用户名: 密码: 验证码:
固态工质激光推进的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光推进是利用高功率激光与物质相互作用产生的高温高压等离子体反喷产生推力驱动飞行器前进的一种新概念推进技术。固态工质由于其易加工,可操作性强,成为烧蚀模式的首选工质形态。本文就固态工质的烧蚀模式激光推进进行探讨,采用数值模拟和实验等手段,深入研究该推进模式的物理机制和推进力学效应,得到了一些有意义的结果。
     建立了激光辐照下固态靶蒸汽等离子体形成的动态烧蚀耗能模型和光线跟踪激光能量等离子体吸收模型。结合等离子体理想状态方程,采用WENO空间差分格式和Runge-Kutta时间离散格式编写了二维轴对称流体力学程序LDAP-2D,该程序能够完整地计算激光作用下固态单原子靶的动态烧蚀、蒸汽等离子体喷射以及流场演化的整个过程。大大提高了流场和推进性能的计算精度。
     跟踪脉冲激光能量在等离子体流场中的吸收过程,发现微秒量级脉宽时间内激光被吸收的过程与流场膨胀发展相耦合,使得激光吸收过程出现振荡现象。追踪脉宽时间内激光能量的转化规律,以及激光熄灭后流场膨胀过程中流场内能和动能转化的规律发现,短波长利于将激光能量向流场动能转化并维持流场中较高的动能转化率,提高激光推进的能量利用率。
     固定入射激光功率,研究脉冲能量、功率密度等对推进效应的影响。激光脉冲能量增大,工质靶获得的冲量增大;同一功率密度下,脉冲能量增大,冲量耦合系数减小;比冲随脉冲能量的增大而增大。同一脉冲能量下,冲量耦合系数随功率密度的增大呈指数衰减;比冲随功率密度的变化不大。
     针对应用于激光推进的激光器的波长——1.06μm、1.315μm、3.8μm以及10.6μm进行研究,冲量耦合系数随波长的增大而变小,比冲随波长增大而变大。考虑综合推进效应,波长适中(1.315μm和3.8μm)的激光比较理想。
     对铝、碳、铁和铜四种工质靶材进行数值模拟,发现原子量适中的工质材料综合推进效应较好,追踪其能量转化过程发现,短脉冲时,逃逸速度大不利于提高动能转化率和激光推进的能量利用率。同一功率密度较长脉宽下,流场动能和内能出现振荡,动能转化率可以多次达到最大,但是对推进效应贡献不大。几十到几百纳秒量级的脉宽对材料的综合推进效应较好。
     对激光辐照固态工质材料产生的等离子体进行光谱诊断。记录了六种材料(铝、铜、钢、石墨、PVC和POM)的发射光谱,研究了它们随脉冲能量的变化规律。在局部热平衡假定下,由铝和铜特征谱线的相对强度得到了二者的电子温度,范围为(7.9-25)×10~3K;由谱线展宽得到铝等离子体的电子密度在(4-9)×10~(17)cm~(-3)范围内。还利用相机B门拍摄到真空中六种材料在烧蚀瞬间的喷射形貌。
     对六种材料在大气环境下进行推进效应的实验研究。结果表明,所有材料单脉冲作用下的冲量耦合系数都略高于双脉冲;冲量耦合系数Cm随功率密度增大先增大后减小;聚合物靶材的冲量耦合系数要普遍高于金属材料,且对功率密度的变化更为敏感;Delrin(POM)材料是性能优异的待选工质。本文还对相关文献中的实验研究进行综述,将其中的实验结果汇编成数据库,供以后的研究者查找。
Laser propulsion is a new concept propulsion technology by which the aircraft is promoted utilizing the counterforce generated during the injection of plasma with extremely high temperature and pressure which formed by interaction between high-power laser and propellant. Solid matter is the most promising state of propellants for its easy processing and maneuverability. In this dissertation, it focuses on the ablation mode laser propulsion with solid propellant. Physical and mechanism of this mode have been studied through numerical simulation and experiment. Some significant results are achieved.
     The energy consumption model for plasma formation in vapor through the dynamic ablation of solid propellants and laser energy absorption model introduced by beam tracing method are built in this dissertation. A program named LDAP-2D for 2D axis symmetrical hydrodynamic is made using WENO spatial difference scheme and Runge-Kutta temporal discretization scheme and combining the ideal state equations of plasma. The interaction between laser and monatomic solid matter could be studied by this program including the dynamic ablation of solid matter by laser, the formation and injection of vapour plasma, the evolution of flow field which is favorable to study the physical mechanism and mechanical efficiency of ablation mode laser propulsion. It will enhance the precision of numerial simulation for flow field.
     It is found that the absorption of laser by vapor plasma is coupled with the evolution of flow field and the oscillation of absorption shows up at pulse width inμs order. It is also found that short wavelength is beneficial to transform the laser energy to the dynamic energy of flow field, more energy deposited in condensed target favors propulsion efficiency and larger v_e makes against improving the propulsion efficiency.
     Study on that the laser energy and intensity effects on propulsion efficiency at laser intensity great than threshold intensity shows that the impulse gained by propelling target increases with the pulse energy, Cm decreases with the laser energy at the same intensity, while Isp increases with it. Cm is in exponential decay with laser intensity at the same energy, while Isp changes not much with it.
