用户名: 密码: 验证码:
飞秒激光诱导金属表面微纳米结构的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体表面有序的微纳米结构可以使得材料具有独特的性能,实现诸如超疏水、超黏附、超光学吸收等超性能,在工业、军事、航空、航天、医疗等各个领域都有广阔的应用前景。因此,探索实用高效的表面微纳米结构的制备技术是极其重要的工作。近年来刚刚兴起的飞秒激光直接诱导固体表面有序结构的方法被认为是该领域极具潜力的制备技术之一,但对这种微纳米结构化的物理机制和对该技术的优化控制等还缺乏系统研究。本文开展飞秒激光诱导金属表面有序微纳米结构的研究,在钛金属及钛合金表面获得了多种不同特征的有序微纳米结构,并探讨了它们的形成机制,为进一步开展飞秒激光大面积可控制备固体表面微纳米结构研究打下了基础。全文的主要研究内容、结论与创新性如下:
     1.通过考察辐照后样品表面的电镜图发现不同脉宽的线偏振激光诱导得到的光栅结构的形貌不同:纳秒激光辐照区域内完全熔化表面得到的光栅结构的轮廓为正弦波形,光栅周期略小于激光波长;而飞秒激光诱导得到的光栅结构周期比激光波长小很多,并且随着辐照激光通量增大,光栅周期增大,光栅的峰-谷的占空比逐渐减小。
     2.提出了应用表面等离子激元的力学效应来分析光栅结构的形成过程的观点:利用离子声波中离子对液体的碰撞压力效应解释了纳秒激光诱导正弦波形光栅结构的形成机制,利用考虑电子激元的静电场力烧蚀模型解释了飞秒激光诱导金属光栅结构的形成机制。
     3.利用扫描电镜观察圆偏振飞秒激光诱导金属表面微纳米结构的特征发现:正入射下,除了已经被报告过的光栅矢量一致的规则光栅结构之外,我们还观察到了光栅矢量为圆形的光栅结构和带纳米突起的周期性点状结构;斜入射下,金属表面会出现正交在一起的二维光栅结构;在相同入射角下,左旋光和右旋光得到的表面微结构具有镜面对称性。
     4.考察多脉冲飞秒激光诱导Ti金属形成的微孔的孔壁,发现了孔壁上可以形成纳米一维光栅结构、二维光栅结构、凹陷结构和凸起结构等四种微纳米结构。利用激光共聚焦显微镜对孔壁二维光栅结构所在位置对应的孔壁倾角进行了测量,利用激光与斜面上表面等离子体波相互作用模型解释了二维光栅结构现象。
     5.利用扫描方法在钛合金表面大面积制备了光栅结构、光栅结合微凸起结构和周期性微孔结构,这些不同表面结构化的钛合金表面显示出对光谱不同的响应特征。值得一提的是,发现了聚焦光斑直径为70微米的飞秒激光匀速扫描金属表面时会周期性产生数十微米直径的深微孔的新现象,这种深微孔结构使得金属表面实现了对宽带光谱的近全吸收。
The ordered micro/nano structure on the solid surface, which can endow materials with unique properties such as super-hydrophobic, super-adhesion, super-light- absorbancy and so on, has comprehensive application foreground in the field of industry, military, aviation, aerospace and medicine. For this reason, the development of efficient and economic techniques for producing surface micro/nano structure is an important work. Recently, femtosecond (fs) laser direct inducing ordered surface structure has been demonstrated to be a promising method for producing of surface micro/nano structure. However, a systematic study of the physical mechanism of the surface micro/nanostructuring as well as the optimal conditions for a controllable micro/nanostructuring using fs laser direct inducing micro/nano structure method are still lack. In this thesis, several kinds of ordered structure on the metal surface have been induced by fs laser irradiation, and the formation mechanism of each type of the micro/nanostructure has been also discussed. All these experimental and theoretical results lay a foundation of fs laser producing wanted micro/nano structure on the solid surface. The main contents, research conclusions and contributions to innovation are summarized as following:
     1. Under a scanning electron microscope (SEM), different morphology characteristic of grating structure on the metal surface induced by linear-polarized (LP) laser with different pulse widths was identified. The grating on the uniform melted metal surface induced by nanosecond laser shows a regular sine-wave outline, and the period of this grating is just slightly shorter than the laser wavelength. By contrast, the period of the grating induced by fs laser is much shorter than laser wavelength, in addition the period is gradually increase and the duty ratio of crest vs valley is decrease following increasing the laser fluence.
