and target reliability index of girder fixtures according to the characteristic of them, derive the maximum distribution during reference period using the probability distribution function of loads, certain the partial safety factor of action effects combination. The advantages of the combination method are that it is banausic and convenient, and has clear reliability index.
     4. According to the influence factors of girder displacement and the action effects combination, taking all displacements and rotations of girder end, improving the design methods for displacement parameters of beam-ends devices and construction.
引文
[1]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学.2003.
    [2]许汉筝.大跨径悬索桥施工控制系统研究[D].西安:长安大学.2005.
    [3]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996.
    [4]林元培.斜拉桥[M].北京:人民交通出版社,1997.
    [5]项海帆.中国斜拉桥的发展前景[A].中国土木工程学会桥梁及结构工程学会第十三届年会论文集[C].上海,1998:10-14.
    [6]李传习.混凝土悬索桥非线性精细计算理论及其应用[D].长沙:湖南大学.2006.
    [7]陈跃.索鞍无预偏施工钢混叠合梁悬索桥施工控制技术研究[D].西安:长安大学.2005.
    [8]万保田,杨进.三塔两跨悬索桥2个重要的技术指标和中塔疲劳验算加载模式[J].世界桥梁,2008.1,8-10.
    [9]D..M.Brotton. A general computer programme for the solution of suspension bridge problem[J]. Journal of Structural Engineering,1960,44(5):637-651.
    [10]S.A.Saafan. Theoretical analysis of suspension bridges[J]. J.Struct.Div.1966,92:1-11.
    [11]BatheK.J, Bolourchi S.Large displacement analysis of three-dimensional beam structures[J]. J.Num Meth. Eng,1979(14):961-986.
    [12]Aly S.Nazmy, Ahmed M. Abdel-Ghaffar. Three-dimensional nonlinear static analysis of cable-stayed bridges[J]. Computers & Structures,1990,34(2):257-271.
    [13]Ybong-Bin Yang, Liang-Jenq-Leu. Force recovery procedures in nonlinear analysis[J]. Computers & Structures,1991,41(6):1255-1261.
    [14]Kuo Mo Hsiao, Rong Tser Yang. A co-rotational formulation for nonlinear dynamic analysis of curved euler beam[J]. Computers & Structures,1995,54(6):1091 1097.
    [15]H.Adeli, J.Zhang. Fully nonlinear analysis of composite girder cable-stayed bridges[J]. Computers & Structures,1995,54(2):267-277.
    [16]Bassam A., Izzuddin. Conceptual issues in geometrically nonlinear analysis of 3d frame structures[J]. Computer Methods in Applied Mechanics and Engineering,2001,191:1029-1053.
    [17]Y.B.Yang, S.R.Kuo,Y.S.Wu. Incrementally small-deformation theory for nonlinear analysis of structural frames[J]. Engineering Structures,2002,24:783-798.
    [18]Pao-Hsii Wang, Hung-Ta Lin, Tzu-Yang Tang. Study on nonlinear analysis of a highly redundant cable-stayed bridge[J]. Computers & Structures,2002, (80):165-182.
    [19]C.A.Felippa., B.Haugen. A unified formulation of small-strain co-rotational finite elements theory[J]. Computer Methods in Applied Mechanics and Engineering,2005,194:2285-2335.
    [20]Dan M.Frangopol, Kiyohiro Imai. Reliability of long span bridges based on design experience with the Honshu-Shikoku bridges[J]. Journal of Constructional Steel Research,60(2004):373-392.
    [2l]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的ul列式法[J].土木工程学报,1992,25(6):34-44.
    [22]陈政清.大跨度斜拉桥的非线性分析[J].长沙铁道学院学报,1991,9(3):29-33.
    [23]贾丽君,滕小竹,郭瑞,张雪松,肖汝诚.超大跨度斜拉桥非线性因素影响分析研究[J].世界桥梁,2006(3):35-37.
    [24]李乔,杨兴旺,卜一之.特大跨度斜拉桥变形的几何非线性效应分析[J].西南交通大学学报,2007,42(2):133-137.
    [25]梁鹏,肖汝诚,孙斌,超大跨度斜拉桥几何非线性精细化分析[J].中国公路学报,2007,20(2):57-62.
    [26]Abdel-Ghaffar A, Khalifa M A. Importance of cable vibration in dynamics of cable-stayed bridges[J].Journal of Engineering Mechanics,1991,117(11):2571-2589.