     Study on the wavelength of the four lasers candidates (1.06μm, 1.315μm, 3.8μm, 10.6μm) effect on propulsion efficiency shows that Cm decreases with the laser intensity at each wavelength and decreases with the wavelength at the same laser intensity. At the first three wavelengths, Isp decreases a little then increases back with laser intensity, and increases with wavelength, while it almost decreases linearly with intensity. So that the two wavelength 1.315μm, 3.8μm are better choice regarding to Cm and Isp synthetically.
     Study on C, Al, Cu, Fe propellants target shows that propellant which has moderate atom is good choice, pulse duration of tens or hundreds of ns benefit the synthetic propulsion efficiency, it will oscillate between innet energy and kinetic energy in flow field while not helping improving the propulsion efficiency.
     We record the emission spectrum of Al, copper Graphite, PVC, POM plasma. The space- resolved and the power density-depended spectrum are studied. Under the local thermo equilibrium supposition, we obtain the electron temperature and the electron density with regard to Al and copper from the relative intensity and broadening of characteristic spectrum. Their dependence on laser power-density and spacial variation are also studied. The obtained electron temperature of Al and Cu is in the range of (7.9-25)×10~3K and electron density of Al is in the range of (4-9)×10~(17)cm~(-3). At the same time, we take the photos of instant ablation of the six materials in vacuum by the camera's B shutter and analyze the ejected matter.
     The propulsion efficiency of the six material in air is studied. The results show that all of the material have a little greater Cm under single pulse than two repeated pulses, Cm increases with laser intensity and then decreases after reaching the highest Cm, polymer material have sensitive variation with laser intensity and Delrin shows wonderful character for propulsion. Many related experiments are summarized in this dissertation and a database of the results of experiments is built.
引文
[1]Kantrowitz A.Propulsion to Orbit by Ground-based lasers.Astronautics and Aeronautics,10(5):74-76,1972
    [2]Qaude Phipps.ORION:challenges and benefits.SPIE,3343:575-582,1998
    [3]C.R.Phipps,J.P.R.eilly,J.W.Campbell.Laser launching a 5-kg object into low Earth orbit.Proceedings of SPIE,4065:502-510,2000
    [4]C.R.Phipps,J.P.R.eilly,J.W.Campbell.Optimum Parameters for Laser-launching Objects into Low Earth Orbit,LPB,2001
    [5]C.R.Phipps,J.P.R.eilly,J.W.Campbell.Requirements for launching payloads into low Earth orbit with a ground-based laser.ⅩⅢ International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference,Antonio Lapucci,Marco Ciofini,Editors,Proceedings of SPIE Vol.4184:517-520,2001
    [6]Zuu-Chang Hong,Jia Ming Liu,Jeng-Shing Chern.Overall Payload of a Combined Laser and Chemical Propulsion System for GEO Launch.Acta Astronautica 50(7):417-426,2002
    [7]Jonathan W.Campbell,Claude Phipps,Larry Smalley et al..The impact imperative:Laser ablation for deflecting asteroids,meteoroids,and comets from impacting the earth.First International Symposium on Beamed Energy Propulsion(ISBEP1),edited by A.V.Pakhomov 664,AIP Conference Proceedings,p509-520,2003
    [8]Anatoliy F.Nastoyashehii.Laser Application in the Control of Satellite Orbit.2nd International Symposium on Beamed Energy Propulsion(ISBEP2),edited by K.Komurasaki,702,AIP Conference Proceedings,p274-279,2004
    [9]张庆红,唐志平.全方位旋转分离式激光推力器概念设计.推进技术,28(5):449-452,2007
    [10]C.R.Phipps,J.Luke,J.Marquis.Diode laser-driven microthrusters - A new departure in high specific impulse,long life engines,36~th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 17-19 July 2000 Huntsville,Alabama
    [11]C.R.Phipps,J.Luke,Micro Laser Plasma Thrusters for Small Satellites.Proceeding of SPIE 4065:801-809,2000
    [12]C.R.Phipps,J.Luke.Diode Laser-Driven Microthrusters A New Departure for Micropropulsion.AIAA 40(2):310-318,2002
    [13]Wolfgang O.Schall.Removal of small space debris with orbiting lasers.Proceeding of SPIE,3343:564-567,1998
    [14]Peter Hammerling,John L.Remo.Ablation scaling laws for laser space debris clearing.Proceeding of SPIE,3343:590-599,1998
    [15]Jonathan W.Campbell Charles R.Taylor.Power beaming for orbital debris removal.SPIE,3343:583-589,1998