     2. We proposed that using surface plasmons mechanics effect to explain the formation mechanism of the laser induce grating structure: using the ions collision pressure effect to explain the formation mechanism of sine-waveform grating structure induced by nanosecond laser, using the electrostatic force ablation model which considering the electron plasmons effect to explains the formation mechanism of fs laser induced metallic grating structure.
     3. The different types of micro/nanostructure on the metal surface induced by a circular-polarized (CP) femtosecond laser were observed under SEM. When laser normal incident, in addition to the grating structure with a linear-grating vector which has been reported, we observed two novel structures, one is grating structure with circular-grating vector, another is spike structure surrounded with nanoprotrusions. When laser oblique incidence, two-dimensional (2D) orthogonal grating structure will appeared on the metal surface. In the same incident angle, the surface structures show exactly mirror symmetry for left and right CP light.
     4. Four kinds of micro/nano structure, such as one-dimensional grating structure, 2D grating structure, nanocone structure with the size of 200nm and nanohollow structure were formed on the blind-hole wall which induced by multipulses fs laser ablating Ti. In particular, the location elevation angle of two-dimensional grating structure on the hole wall was examined by a confocal laser scanning microscope, and the formation mechanism of this 2D grating structure was successfully interpreted as laser and surface plasmons interaction on a angular surface.
     5. By the scanning technology, large area micro/nano structures (such as grating structure, microbump structure which covered by grating structure, and periodic microporous structure) on titanium alloy surface have be obtained under single fs laser beam irradiating. These structured surfaces show quite difference on their response characteristics of the reflective spectrum. What is worth mentioning that fs laser with focused spot size of 70μm would periodic producing 30μm hole under scan spot moves in uniform motion, and these microporous structure can realize the metal surface of broad-spectrum nearly all absorption.
引文
1 F. Xia and L. Jiang. Bio-Inspired, Smart, Multiscale Interfacial Materials. Adv. Mater. 2008, 20(15): 2842~2858
    2 W. Barthlott and C. Neinhuis. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta. 1997, 202(1): 1~8
    3 C. Neinhuis and W. Barthlott. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany. 1997, 79(6): 667~677
    4 N. A. Patankar. Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir. 2004, 20(19): 8209~8213
    5 L. Feng, S. H. Li, Y. S. Li, et al. Super-hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14(24): 1857~1860
    6 K. Autumn, Y. A. Liang, S. T. Hsieh, et al. Adhesive Force of a Single Gecko Foot-hair. Nature. 2000, 405( 6787): 681~685
    7 K. Autumn, M. Sitti, Y. C. A. Liang, et al. Evidence for van der Waals Adhesion in Gecko Setae. PNAS. 2002, 99(19): 12252~12256
    8 W. R. Hansen, K. Autumn. Evidence for Self-cleaning in Gecko Setae. PNAS. 2005, 102(2): 385~389
    9 P. Vukusic, J. R.Sambles,C. R. Lawrence, et al. Structural colour - Now you see it now you don't. Nature.2001, 410(6824): 36~36