    [27]马如进,陈艾荣,刘志文.大跨度斜拉桥拉索分段模拟对动力特性的影响[J].同济大学学报,2005,33(5):580-584.
    [28]张喜刚,裴岷山,袁洪,徐利平,朱斌.苏通大桥主桥结构体系研究[J].中国工程科学,2009,11(3):20-25.
    [29]徐利平.超大跨径斜拉桥的结构体系分析[J].同济大学学报,2003,31(4):400-403.
    [30]布占宇,叶贵如,周广宗.斜拉桥主梁不同纵向约束刚度对动力特性的影响[J].中国市政工程,2004(6):25-28.
    [31]郭明华.辅助墩对斜拉桥动力性能的影响[J].公路,2001,(10):112-113.
    [32]裴炳志,叶见曙,李学文,颜东惶.辅助墩对大跨度高低塔PC斜拉桥的受力影响分析[J].桥梁建设,2005(6):23-26.
    [33]潘家英,吴亮明,高路彬.大跨度斜拉桥活载非线性研究[J].土木工程学报,1993,26(1):31-37.
    [34]梁鹏,秦建国,袁卫军.超大跨度斜拉桥活载几何非线性分析[J].公路交通科技,2006.4(23):60-62.
    [35]张雪松,梁鹏,贾丽君,肖汝诚.非线性因素对超大跨度斜拉桥活载内力的影响[J].重庆交通学院学报,2005,24(1):5-8.
    [36]方志,郭棋武,刘光栋.混凝土斜拉桥施工及运营阶段的非线性影响分析[J].工程力学,2005,22(1):200-205.
    [37]吴志刚,张广山.大跨度多塔斜拉桥数值分析[J].合肥工业大学学报(自然科学版),2008,31(8):1310-1314.
    [38]陈铁冰,杨炳成,石洞.斜拉桥非线性随机静力分析[J].西安公路交通大学学报,2000,20(2):45-48.
    [39]ARCO D C, APARICIO A C. Preliminary static analysis of suspension bridges[J]. Engineering Structures,2001,23(9):1096-1103.
    [40]洪锦如.悬索桥的非线性分析[J].上海力学,1995,16(4):323-330.
    [41]傅强.悬索桥空间非线性分析[J].同济大学学报,1997,25(3):364-368.
    [42]潘永仁,杜国华,范立础.悬索桥恒载结构几何形状及内力的精细计算[J].中国公路学报,2000,13(4):33-36.
    [43]肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报,1998, 11(4):42-50.[44]王解军,杨文华,刘光栋.大跨度悬索桥的几何非线性分析[J].湖南大学学报,1998,25(3):70-73.
    [45]李黎,陈伟龙,龙晓鸿,胡亮.四渡河特大悬索桥静力非线性分析[J].华中科技大学学报(城市科学版),2006,23(2):9-12.
    [46]A.S.Nazmy, A.M.Abdel-Ghaffar.3-D nonlinear seismic behavior of cable-stayed bridge[J]. Struct. Engrg.1991,117(11):3456-3476.
    [47]郑凯锋,胥润东,栗怀广.悬索桥中央扣对活载挠度影响的详细计算方法[J].世界桥梁2009(2):51-53.
    [48]张志田,葛耀君.悬索桥静动力特性分析的有限板壳单元法[J].结构工程师,2003(4):21-25.
    [49]石磊,刘春城,张哲,杜蓬娟.大跨悬索桥非线性随机静力分析[J].大连理工大学学报,2004,44(3):421-424.
    [50]刘春华,秦权.材料变异时大跨悬索桥的静力分析[J].清华大学学报,1997,37(6):91-94.
    [51]金增洪.悬索和斜拉复合桥梁的位移特征[J].中外公路,2003,23(1):47-50.
    [52]Haijun Wang, Yukitake Shioi, Akira Hasegawa, EndoTakanori. Displacement characteristics of compound bridge of suspension bridges and cable-stayed bridges[A]. IABSE Conference on Cable-Supported Bridges-Challenging Technical Limits, Seoul, Korea,2001.
    [53]CLEMENTE P, NICOLOSI G, RAITHEL A. Preliminary design of very long-span suspension bridges[J]. Engineering Structures,2000,22(12):1699-1706.
    [54]杨进.多塔多跨悬索桥应用于海峡长桥建设的技术可行性与技术优势[J].桥梁建设,2009,2:36-39.