    [16]Shigeaki Uchida,Xianglin Zhou,Kazuo Imasaki et al.Study on momentum coupling efficiency of laser ablation for space debris removal.,SPIE 3885:65-71,2000
    [17]James.T.Early,Camille Bibeau,Claude Phipps.Space debris de-orbiting by vaporization impulse using short pulse laser.2nd International Symposium on Beamed Energy Propulsion(ISBEP2),edited by K.Komurasaki,702,AIP Conference Proceedings, p190-201,2004
    
    [18] K. Watanabe, T. Takahashi, A. Sasoh et al. Useful In-space Impulse Generation Powered by Laser Energy. 2nd International Symposium on Beamed Energy Propulsion (ISBEP2), edited by K. Komurasaki, 702, AIP Conference Proceedings, p115-121, 2004
    [19] C. R. Phipps, J. R. Luke, G. G.Mcduff, T. Lippert. Laser-driven micro-rocket. Applied Physics A, 77:193-201,2003
    [20] P E Nebolsin, A. N. Pirri. Laser Propulsion: The Early Years, in First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V. Pakhomov, AIP Conference Proceedings 664, New York: American Institute of Physics, p11-21, 2003
    [21] J T Kare. Laser Launch-The Second Wave. in First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V. Pakhomov, AIP Conference Proceedings 664, New York: American Institute of Physics, p22-36, 2003
    [22] M. A. Libeau, L. N. Myrabo, M. Filippelli and J. Mclnerney. Combined Theoretical and Experimental Flight Dynamics Investigation of a Laser-Propelled Vehicle. in First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V.Pakhomov, AIP Conference Proceedings 664: 125-137, 2003
    [23] M. A. Libeau, L. N. Myrabo, M. Filippelli and J. Mclnerney. Combined Theoretical and Experimental Flight Dynamics Investigation of a Laser-Propelled Vehicle. AIAA 2002-3781, 38~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit 7-10 July 2002, Indianapolis, Indiana,
    [24] L.N. Myrabo, World Record Flights of Beam-Riding Rocket Lightcraft: Demonstration of "Disruptive" Propulsion Technology, AIAA 2001-3798, 37~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit 8-11 July 2001, Salt Lake City, UT
    [25] L. N. Myrabo, Brief History of the Lightcraft Technology Demonstrator (LTD) Project, in First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V.Pakhomov, AIP Conference Proceedings 664:49-60,2003
    [26] L. N. Myrabo, D. G. Messitt, F. B. Mead. Ground and Flight Tests of a Laser Propelled Vehicle. AIAA 98-1001
    [27] F. B. Mead, L. N. Myrabo, D. G. Messitt. Flight and Ground Tests of a Laser-Boosted Vehicle. AIAA 98-3735
    
    [28] Thomas W. Buckton, Leik N. Myrabo. Mercury Lightcraft Project Update 3-D Modeling, Systems Analysis and Integration. 3rd International Symposium on Beamed Energy Propulsion(ISBEP3), edited by A.V. Pakhomov and L. N. Myrabo, AIP Conference Proceedings 766: 579-592, 2005
    [29] Claude Phipps James Luke, Diode Laser-driven Microthrusters: A New Departure for Micropropulsion, AIAA
    [30] C. R. Phipps, James Luke, Micro Laser Plasma Thrusters for Small Satellites, High-Power Laser Ablation III, Proceedings of SPIE, Vol. 4065, 2000
    [31] C. R. Phipps, J. P. Reilly, J. W. Campbell, Laser Launching a 5-kg Object into Low Earth Orbit, High-Power Laser Ablation III, Proceedings of SPIE, Vol. 4065, 2000
    [32] A. A. Ageichik, M. S. Egorov, Y. A. Rezunkov, A. L. Safronov, V. V. Stepanov. Experimental study on thrust characteristics of airspace laser propulsion engine. 2nd International Symposium on Beamed Energy Propulsion (ISBEP2), edited by K.Komurasaki, AIP Conference Proceedings 702:49-60, 2003
    [33] W.O.Schall, W.L.Bohn, H.-A.Eckel, et al. Lightcraft Experiments in Germany, High-Power Laser Ablation Ⅲ, Proc. of SPIE, 4065: 472-481, 2000 [34] W.O . Schall, H-A. Eckel, W. Mayerhofer, W. Riede, E. Zeyfang, Comparative lightcraft impulse measurements, AIAA
    [35] W. L. Bohn, W. O. Schall, Laser Propulsion Activities in Germany, in First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V. Pakhomov, AIP Conference Proceedings 664, New York: American Institute of Physics, p79-92,2003
    [36] Wolfgang O. Schall, Removal of small space debris with orbiting Lasers, High-power Laser Ablation Ⅳ, Proceedings of SPIE, Vol. 3343, 1998
    [37] Sasoh A, Laser-driven in tube accelerator, Review of Scientific Instruments, 72 1893-1898, 2001
    [38] N. Urabe, S. Kim, A. Sasoh, In-Seuck Jeung. vertical launch performance of laser-driven in-tube accelerator, in First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V. Pakhomov, AIP Conference Proceedings 664, New York:American Institute of Physics, p105-112,2003