    10 J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, et al. Coloration Strategies in Peacock Feathers. PNAS. 2003, 100(22): 12576~12578
    11 V Sharma, M Crne,J. O. Park, et al. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles. Science. 2009, 325(2939): 449~451
    12 P. Vukusic and J. R. Sambles. Photonic Structures in Biology. Nature.2003, 424(6950): 852~855
    13 P. Vukusic, J. R. Sambles, C. R. Lawrence. Structural Colour: Colour Mixing in Wing Scales of a Butterfly. Nature. 2000, 404(6777):457~457
    14 T. A. Taton. Bio-nanotechnology: Two-way Traffic. Nature Mater. 2003, 2(2):73~74
    15 T. H. Her, R. J. Finlay, C. Wu, et al. Microstructuring of Silicon withFemtosecond Laser Pulses. Appl. Phys. Lett. 1998,73(12):1673~1675
    16 C. Wu, C. H. Crouch, L. Zhao, et al. Near-unity below-band-gap absorption by microstructured silicon. Appl. Phys. Lett. 2001, 78(13): 1850~1852
    17 C. H. Crouch, J. E. Carey, J. M. Warrender et al, Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-structured Silicon. Appl. Phys. Lett. 2004, 84(11): 1850~1852
    18 M. H. Jin, X. J. Feng, J. M. Xi, et al. Super-hydrophobic PDMS Surface with Ultra-low Adhesive Force. Macromolecular Rapid Communication. 2005, 26(22): 1805~1809
    19 A. Y. Vorbyev, V. S. Makin, C. L. Guo. Brighter Light Sources from Black Metal: Significant Increase in Emission Efficiency of Incandescent Light Sources. Phys. Rev. Lett. 2009, 102(23): 234301
    20 L. T. Qu, L. M. Dai, M. Stone, et al. Carbon Nanotube Arrays with Strong Shear Binding-on and Easy Normal Lifting-off. Science. 2008, 322(5899): 238~242
    21刘欢,翟锦,江雷.纳米材料的自组装研究进展.无机化学学报. 2006,22(4):585~597
    22 R. P. Andres, T. Bein, M.Dorogi, et al. "Coulomb Staircase" at Room Temperature in a Self-assembled Molecular Nanostructure. Science. 272(5266):1323~1325
    23 C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al. A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature. 1996, 382(6592): 607~609
    24 F. Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282(5391):1111~1114
    25 N. B. Bowden, M. Weck, I. S. Choi, et al. Molecule-mimetic Chemistry and Mesoscale Self-assembly. Acc. Chem. Res.. 2001, 34(3): 231~238
    26 J. Bico, B. Roman, L. Moulin, L, et al. Elastocapillary Coalescence in Wet Hair. Nature, 2004, 432(7018): 690~690
    27 J. Jin, T. Iyoda, C. S. Cao, et al. Self-assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles Throughπ-πInteractions. Angew. Chem. Int. Ed. 2001, 40(11): 2135~2138
    28 P. V. Zant. Microchip Fabrication, 3rd Edition. McGraw–Hill, 1997
    29杨向荣,张明,王晓临,曹万强.新型光刻技术的现状与进展.材料导报. 2007, 21: 102~104
    30 A. Cohen et al. EFAB: Rapid, Low-Cost Desktop Micromachining of HighAspect Ratio True 3D MEMS. Technical Digest IEEE. 1999: 354~346
    31 H. Lorenz, M. Despont, P. Vettiger, et al. Fabrication of Photoplastic High-aspect-ratio Microparts and Micromolds using SU-8 UV Resist. Microsystem Technologies. 1998, 4:143~146
    32 C. K. Malek, V. Saile. Applications of LIGA Technology to Precision Manufacturing of High-aspect-ratio Micro-components and Systems: a Review. Microelectronics Journal. 2004, 35: 131~143
    33 A. M. Hawryluk, N. M. Ceglio, D. A. Markle. EUV Lithography. Solid State Technology. 1997, 40(7): 151~159
    34崔铮.微纳米加工技术及其应用综述.物理. 2006, 35(1): 34~39