    [55]YOSHIDA O, OKUDA M, MORIYA T. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Bridge Engineering,2004,9(5):453-463.
    [56]OSAMU YOSHIDA,MOTOI OKUDA,TAKEO MORIYA. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Bridge Engineering,2004,9(5):453-463.
    [57]FORSBERG T. Multi-span suspension bridges[J]. International Journal of Steel Structures,2001, 11(1):50-53.
    [58]陈艾荣,陈文明,多跨悬索桥[A].上海市公路学会第五届年会学术论文集[C],2001:65-69.
    [59]郑凯锋,栗怀广,胥润东.连续超大跨悬索桥的刚度特征[J].西南交通大学学报,2009,44(3):342-346.
    [60]FUKUDA T. Multi-span suspension bridges under torsional loading[J]. Journal of Japan Society Civil Engineering,1975,24(2):91-103.
    [61]FUKUDA T. Analysis of multi-span suspension bridges[J].Journal of Structure Division,1976, 13(9):63-86.
    [62]阮静,吉林,祝金鹏.三塔悬索桥中塔结构选型分析[J].山东大学学报(工学版),2008,38(2),106-111.
    [63]陈策,钟建驰.三塔悬索桥关键设计参数对其结构行为的影响[J].世界桥梁,2008.2,10-12.
    [64]陈策,钟建驰.三塔悬索桥垂跨比变化对结构静动力特性的影响[J].桥梁建设,2008,6:12-14.
    [65]邓育林,彭天波,李建中,等.大跨度三塔悬索桥动力特性及抗震性能研究[J].振动与冲击,2008, 27(9):105-110.
    [66]何友娣,李龙安,屈爱萍.三塔悬索桥的抗震性能研究[J].工程抗震与加固改造,2008,30(3):69-72.
    [67]程进,肖汝诚,项海帆.大跨径斜拉桥非线性静风稳定性全过程分析[J].中国公路学报,2000,13(3):26-28.
    [68]程进.缆索承重桥梁非线性空气静力稳定性研究[D].上海:同济大学,2000.
    [69]方明山,项海帆,肖汝诚.超大跨径悬索桥空气静力非线性行为研究[J].重庆交通学院学报,1999,18(2):1-7.
    [70]方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究[D].上海:同济大学,1997.
    [71]韩大建,邹小江.大跨度斜拉桥非线性静风稳定分析[J].工程力学,2005,22(1):207-210.
    [72]Karoumi R. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges[J]. Computers&Structures,1999,71:397-412.
    [73]Virote Boonyapinyo, Yingsak Lauhatanon, Panitan Lukkunaprasit. Nonlinear aerostatic stability analysis of suspension bridges[J]. Engineering Structures 28(2006):793-803.
    [74]王卫锋,颜全胜,李立军,徐金勇.大跨度斜拉桥侧风非线性分析[J].吉林大学学报,2007,37(4):786-789.
    [75]方明山,项海帆,肖汝诚.超大跨径桥梁结构中的特殊力学问题[J].重庆交通学院学报,1998,17(4):5-8.
    [76]张新军.大跨径悬索桥空气静力和动力分析的影响因素研究[J].计算力学学报,2007,24(3):285-288.
    [77]程进,肖汝诚,项海帆.计算大跨径悬索桥侧向静风载效应的实用方法[J].桥梁建设,1999.2:1-4.
    [78]陈忠延.悬索桥的侧向风载效应[J].重庆交通学院学报,1995,14(4):10-15.
    [79]陈艾荣,刘志刚,项海帆.悬索桥横向等效风荷载工程力学(增刊),1998,371-377.
    [80]裴岷山,张喜刚,朱斌,侯斌,刘昌鹏.斜拉桥的拉索纵桥向风荷载计算方法研究[J].中国工程科学,2009,11(3):26-29.
    [81]刘志文,陈艾荣,周志勇,马如进.大跨径斜拉桥斜拉索静风荷载计算方法比较[J].同济大学学报,2005,33(5):575-579.
    [82]范立础.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [83]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [84]Sera-m Arzoumanidis, Ayman Shama, Farhang Ostadan. Performance-based seismic analysis and design of suspension bridges[J]. Earthquake Engng Struct. Dyn.; 2005,34 (1):349-367.