    [39] A. Sasoh, Xilong Yu, Toshiro Ohtani, Sukyum Kim, In-Seuck Jeung. In-Tube Laser Propulsio; Performance and Application Prospects. 2nd International Symposium on Beamed Energy Propulsion (ISBEP2), edited by K. Komurasaki, AIP Conference Proceedings 702, New York: American Institute of Physics, p61-67,2004
    [40] Sukyum Kim, In-Seuck Jeung, Jeong-Yeol CHoi. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition. 2nd International Symposium on Beamed Energy Propulsion (ISBEP2), edited by K. Komurasaki, AIP Conference Proceedings 702,New York: American Institute of Physics, p92-102, 2004
    [41] Sukyum Kim, Toshiro Ohtani, Akihiro Sasoh, In-Seuck Jeung, Jeong-Yeol CHoi. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator Performance. 2nd International Symposium on Beamed Energy Propulsion (ISBEP2), edited by K.Komurasaki, AIP Conference Proceedings 702, New York: American Institute of Physics,p103-112, 2004
    [42] M.Niino. Activities of Laser Propulsion in Japan. First International Symposium on Beamed Energy Propulsion (ISBEP1), edited by A.V. Pakhomov, AIP Conference Proceedings 664, New York: American Institute of Physics, p71-78, 2003
    [43] Toyoda K et al, Continous-wave laser truster experiments, Vacuum, 59 63-72, 2000
    [44] Hosoda S., et al. The Observation of the Laser-Sustained Plasma in a CW Laser Thruster,Proc.22~(nd) Int' Symp. Space Tech. and Sci., ISTS-2000-b-5, Morioka, 2000
    
    [45] Katsurayama, H., et al.. Numerical Analyses on Pressure Wave Propagation in Repetitive Pulse Laser Propulsion, AIAA Paper2001-3665, 2001
    
    [46] Katsurayama, H., et al. Computational Performance Estimation of Laser Ramjet Vehicle, AIAA Paper 2002-3778, 2002
    [47] Horisawa, H., Laser plasma accelerator for space propulsion. AIAA/ASME E/ASEE Joint Propulsion Conference and Exhibit, 37th, Salt Lake City, UT, July 8-11, 2001 AIAA Paper 2001-3662,2001
    [48] H. Horisawaa, I. KimuraFundamental study on laser plasma accelerator for propulsion applications. Vacuum 65 389-396, 2002
    [49] Shigeaki Uchida, et al. Comparison of Surface and Internal Laser Irradiation of Solid Propellant for Propulsion, AIAA paper 992,2002
    [50] Yabe T, R. Nakagawa, Masashi Yamaguchi, Tomomasa Ohkubo.et.al.. simulation and experiments on laser propulsion by water cannon target in First International Symposium on Beamed Energy Propulsion(ISBEP1),edited by A.V.Pakhomov,AIP Conference Proceedings 664:185-193,2003
    [51]Yabe T,Prospect of solar-energy-pumped-laser-driven vehicles powered by water,3rd International Symposium on Beamed Energy Propulsion(ISBEP3),edited by A.V.Pakhomov and L.N.Myrabo,AIP Conference Proceedings 766:567-578,2005
    [52]辜建辉,徐启阳,李再光,陈殊殊.激光推进原理与技术.推进技术,16(2):80-84,1995
    [53]许得胜,郭振华,S.Messaoud,辜建辉.论光动力飞行器.激光技术,23(2):87-91,1999
    [54]鲁欣,张杰,李英骏.激光等离子体推进在火箭推进技术领域的应用前景.物理学和高新技术,2002
    [55]郑志远,鲁欣,张杰,激光等离子体推进技术的研究进展,物理学和高新技术,32(8):533-538,2003
    [56]郑志远,张翼,吴秀文,鲁欣,李玉同,张杰.激光等离子体推进技术研究新进展.物理,前沿进展,36(3):236-240,2007
    [57]王骐,李琦,尚铁梁.激光推进原理与发展状况.激光与红外,33(1):3-7,2003
    [58]吴刚,张育林,程谋森,微型卫星激光推进发射及其关键技术.上海航天,2:47-52,2002
    [59]柯常军,万重怡,激光推进飞行器技术,激光与光电子学进展.40(8):18-21,2003
    [60]唐志平.烧蚀模式激光推进的机理和应用探索.中国科学技术大学学报,37(10):1300-1304,2007
    [61]童慧峰,唐志平.激光推进的基本原理和实验进展综述.高能量密度物理,32-37,2007
    [62]孙承纬.激光驱动空间飞行器的原理分析.激光的热和力学效应学术会议论文集。广西:北海,1-8,2000
    [63]唐志平,童慧峰,胡晓军等.用激光推进轻型飞行器的初步实验研究.激光的热和力学效应学术会议论文集.四川,绵阳.120-124,2001
    [64]龚平.大气呼吸模式激光推进的研究.博士学位论文.合肥:中国科学技术大学,2004
    [65]唐志平,龚平,胡晓军,蔡建,潭荣清,吕岩.大气吸气模式激光推进的实验研究.航空学报,26(1):13-17,2005
    [66]ZhipingTang,PingGong,XiaojunHu,JianCai et al.Experimental Investigation on Air-Breathing Mode of Laser Propulsion.2nd International Symposium on Beamed Energy Propulsion(ISBEP2),edited by K.Komurasaki,AIP Conference Proceedings 702,New York:American Institute of Physics,2004,pp23-30
    [67]龚平,唐志平.大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲.2003,23(6):
    [68]Ping Gong,Zhiping Tang.Analytical and Numerical Study of The Air Breathing Model for Laser Propulsion.2nd International Symposium on Beamed Energy Propulsion(ISBEP2),edited by K.Komurasaki,AIP Conference Proceedings 702,New York:American Institute of Physics,pp31-39,2004
    [69]许仁萍,唐志平.大气模式下多脉冲激光推进的数值模拟.强激光与粒子束,19(3):370-372,2007