    35崔铮,陶佳瑞.纳米压印加工技术发展综述.世界科技研究与进展. 2004, 26: 7~12
    36 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint of sub 25 nm Vias and trenches in polymers. Appl. Phys. Lett. 1995, 67(21): 3114~3116
    37 J. I. Park, W. R. Lee, S. S. Bae, et al. Langmuir Monolayers of Co Nanoparticles and Their Patterning by Microcontact Printing. J. Phys. Chem. B. 2005, 109(27): 13119~13123
    38 N. A. Amro, S. Xu. Patterning Surfaces Using Tip-directed Displacement and Self-assembly. Langmuir. 2000, 16(7): 3006~3009
    39 J. Kato, N. Takeyasu, Y. Adachi, et al. Multiple-spot Parallel Processing for Laser Micronanofabrication. Appl. Phys. Lett. 2005, 86(4): 044102
    40 L. Li, W. Guo, Z. B. Wang, et al. Large-area Laser nono-texturing with user-defined patterns. J. Micromech, Microeng. 2009, 19(5): 054002
    41 Y. Y. Cao, N. Takeyasu, T. Tanaka, el al. 3D Metallic Nanostructure Fabrication by Surfactant-assisted Multiphoton induced Reduction. Small. 2009, 5(10):1144~1148
    42 A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, et al. Femtosecond Laser Aperturless Near-field Nanomachining of Metals Assisted by Scanning Probe Microscopy. Appl. Phys. Lett. 2003, 82(8): 1146~1148
    43 News from the Micro-nano World. Small. 2008, 4(12):2099
    44 M. Birnbaum. Semiconductor Surface Damage Produced by Ruby Laser. J. Appl. Phys. 1965, 36: 3688 ~ 3689
    45 X. Jia, T. Q. Jia, L. E. Ding, et al. Complex Periodic Micro/nanostructures on
    6H-SiC Crystal induced by the Interference of three Femtosecond Laser Beams.Opt. Lett. 2009, 34(6):788~790
    46 A. Y. Vorbyev and C. L. Guo. Colorizing Metals with Femtosecond Laser Pulses. Appl. Phys. Lett. 2008, 92(4): 041914
    47 Y. Yang, J. J. Yang, C. Y. Liang, and H. S. Wang. Ultra-broadband Enhanced Absorption of Metal Surfaces Structured by Femtosecond Laser Pulses. Opt. Express. 2008, 16 (15): 11259-11265
    48 A. Y. Vorbyev and C. L. Guo. Metal Pumps Liquid Uphill. Appl. Phys. Lett. 2009, 94(22): 224102
    49 B.Wu, M. Zhou, J. Li, et al. Superhydrophobic Surfaces Fabricated by Microstructuring of Stainless Steel Using a Femtosecond Laser. Appl. Surf. Sci. 2009, 256(1): 61~66
    50 H. M. van Driel, J. F. Young, J. S. Preston. Laser-induced Periodic Surface Structure on Solids: A Universal Phenomenon. Phys. Rev. Lett. 1982, 49(26): 1955~1958
    51 D. C. Emmony, R. P. Howson, L. J. Willis. Laser Mirror Damage in Germanium at 10.6μm. Appl. Phys. Lett. 1973, 23:598~600
    52 N. R. Isenor. CO2 Laser-produced Ripple Patterns on NixP1-x Surface. Appl. Phys. Lett. 1977, 31(3): 148~150
    53 H. J. Leamy, G. A. Rozgonyi, T. T. Sheng, et al. Periodic Regrowth Phenomena Produced by Laser Annealing of Ion-implanted Silicon. Appl. Phys. Lett. 1978, 32(9): 535~537
    54 D. J. Herlich, S. R.J. Brueck, J. Y. Tsao. Time-resolved Measurements of Stimulated Surface Polariton Wave Scattering and Grating Formation in Pulsed-laser-annealed Germanium. Appl. Phys. Lett. 1982, 41(7): 630~632
    55 S. R. J. Brueck and D. J. Ehrlick. Stimulated Surface-plasma-wave Scattering and Growth of a Periodic Structure in Laser-photodeposited Metal Films. Phys. Rev. Lett. 1982, 48(24):1678~1681
    56 G. S. Zhou, P. M. Fauchet, and A. E. Siegman. Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B. 1982, 26(10): 5366 ~ 5381