    [85]胡世德.范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    [86]D.Bruno, F.Greco, P.Lonetti. Dynamic impact analysis of long span cable-stayed bridges under moving loads[J]. Engineering Structures,30(2008):1160-1177.
    [87]曹永睿,钟铁毅,顾正伟,唐兴国.大跨度斜拉桥地震响应分析[J].铁道建筑,2007(5):23-27.
    [88]秦权,楼磊.非经典阻尼对悬索桥地震反应的影响[J]土木工程学报,1999,32(3):17-22.
    [89]布占宇,谢旭.不同阻尼计算模式对斜拉桥地震响应分析的影响[J].中国铁道科学,2006,27(2):46-50.
    [90]Kawashima K, Unjoh S, Tsunomoto M. Estimation of damping ratio of cable-Stayed bridges for seismic design[J]. Journal of Structural Engineering,1993,119(4):1015-1031.
    [91]王滔,郭恩栋,张丽娜,胡煜文.大跨斜拉桥地震动最不利输入方向分析[J].世界地震工程,2007,23(4):117-111.
    [92]王浩,李爱群,郭彤.超大跨悬索桥地震响应的综合最优控制研究[J].湖南大学学报(自然科学版),2006,33(3):6-10.
    [93]孙卓.粘滞阻尼器参数对悬索桥抗震性能影响研究[J].广州大学学报,2006,5(5):85-90.
    [94]叶爱君,胡世德,范立础.超大跨度斜拉桥的地震位移控制[J].土木工程学报,2004,37(12):38-43.
    [95]叶爱君,范立础.超大跨度斜拉桥的横向约束体系[J].中国公路学报,2007,20(2):63-67.
    [96]叶爱君,范立础.附加阻尼器对超大跨度斜拉桥的减震效果[J].同济大学学报,2006,34(7):859-863.
    [97]刘伟庆,徐秀丽,吴晓兰,王仁贵.大跨度斜拉桥结构横向消能减震设计方法[J].振动工程学报.2006,19(3):426-432.
    [98]方海,刘伟庆,王仁贵,李升玉.铅阻尼器在自锚式悬索桥横向减震设计中的应用研究[J].地震工程与工程振动,2006,26(4):220-225.
    [99]王蒂,黄平明.超大跨度斜拉桥纵向减震耗能塔、梁连接装置研究[J].郑州大学学报(工学版),2008,29(4):112-115.
    [100]梁智垚,李建中.大跨度公铁两用斜拉桥阻尼器参数研究[J].同济大学学报,2007,35(6):728-733.
    [101]亓兴军,李小军.大跨飘浮体系斜拉桥减震控制研究[J].振动与冲击,2007,26(3):79-82.
    [102]项海帆.斜张桥在行波作用下的地震反应[J].同济大学学报,1983,(2):l-9.
    [103]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):61-67.
    [104]陈幼平,周宏业.拉桥地震反应特性[J].中国铁道科学,1996,17(1):1-7.
    [105]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363.
    [106]李忠献,黄健,丁阳,史志利.不同地震激励下大跨度斜拉桥的地震反应分析[J].中国公路学报,2005,18(3):48-53.
    [107]史志利,李忠献,陈平.大跨度斜拉桥多点激励地震反应分析[J].特种结构,2004,21(2):46-50.
    [108]刘洪兵,朱唏.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,2001,34(6):38-43.
    [109]喻明秋,祝兵.基于多点激励动力模型的支承体系斜拉桥行波效应分析[J]铁道工程学报,2008(11):39-43.
    [110]A.S.Nazmy, A.M.Abdel-Ghaffar. Effects of ground motion spatial variability on the response of the cable-stayed bridges[J]. Earthquake Eng.Struct.Dyn.1992,21:1-21.
    [111]R.S.Harichandran, A.Hawwari, B.N.Sweidan. Response of long-span bridges to spatially varying ground motion[J]. Struct.Eng.1996,122(5):476-484.
    [112]K.Soyluk. Comparison of random vibration methods for multi-support seismic excitation analysis of long-span bridges[J]. Engineering Structures,26(2004):1573-1583.
    [113]亓兴军,李小军,王京卫.行波效应对大跨斜拉桥减震控制的影响[J].交通运输工程学报,2008,8(6):70-76.
    [114]P Leger,I M Ide, P Paultre. Multiple-support seismic analysis of large structures[J], Computers & Structures,1990,36:1153-1158.
    [115]丰硕,项贻强,谢旭.超大跨度悬索桥的动力特性及地震反应分析[J].公路交通科技,2005,22(8):31-35.