    [70]许仁萍,黄奎邦,张庆红,唐志平.激光推进中飞行器结构响应对聚焦性能的影响.推进技术,28(5):578-580,2007
    [71]童慧峰,唐志平,胡晓军,龚平,李静,蔡建,王声波,林丽耘.“烧蚀模式”激光推进的实验研究.强激光与粒子束.16(11):1380-1384,2004
    [72]张凌,唐志平,蔡建,童慧峰,胡晓军,许仁萍.“烧蚀模式”激光推进中不同材料的推进力学效应,全国激光与物质相互作用学术会议论文集.,江西庐,2005.07
    [73]童慧峰.烧蚀模式激光推进的机理及实验研究.博士论文.中国科学技术大学,2006
    [74]童慧峰,唐志平,张凌.激光支持等离子体流场的二维动态数值模拟.强激光与粒子束,18(12):1996-2000,2006
    [75]童慧峰,唐志平,张凌.“烧蚀模式”激光推进的数值模拟.爆炸与冲击.,27(2):165-170,2007
    [76]张凌,童慧峰,唐志平.“烧蚀模式”激光推进中激光波长的影响,推进技术,28(5):581-585,2007
    [77]张凌,唐志平,童慧峰,苏茂根,薛思敏.“烧蚀模式”激光推进等离子体的光谱诊断,原子与分子物理学报,24(6):1123-1130,2007
    [78]蔡建,王彬,胡晓军.激光水推进技术的实验研究.实验力学,22(1):43-48,2007
    [79]王彬,唐志平,蔡建等.激光水推进的机理及参数优化研究.推进技术28(5):586-589,2007
    [80]蔡建.激光微推进的原理和应用研究.博士论文,中国科学技术大学,2007
    [81]唐志平,张庆红.分离式全方位接收激光推力器,中国发明专利,专利申请号200610164810.6
    [82]Rongqing Tan,Yijun Zheng,Changjun Ke,et al.Experimental Study on Laser Propulsion of Air-breathing Mode.In 4th International Symposium on Beamed Energy Propulsion (ISBEP4),edited by K.Komurasaki,T.Yabe,S.Uchida,and A.Sasoh,AIP Conference Proceedings 830,p114-120,2006
    [83]郑义军,潭荣清,张阔海等.激光推进自由飞行实验.中国激光,33(2):171-174,2006
    [84]郊义军.激光参量对激光推进中冲量耦合系数的影响.博士论文.中国科学院电子学研究所,2005
    [85]郑义军,龚平,潭荣清,唐志平等.TEA CO2激光推进耦合系数的实验研究.光电子.激光,16(5):624-628,2005
    [86]翟冰沽,左都罗,卢宏.空气呼吸模式激光推进实验研究.光学与光电技术,3(1),2005
    [87]胡春波,程翔,何国强,姜立东,彭永林.空气压强对激光推进器冲量耦合系数影响.固体火箭技术,30(2):90-93,2007
    [88]李俊美,洪延姬,文明,姚宏林.激光推进中一种光船结构的设计.装备指挥技术学院学报,13(6):97-100,2002
    [89]洪延姬,崔村燕,王鹏,李俊美.吸气式激光推进环聚焦光船设计方法.装备指挥技术学院学报,14(2),2003
    [90]曹正蕊,洪延姬。佘金虎.两种约束构形对激光推力器推进性能的影响.装备指挥技术学院学报,16(6):114-117,2005
    [91]崔村燕,洪延姬,何国强,李倩,曹正蕊.线性喷管构形对激光推力器冲量耦合系数的影响。强激光与粒子束,18(2):193-196,2006
    [92]李修乾,洪延姬,陈景鹏,崔村燕,何国强.激光推力器液体工质注入系统设计.军械工程学院学报,18(1):1-5,2006
    [93]曹正蕊,洪延姬,李倩,姚宏林.单脉冲能量对光船激光推进性能的影响.热科学与技术,4(2):183-188,2005
    [94]文明,洪延姬,王军,曹正蕊.激光脉冲波形对推力器性能的影响.中国激光,33(8):1038-1042,2006
    [95]文明,洪延姬.李倩.激光光船聚焦性能研究.装备指挥技术学院学报,14(3):94-98,2003
    [96]李修乾,洪延姬,王军,陈景鹏,何国强.水滴烧蚀激光推进性能测试.强激光与粒子束,18(3):253-256,2006
    [97]李修乾,洪延姬,何国强,王军.悬摆法测量气体推进剂激光推进冲量耦合系数.强激光 与粒子束,18(2):198-201,2006
    [98]姚宏林,窦志国,王军,王鹏,李翀.CO2脉冲激光与气体相互作用实验.推进技术,28(5):481-484,2007
    [99]David W.Gregg,Scott J.Thomas,Momentum Transfer Produced by Focused Laser Giant Pulses,J.Appl.Phys.,37(7):2787-2889,1966
    [100]C.H.Skeen,C.M.York,LASER-INDUCED "BLOW-OFF" PHENOMENA,Appl.Phys.Lett.,12(11):369-371,1968
    [101]A.N.Pirri,R.Schlier,D.Northam.Momentum transfer and plasma formation above a surface with a high-power CO2 laser.Appl.Phys.Lett.,21(3):79-81,1972
    [102]A.N.Pirri.Theory for momentum transfer to a surface with a high-power laser.The Physics of Fluids,16(9):1435-1440,1973
    [103]S.A.Metz.Impulse loading of targets by subnanosecond laser pulses.Appl.Phys.Lett.,22(5):211-213,1973
    [104]J.F.Ready.Impulse produced by the interaction of CO2 TEA laser pulses.Appl.Phys.Lett,25(10):558-560,1974
    [105]J.E.Lowder,L.C.Pettingill.Measurement of CO2-laser-generated impulse and pressure.Appl.Phys.Lett.,24(4):204-207,1974
    [106]S.Marcus,J.E.Lowder.Impulsive loading of targets by HF laser pulses.Journal of Applied Physics,46(5):2293-2294,1975
    [107]D.I.Rosen,J.Mitteldorf,G.Kothandaraman,A.N.Pirri,E.R.Pugh.Coupling of pulsed 0.35μm laser radiation to aluminum alloys.Journal of Applied Physics,53(4):3190-3200,1982
    [108]D.I.Rosen,D.E.Hastings,G.M.Weyl.Coupling of pulsed 0.35 μ m laser radiation to titanium alloys.Journal of Applied Physics,53(8):5882-5890,1982
    [109]M.Bass,M.A.Nassar,R.T.Swimm.Impulse coupling to aluminum resulting from Nd:glass laser irradiation induced material removal.Journal of Applied Physics,61(3):1137-1144,1987
    [110]C.Phipps,Jr.T.P.Turner,R.F.Harrison,G.W.York,W.Z.Osborne,G.K.Anderson,X.F.Corlis,L.C.Haynes,H.S.Steele,K.C.Spicochi,T.R.King.Impulse coupling to targets in vacuum by KrF,HF,and CO_2 single-pulse lasers.J.Appl.Phys.,64(3):1083-1096,1988
    [111]A.V.Pakhomov,M.S.Thompson,et al.,Ablative Laser Propulsion:Specific Impulse and Thrust Derived from Force Measurements.AIAAJ,40(11):2305,2002
    [112]A.V.Pakhomov,M.S.Thompson,Gregory D A,Ablative laser propulsion:a study od specific impulse,thrust and efficiency,First International Symposium on Beamed Energy Propulsion(ISBEPI),edited by A.V.Pakhomov,AIP Conference Proceedings 664,pp194-205,2002
    [113]Phipps C R,Luke J,et.al.,Measurements of Laser Impulse Coupling at 130fs,Proceedings of SPIE.,5448:1201,2004
    [114]王春彦.激光与铝靶相互作用汽化现象研究.硕士学位论文.成都科技大学.