    57 F. Keilmann. Laser-driven Corrugation Instability of Liquid Metal Surfaces. Phys. Rev. Lett. 1983, 51(23): 2097~2100
    58 J. E. Sipe, J. F. Young, J.S. Preston, H. M. van Driel. Laser induced periodic surface structure. I: Theory. Phys.Rev.B,1983,27(2) :1141~1154
    59 J. F. Young, J. S. Preston, H. M. van Driel et al., Laser Induced Periodic Surface Structure.Ⅱ: Experiments on Ge, Si, Al and Brass. Phys. Rev. B,1983,27(2):1155~1172
    60 J. F. Young, J. E. Sipe, H. M. van Driel. Laser induced periodic surface structure. Ⅲ: Fluence Rigimes, the Role of Feedback, and Details of the Induced Topography in Germanium, Phys. Rev. B. 1984, 30(4) : 2001~2015
    61 A. E. Siegman, P. M. Fauchet, Stimulated Wood’s Anomalies on Laser -illuminated Surface. IEEE J. Quantum Electronics. 1986, QE-22(8): 1384~140
    62 H. Hiraoka, M. Sendova. Laser-induced Sub-half-micrometer Periodic Structure on Polymer Surfaces. Appl. Phys. Lett. 1994, 64(5): 563~565
    63 N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony. The Topography of Laser-induced Ripple Structures. J. Phys. D: Appl. Phys. 1990, 23(7): 884~889
    64 L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, H. L. Spindler,J. S. Lash, and S. D. Kovaleski. Surface Instability of Multipulse Laser Ablation on a Metallic Target. J. Appl. Phys. 1998, 83(8): 4466~4471
    65 Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, et al. Self-organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses. Phys. Rev. Lett. 2003, 91(24):247405
    66 V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum. Optically Produced Arrays of Planar Nanostructures inside Fused Silica. Phys. Rev. Lett. 2006, 96(5):057404
    67 P. Temple, M. Soileau Polarization Charge Model for Laser-induced Ripple Patterns in Dielectric Materials. IEEE J. Quantum Electronics. 1981, 17(10): 2067~ 2072
    68 I. Ursu, I. N. Mihalescu, L. C. Nistor, V. S. Teodorescu, A. M. Prokhorov, V. I. Konov, and V. N. Tokarev. Periodic Structures on the Surface of Fused Silica under Multipulse 10.6μm Laser Irradiation. Appl. Opt. 1985, 24(22): 3736~3739
    69 A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. V. Trubaev. Surface Electromagnetic Waves in Optics. Opt. Eng. 1992, 31(4): 718~730
    70 M. Huang, F. L. Zhao, Y. Cheng, et al. Origin of Laser-Induced Near-subwavelength Ripples: Interference between Surface Plasmons and Incident Laser. ACS Nano. 2009, 3 (12): 4062~4070
    71 J. Bonse, A. Rosenfeld, and J. Krüger. On the Role of Surface Plasmon Polaritons in the Formation of Laser-induced Periodic Surface Structures upon Irradiation of Silicon by Femtosecond-laser Pulses. J. Appl. Phys. 2009, 106(10):104910
    72 A. Y. Vorbyev and C. L. Guo. Femtosecond Laser-induced Periodic Structure Formation on Tungsten. J. Appl. Phys. 2008, 104(6): 063523
    73 Q. Z. Zhao, S. Malzer, L. J. Wang. Formation of Subwavelength Periodic Structures on Tungsten induced by Ultrashort Laser Pulses. Opt. Lett. 2007, 32(13): 1932~1934
    74 Q. Z. Zhao, S. Malzer, L. J. Wang. Self–organized Tungsten Nanospikes Grown on Subwavelength Ripples induced by Femtosecond Laser Pulses. Opt. Express. 2007, 15(24): 15741~15746
    75 L. T. Qi, K. Nishii, Y. Namba. Regular Subwavelength Surface Structures Induced by Femtosecond Laser Pulses on Stainless Steel. Opt. Lett. 2009, 34(12): 1846~1848