    [116]张卉,王志清,彭元诚,龙晓鸿.四渡河大跨悬索桥空间地震响应分析[J].地震工程与工程振动,2007,27(3):70-76.
    [117]李杰,李娜.基于二维相干性自锚式悬索桥行波效应分析[J].中外公路,2008,28(5):150-154.
    [118]樊可清,倪一清,高赞明.大跨度桥梁模态频率识别中的温度影响研究[J].中国公路学报,2006,19(2):67-73.
    [119]许永吉,朱三凡,宗周红.环境温度对桥梁结构动力特性影响的试验研究[J].地震工程与工程振动,2007,27(6):119-123.
    [120]AI.AMPALLIS. Influence of in-Service Environment on Modal Parameters[C]. Society for Experimental Mechanics, Inc. Press. Proceedings of IMAC 16. San Barbara:Society for Experimental Mechanics,1998:111-116.
    [121]BRINCKER R. ZHANG Ling-mi, ANDERSEN P. Modal identification of output-only systems using frequency domain decomposition[J]. Smart Material and Structures,2001,10(3):441-445.
    [122]PEETERS B, GUIDO D R. One-year monitoring of the Z24-birdge:environmental effects versus damage events[J]. Earthquake Engineering and Structure Dynamics,2001,30(2):149-171.
    [123]姚昌荣,李亚东.大跨度桥梁健康检测过程中的温度影响研究[J]。华东交通大学学报,2008,25(2):25-28.
    [124]邓扬,李爱群,丁幼亮.大跨悬索桥梁端位移与温度的相关性研究及其应用[J].公路交通科技,2009,26(5):54-58.
    [125]张宇锋.江阴大桥结构健康监测系统升级改造及初步数据分析.
    [126]郭棋武,方志,裴炳志,等.混凝土斜拉桥的温度效应分析[J].中国公路学报,2002,15(2):48-51.
    [127]方志,汪剑.大跨预应力混凝土连续箱梁桥日照温差效应[J].中国公路学报,2007,20(1):62-67.
    [128]郝超,大跨度钢斜拉桥施工阶段非线性温度影响研究[J].公路交通科技,2003,20(1):63-66.
    [129]郝超,大跨度钢斜拉桥施工阶段非线性结构行为研究[D].西南交通大学博士学位论文,2001.
    [130]肖勇刚,刘智.温度效应对独塔钢混梁斜拉桥的静力特性影响[J].公路与汽运,2009,3:134-135
    [131]刘来君.大跨径桥梁施工控制温度荷载[J].长安大学学报:自然科学版,2003,23(2):61-63.
    [132]刘来君,贺拴海,宋一凡.大跨径桥梁施工控制温度应力分析[J].中国公路学报,2004,17(1): 53-56.
    [133]陈定波,李丹,宋松科.苏通长江公路大桥施工控制中的温度影响研究[J].四川建筑,2008,28(4):184-186.
    [134]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究[J].中国公路学报,1996,9(2):76-83.
    [135]CARIN L. Measurements of thermal gradients and their effects in segmental concrete bridge[J]. Journal of Bridge Engineering,2002,7(3):116-174.
    [136]郭健.混凝土斜拉桥主梁的非稳态温度场与应力场分析[J].中国公路学报,2005,18(2):65-68.
    [137]张玥,胡兆同,贾润中.钢筋混凝土连续弯箱梁桥的温度梯度[J].长安大学学报:自然科学版,2006,26(4):58-62.
    [138]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004,17(1):49-52.
    [139]张元海,李乔.预应力混凝土连续箱梁桥的温度应力分析[J].土木工程学报,2006,39(3):98-102.
    [140]徐德明,周启国,陈衡治.混凝土箱梁温度场计算方法研究[J].公路.2008.5:96-100.
    [141]刘寅.桥梁设计中考虑温度等可作用下的效应组合[J].重庆工学院学报,2008,22(10):28-33.
    [142]何佛生,滕家俊,沈平.混凝土桥梁温度变化与伸缩装置[J].中南公路工程,2004,29(4):108-111.
    [143]JTJ021-89.公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [144]JTG D60-2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [145]JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [146]JTJ027-96.公路斜拉桥设计规范(试行)[S].北京:人民交通出版社,1996.
    [147]JTG/TB02-01-2008.公路桥梁抗震设计细则[s].北京:人民交通出版社,2008.