    [115]程祖海,王新兵,王又青.激光推进的理论及实验研究.激光与光电子学进展.429(9):40,2001
    [116]陆建,倪晓武,贺安之.激光靶冲量形成及实验形成.南京理工大学学报.75(3):61-64,1994
    [117]陆建,倪晓武,贺安之.高功率YAG激光作用于金属靶的力学响应.激光技术, 18(6):361-365,1994
    [118]郑志远,鲁欣,张杰,郝作强,远晓辉,王兆华.激光等离子体动量转换频率的实验研究.物理学报,54(1):192-196,2005
    [119]石海霞,潭荣清,郑义军.大气中激光烧蚀铝靶冲量耦合系数实验研究.中国激光,34(6):804-808,2007
    [120]石海霞,潭荣清,柯常军,郭亚丁.氟化氢激光烧蚀铝靶冲量耦合系数实验.推进技术,28(5):539-542,2007
    [121]童慧峰,唐志平,胡晓军,龚平,李静,蔡建,王声波,林丽耘.“烧蚀模式”激光推进的实验研究.16(11):1380-1384,2004
    [122]李静,张鉴秋,梦祥儒.激光烧蚀硬铝产生等离子体温度和力学效应测量.强激光与粒子束,19(2):249-252,2007
    [123]李静.激光推进测试仪器和“烧蚀模式”实验研究.博士论文.中国科学技术大学,2005
    [124]R.Fabbro,J.Fournier,P.Ballard,D.Devaux,J.Virmont.Physical study of laser-produced plasma in confined geometry.J.Appl.Phys.,68(2):775-784,1990
    [125]C.R.Phipps,Daniel B.Seibert Ⅱ et al.Very High Coupling Coefficients at Low Laser Fluence with a Structured Target,Proceedings of SPIE.,4065:931,2000
    [126]Phipps C R,Luke J,Micro laser plasma thrusters for small satellites,Proceeding of SPIE,Vol 4065,2000
    [127]C.R.Phipps,J.R.Luke,G.G.Mcduff,T.Lippert.Laser-driven micro-rocket.Applied Physics A,77:193-201,2003
    [128]Takashi Yabe,Ryou Nakagawa,Masashi Yamaguchi,Tomomasa Ohkubo,Keiichi Aoki,Choijil Baasandash,Hirokazu Oozono,Takehiro Oku,Kazumoto Taniguchi,Masamichi Nakagawa,Masashi Sakata,Youichi Ogata and Gen Inoue,Simulation and Experiments on Laser.Propulsion by Water Cannon Target,First International Symposium on Beamed Energy Propulsion(ISBEP1),edited by A.V.Pakhomov,AIP Conference Proceedings 664,p185-193,2003
    [129]Shigeaki Uchida,Kazuhisa Hashimoto,Kazuhisa Fujita,Masayuki Niino,Takashi Ashizuka,Nobuki Kawasahima.Characteristics of volume expansion of laser plasma for efficient propulsion.Proceeding of SPIE Vol.4760:810-820,2002
    [130]郑志远,张杰,郝作强,远晓辉,张喆,鲁欣,王兆华,魏志义.靶结构对激光等离子体动量耦合系数的影响.物理学报,55(1):526-530,2006
    [131]Phipps C R,Luke J R,Diode laser-driven micro-thrusters:A new departure for micro-propulsion,AIAAJ,40(2):310-318,2002
    [132]Lippert T,et al.,Polymers designed for laser applications fundamentals and applications,Proceeding of SPIE Vol.4760,2002
    [133]Lippert T,et al.,Novel applications for laser ablation of photopolymers,Applied Surface Science,18614-23,2002
    [134]T.Lippert,M.Hauer,C.R.Phipps,A.Wokaun.Fundamentals and applications of polymers designed for laser ablation.Applied Physics A,77:259-264,2003
    [135]Phipps C R,Luke J,Lippert T,Laser ablation of organic coatings as a basis for micropropulsion,Thin Solid Films,453-454 573-583,2004
    [136]Phipps C R,Luke J,Lippert T,et al.,Micropropulsion using laser ablation,Appl.Phys.A,79:1385-1389,2004
    [137]W.O.Schall,J.Tegel,H A.Eckel.Ablation Performance Experiments with Metal Seeded Polymers.3rd International Symposium on Beamed Energy Propulsion(ISBEP3),edited by A.V.Pakhomov and L.N.Myrabo,AIP Conference Proceedings 766,p423-432,2005