    76 M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z Xu. Mechanisms of Ultrafast Laser-induced Deep-subwavelength Gratings on Graphite and Diamond. Phys. Rev. B, 2009, 79(12): 125436
    77 A. A. Kolomenskii, H. A. Schuessler. Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam. Phys. Rev. B. 1995, 52(1): 16~19
    78 A. A. Kolomenskii, H. A. Schuessler. Excitation of Capillary Waves in Strongly Absorbing Liquids by a Modulated Laser Beam. Appl. Opt. 1999, 38(30): 6357~6364
    79 M. Y. Shen, C. H. Crouch, J. E. Carey, et al. Formation of Regular Arrays of Silicon Microspikes by Femtosecond Laser Irradiation Through a Mask. Appl. Phys. Lett. 2003, 82(11): 1715~1717
    80 M. Y Shen, C. H. Crouch, J. E. Carey, E. Mazur. Femtosecond Laser-induced Formation of Submicrometer Spikes on Silicon in Water. Appl. Phys. Lett. 2004, 85(23): 5694~5696
    81 A. B. Brailovsky, S. V. Gaponov, and V. I. Luchin, Mechanisms of Melt Droplets and Solid-particle Ejection from a Target Surface by Pulsed Laser Action. Appl. Phys. A. 1995, 61(1): 81 ~86
    82 O. Bostanjoglo and T. Nink. Hydrodynamic Instabilities in Laser Pulse-produced Melts of Metal Films. J. Appl. Phys. 1996, 79(8): 8725 ~8729
    83 L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, H. L. Spindler,J. S. Lash, and S. D. Kovaleski. Surface Instability of Multipulse Laser Ablation on a Metallic Target. J. Appl. Phys. 1998, 83(8): 4466~4471
    84 W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai. Self-assembled Periodic Sub-wavelength Structures by Femtosecond Laser Direct Writing. Opt. Express, 2006, 14(21):10117~10124
    85 Q. Sun, F. Liang, R. Vallée, and S. L. Chin. Nanograting Formation on the Surface of Silica Glass by Scanning Focused Femtosecond Laser Pulses. Opt. Lett. 2008, 33(22): 2713~2715
    86 F. Liang, Q. Sun, D. Gingras, et al. The Transition from Smooth Modification to Nanograting in Fused Silica. Appl. Phys. Lett. 2010, 96(10): 101903
    87 T. Q. Jia, H. X. Chen, M. Huang, et al. Formation of Nanogratings on the Surface of a ZnSe Crystal Irradiated by Femtosecond Laser Pulses. Phys. Rev. B. 2005, 72(12): 125429
    88 X. D. Guo, R.X. Li, Y. Hang, et al. Femtosecond Laser-induced Periodic Surface Structure on ZnO. Materials Lett. 2008, 62(12-13):1769~1771
    89 T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto. Effect of Surface Roughening on Femtosecond Laser-induced Ripple Structures. Appl. Phys. Lett. 2007, 90(15):153115
    90 A. Borowiec, and H. K. Haugen. Subwavelength Ripple Formation on the Surfaces of Compound Semiconductors Irradiated with Femtosecond Laser Pulses. Appl. Phys. Lett., 2003, 82(25): 4462~4464
    91 G. Seifert, M. Kaempfe, F. Syrowatka, et al. Self-organized Structure Formation on the Bottom of Femtosecond Laser Ablation Craters in Glass. Appl. Phys. A. 2005, 81(4): 799~803
    92 O. Varlamova, F. Costache, J. Reif. Femtosecond Laser Induced Nanostructure Formation: Self-organization Control Parameters. Appl. Phys. A. 2008, 92(4): 1019~1024
    93 O. Varlamova, F. Costache, J. Reif, M. Bestehorn. Self-organized Pattern Formation upon Femtosecond Laser Ablation by Circularly Polarized Light. Appl. Surf. Sci. 2006, 252(13): 4702-4706
    94 S. Sakabe, M. Hashida, S.Tokita, S. Namba, and K. Okamuro. Mechanism for Self-formation of Periodic Grating Structures on a Metal Surface by a Femtosecond Laser Pulse. Phys. Rev. B. 2009, 79(3): 033409