    [148]ASHTO. Standard Specifications for Highway Bridges[S]. American Association of State Highway and Transportation Officials, Washington, DC,2004.
    [149]CAN-CSA-S6-06. Canadian Highway Bridge Design Code[S]. Canadian standards association,2006.
    [150]李扬海,程潮洋,鲍卫刚,郑学珍.公路桥梁伸缩装置[M].北京:人民交通出版社,1999.
    [151]李扬海,程潮洋,鲍卫刚,郑学珍.公路桥梁伸缩装置实用手册[M].北京:人民交通出版社,2007.
    [152]赵衡平.现代桥梁伸缩装置[M].北京:人民交通出版社,2008.
    [153]Joao Marques Lima, Jorge de Brito. Inspection survey of 150 expansion joints in road bridges[J]. Engineering Structures,31(2009):1077-1084.
    [154]Micha e l J.M.M.Steenbergen. Dynamic response of expansion joints to traffic loading[J]. Engineering Structures 26(2004):1677-1690.
    [155]JTJ025-86.公路桥涵钢结构及木结构设计规范[S].北京:人民交通出版社,1986.
    [156]聂利英,李建中,胡世德,范立础.西堠门大桥3种梁端约束体系比较[J].桥梁建设,2006,6:73-75.
    [157]伊藤学,川田中树.超长大桥梁建设的序幕[M].刘健新,和丕壮译.人民交通出版社.2002.
    [158]雷俊卿,郑明珠,徐恭义.悬索桥设计[M].人民交通出版社,2002.
    [159]刘东芳.武汉天兴洲公铁两用长江大桥空间几何非线性有限元仿真分析[D].长沙:中南大学,2007.
    [160]Emst J. H.Der E-modul yon seilen unter berueksiehtigung des durehhanges[J]. DerBauingenieur.1965, 40(2):52-55.
    [161]Leonhardt,F, W.Zeliner. Cable-Stayed Bridges, Report on Latest Developments[C], Canadian Structural Engineering Conference Proceedings,1970.
    [162]Tung D.H., Kudder R.J. Analysis of cables as equivalent two force member[J]. Engineering Journal AISC.1968,12-19.
    [163]Podolny w., Sealzi JB, Construction and design of cable-stayed bridge[M]. Jolm Wile and Sons.1976.
    [164]项海帆.高等桥梁结构理论[M].人民交通出版社.2001.
    [165]林元培.斜拉桥[M].北京:人民交通出版社,1994.
    [166]张宏杰.大跨度桥梁抗风设计雷诺数效应分析[D].西安:长安大学,2008.
    [167]JTG/TD60-01-2004.公路桥梁抗风设计规范[S].北京:人民交通出版社,2004.
    [168]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations[J]. EESD,1992,21:7-13.
    [169]Kiureghian A D, Neuenhofer A. A coherency model for spatially varying ground motions[J]. EESD, 1996,25:99-111.
    [170]Bonganoff J L, Goldberg J E, Schiff A J. The effect of ground transmission time on the response of long structures. Bull Seism Soc Am,1965,55:627-640.
    [171]European Committee for Standardization. Eurocode 8:Structures in seismic regions-design part 2: Bridges. Brussels:European Committee for Standardizatio,1995.
    [172]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993,9(1):30-36.
    [173]P.le ger, I.M.Ide, P.Paultre. Multiple-support seismic analysis of large structures[J]. Computers & Structures,1990,36:1152-1158.
    [174]R.W.Clough and J.Penzien. Dynamics of structures[M]. New York:McGraw-Hill Inc,1993.
    [175]张伟.高墩大跨径连续刚构桥弹塑性地震反应分析[D].西安:长安大学,2008.
    [176]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007.
    [177]常大民,江克斌.桥梁结构可靠度分析与设计[M].北京:中国铁道出版社,1995.
    [178]张建仁,刘扬,许福友,等.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003.
    [179]GB 50153-1992.工程结构可靠度设计统一标准[S].北京:中国计划出版社,1999.
    [180]GB/T 50283-1999.公路公程结构可靠度设计统一标准[S].北京:中国计划出版社,1999.
    [181]邹天一,结构可靠度[M].北京:人民交通出版社,1998.
    [182]袁子厚,何小亚,梅家斌.多个独立正态分布随机变量的最大值分布[J].武汉科技学院学报,2004,17(1):52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700