    [138]S.D.Knecht,C.W.Larson,F.B.Mead.comparision of Ablation Performance in Laser Lightcraft and Standardized Mini-Thruster.Fourth International Symposium on Beamed Energy Propulsion(ISBEP4),edited by K.Komurasaki,T.Yabe,S.Uchida and A.Sasoh,AIP Conference Proceedings 830,p615-627,2006
    [139]Thompson S L,Lauson H S,Improvements in the chart-D radiation-hydrodynamic code Ⅲ:Revised analytical equation of state.Tec.Rep.SC-RR-71 0714,Sandia Laboratories,Albuquerque,NM,1972
    [140]Christiansen J P,Ashby D E T F and Roberts K V.A one-dimensional laser fusion code.Computer Physics Communications,7:271,1974
    [141]Christiansen J P,Winsor N K.Castor 2:A Two-Dimensional Laser Target Code,Computer Physics Communications,17:397,1979
    [142]Christiansen J P,Winsor N K.A Numerical Model for Laser Targets,Journal of Computational Physics 35,291-318,1980
    [143]A.D.Boardman,B.Cresswell,J.Anderson.An analytical model for the laser ablation of materials.Applied Surface Science,96-98:55-60,1996
    [144]J.R.Ho,C.P.Grigoropoulos,J.A.C.Humphrey.Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals.J.Appl.Phys.,78(7):4696,1995
    [145]J.R.Ho,C.P.Grigoropoulos,J.A.C.Humphrey.Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminum.J.Appl.Phys.,79(9):7205,1996
    [146]K.R.Chen,J.N.Leboeuf,et al.,Laser-solid interaction and dynamics of laser-ablated materials.Applied Surface Science,96-98:45-49,1996
    [147]J.N.Leboeuf,K.R.Chen,et al.,Modeling of dynamical processes in laser ablation.Applied Surface Science,96-98:14-23,1996
    [148]V.I.Mazhukin,V.V.Nossov,M.G.Nickiforov,I.Smurov.Optical breakdown in aluminum vapor induced by ultraviolet laser radiation.Journal of Applied Physics,93(1):56-66,2003
    [149]V.I.Mazhukin,V.V.Nossov,I.Smurov.Analysisi of laser-induced evaporation of A1target under conditions of vapor plasma formation,Thin Solid Film,453-454:353-361,2004
    [150]Zhaoyang Chen,Annemie Bogaerts.Laser ablation of Cu and plume expansion into 1 atm ambient gas.J.Appl.Phys.,97-063305,2005
    [151]倪晓武,王文中,陆建.激光等离子体流场的数值模拟,光电子·激光,9(2),1998
    [152]刘世炳.强激光脉冲在等离子体中的传播及其能量转换.CNIC-01741,IAPCM-0034
    [153]Weyl G M.Physics of Laser-Induced Breakdown:an Update.in:Radziemski L J,Cremers D A,Editors.Laser-Induced Plasma and Applications.New York:Marcel Dekker,Inc.1989.1
    [154]贝菲克G.激光等离子体原理.庄国良,褚成择.上海:上海科学技术出版社,1981
    [155]倪晓武,王文中,陆建,沈中华.强激光致空气击穿过程的数值模拟.兵工学报,19(2):134-138,1998
    [156]朱定强,郑力铭,蔡国飙.激光推进技术中激光与工质相互作用.北京航空航天大学学 报.30(7):635-639,2004
    [157]Yosr EE-D Gamal and M Abdel Harith,Molecular gas breakdown by short laser pulses,J.Phys.D:Appl.Phys.,14 2209,1981
    [158]Yosr EE-D Gamal and M Abdel Harith,Secondary ionization processes in laser-induced cascade ionisation,J.Phys.D:Appl.Phys.,16 1901-1906,1983
    [159]Yosr EE-D Gamal,The breakdown of molecular oxygen by brief pulses of laser radiation,J.Phys.D:Appl.Phys.,21 1127,1988
    [160]Byron,K.C.and Pert G.J.,Density and potential distributions of the diffusion plasma column in a coaxial cylindrical discharge tube,J.Phys.D:Appl.Phys.,Vol.12,P401,1979.