    95 V. S. Makina, R. S. Makin, A. Y. Vorobyev, and C. L. Guo. Dissipative Nanostructures and Feigenbaum’s Universality in the“Metal–High-Power Ultrashort-Pulsed Polarized Radiation”Nonequilibrium Nonlinear DynamicalSystem. Tech. Phys. Lett. 2008, 34, 387~390
    96 V. Oliveira, S. Ausset, R. Vilar. Surface Micro/nanostructuring of Titanium under Stationary and Non-stationary Femtosecond Laser Irradiation. Appl. Surf. Sci. 2009, 255(17): 7556~7560
    97 M. Huang, F. L. Zhao, Y. Cheng, et al. Large Area Uniform Nanostructures Fabricated by Direct Femtosecond Laser Ablation. Opt. Express. 2008, 16(23):19354 ~19365
    98 N. Yasumaru, K. Miyazaki, J. Kiuchi. Femtosecond-laser-induced Nanostructure Formed on Hard Thin Films of TiN and DLC. Appl. Phys. A. 2003, 76(6): 983~985
    99 X. J. Wu, T. Q. Jia, F. L. Zhao, et al. Formation Mechanisms of Uniform Arrays of Periodic Nanoparticles and Nanoripples on 6H-SiC Crystal Surface induced by Femtosecond Laser Ablation. Appl. Phys. A. 2007, 86(4): 491~495
    100 Y. Kawakami, E. Ozawa, S.Sasaki. Coherent Array of Tungsten Ultrafine Particles by Laser Irradiation. Appl. Phys. Lett. 1999, 74(26): 3954~3956
    101 M. Y. Shen, J. E. Carey, C. H. Crouch, et al. High-density Regular Arrays of Nanometer-scale Rods Formed on Silicon Surfaces via Femtosecond Laser Irradiation in Water. Nano Lett. 2008, 8(7), 2087~2091
    102 W. L. Kruer. The Physics of Laser Plasma Interaction (Addison Wesley, New York, 1987).
    103 L. D. Landau, E. M. Lifshitz. Fluid Mechanics. J. B. Sykes and W. H. Reid. Second Edition. Pergamon Press. 1999: 238~248
    104 J. P. Christiansen, K. V. Robert. Medusa- one Dimensional Laser Fusion Code. Comput. Phys. Commun. 1974, 7(5): 271~287
    105 M. Von Allmen. Laser-beam Interactions with Materials Physical Principles and Applications. Springer -Verlag Berlin Heidelberg. 1987.
    106 F. Keilmann, Y. H. Bai. Periodic Surface Structures Frozen into CO2 Laser-Melted Quartz. Appl. Phys. A. 1982, 29(1): 9~18
    107 A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of Surface Plasmon Polaritons. Physics Reports. 2005, 408:131–314
    108 E. G. Gamaly, A. V. Rode, B. L. Davies et al. Ablation of Solids by Femtosecond Lasers: Ablation Mechanism and Ablation Thresholds for Metals and Dielectrics. Phys. Plasma. 2002,9(3):949~957
    109 E.Kr?ger, and E. Kretschmann. Surface Plasmon and Polariton Dispersion atRough Boundaries. Phys. Status Solidi B. 1976, 76(2):515~523
    110 J. C. Wang, C. L. Guo. Formation of Extraordinarily Uniform Periodic Structures on Metals Induced by Femtosecond Laser Pulses. J. Appl. Phys. 2006, 100(2): 023511
    111 P. B. Johnson, and R. W. Christy. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B. 1974, 9(12): 5056~5070
    112 Q. Z. Zhao, F. Ciobanu, L. J. Wang. Self-organized Regular Arrays of Carbon Nanocones induced by Ultrashort Laser Pulses and Their Field Emission Properties. J. Appl. Phys. 2009, 105(8): 083103
    113 W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface Plasmon Subwavelength Optics. Nature. 2003, 424: 824 ~830
    114 A. Y. Vorbyev and C. L. Guo. Femtosecond Laser Blackening of Platinum. J. Appl. Phys. 2008, 104(5):053516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700