    [161]Dewhurst R.J.,Breakdown in the rare gases using single picosecond ruby laser pulses,J.Phys.D:Appl.Phys.,Vol.10,P283,1977
    [162]Dewhurst R.J.,Comparative data on molecular gas breakdown thresholds in high laser-radiation fields,J.Phys.D:Appl.Phys.,Vol.11,L191,1978
    [163]常铁强等,激光等离子体相互作用与激光聚变,湖南科学技术出版社,1991
    [164]强希文,朱润合.激光等离子体的非线性逆轫致吸收.激光杂志,21(2):28-29,2000
    [165]孙承纬.激光辐照效应.国防工业出版社.2002
    [166]陆建,倪晓武,贺安之.激光与材料相互作用物理学.机械工业出版社,1996
    [167]陆同兴,赵献章,崔执凤.用发射光谱测量激光等离子体的电子温度与电子密度.原子与分子物理学报,Vol.17(2):120-127,1994
    [168]陆同兴,崔执凤,赵献章.激光等离子体镁光谱线Stark展宽的测量与计算.中国激光,A21(2):114-120,1994
    [169]崔执凤,黄时中,陆同兴,凤尔银,赵献章.激光诱导等离子体中电子密度随时间演化的实验研究.中国激光,A23(7):627-632,1996
    [170]黄庆举,方尔梯,邓尚民.脉冲Nd:YAG激光烧蚀Cu产生等离子体总辐射的时空分辨研究.原子与分子物理学报,16(3):329-333,1999
    [171]黄庆举,方尔梯.脉冲Nd:YAG激光烧蚀A1产生等离子体特征辐射的机理研究.原子与分子物理学报,17(1):63-66,2000
    [172]董全力,满宝元,张庆刚,王象泰.激光等离子体发射谱展宽机制研究.原子与分子物理学报.18(1):45-49,2001
    [173]张树东,陈冠英,袁萍等.A1激光等离子体Stark加宽光谱观测.原子与分子物理学报,16(4):457-461,1999
    [174]张树东,冯旺军,陈冠英等.激光诱导A1等离子体的时间分辨光谱.应用激光,20(4):155-158.2000
    [175]张树东,陈冠英,董晨钟,周士康.激光诱导A1等离子体温度的测定及时间变化特性研究.西北师范大学学报,36(2):22-26,2000
    [176]张树东,张为俊.激光诱导A1等离子体在背景气体中的流体现象.原子与分子物理学报.18(2):159-162,2001
    [177]张树东,陈冠英,陈辉等.激光诱导A1等离子体温度随激光能量变化特性研究.18(1):46-49,2001
    [178]张树东,刘兆远,陈冠英等.环境气体对激光诱导A1等离子体光谱的影响.18(1):64-66,2001
    [179]苏茂根,陈冠英,张树东等.激光诱导Cu等离子体光谱的空间特性研究.应用激光,24(6).2004
    [180]苏茂根,陈冠英,张树东等.空气中激光烧蚀Cu产生等离子体发射光谱的研究.原子与分子物理学报,22(3):472-477,2005
    [181]薛思敏,陈冠英,苏茂根等.激光诱导Cu等离子体发射光谱特性的实验研究.西北师范大学学报,41(4):37-41,2005
    [182]J.Thomas Knudtson,William B.Green,and David G.Sutton,The UV-Visible spetroscopy of laser-produced aluminum plasmas,J.Appl.Phys.,61(10):4771-4780,1987
    [183]C.Colón,G.Hatem,E.Verdugo,P.Ruiz,and J.Campos,Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,J.Appl.Phys.,73(10)4752-4758,1993
    [184]D.Lacroix and G.Jeandel,Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser,J.Appl.Phys.,81(10)6599-6606,1998
    [185]K.H.Wong,T.Y.Tou,and K.S.Low,Pulsed CO_2 laser ablation of graphite and polymers,J.Appl.Phys.,83(4)2286-2290,1998
    [186]L.St-Ouge,R.Sing,S.Béchard,M.Sabsabi,Carbon emiddions following 1.064μm laser ablation of graphite and organic samples in ambient air,Appl.Phys.A,69,S913-S916,1999
    [187]M.Milán,J.J.Lasema,Diagnostics of silicon plasmas produced silicon plasmas produced by visible nanosecond laser ablation,Spectrochimica Acta Part B,56 275-288,2001
    [188]G.Abdellatif,H.Imam,A study of the laser plasma parameters at different laser wavelengths,Spectrochimica Acta Part B,57 1155-1165,2002
    [189]王艳.隐身等离子体中电磁波的传输实验与诊断技术:[博士].合肥:中国科学技术大学.2007
    [190]项志遴,俞昌旋.高温等离子体诊断技术.上海:上海科学技术出版社.1982
    [191]陆同兴,路铁群.激光光谱技术原理及应用.合肥:中国科学技术大学出版社.1999
    [192]汪志诚.热力学统计物理.北京:高等教育出版社.1980
    [193]李世昌.高温辐射物理与量子辐射理论.北京:国防工业出版社.1992
    [194]Guy M.Weyl and David Rosen.1985.Laser-induced breakdown in argon at 0.35μm:Theory and experiments.Physical Review A,31:2300-2313
    [195]N.Damany,P.Laporte,Multiphoton excitation and decay processes in xenon:Off-breakdown and breakdown emission at densities up to 1.4× 10~21 atoms cm~-3,Physical Review A,Vol.32,3418-3424,1985
    [196]褚圣麟.原子物理学.北京:人民教育出版社.1979
    [197]Phipps C R,Harrison Jr R F,et al.,Enhanced Vacum Laser-impulse coupling by Volume Absorption at Infrared Wavelengths.Laser and Particle Beams,(8):281-298,1990
    [198]Cai and C.-W.Shu,Uniform high-order spectral methods for one- and two-dimensional Euler equations.Journal of Computational Physics,vol.104,427-443,1993
    [199]C.Hu and C.-W.Shu,Weighted essentially non-oscillatory schemes on triangular meshes.J.Comput.Phys.,150:97-127,1999
    [200]D.Balsam and C.-W.Shu,Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order accuracy.J.Comput.Phys.,160:405-452,2000
    [201]侯中喜,梁剑寒,王承尧.WENO格式在稳态问题中的应用.空气动力学学报,19:75-82,2001
    [202]徐振礼,高阶精度的数值格式研究,中国科学技术大学硕士学位论文,2003
    [203]水鸿寿,一维流体力学差分方法,国防工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700