用户名: 密码: 验证码:
基于条码质量的直接标刻激光参量与物理机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接标刻(Direct Part Marking,DPM)指直接在物体表面标刻机器可识读的代码,激光直接标刻二维条码在应用中最大的挑战是能否连续地产生机器可识读的高质量的二维条码。激光与材料之间复杂的相互作用机制不明,不同的激光参量、材料材质类型等对直接标刻条码等级产生重大影响。目前,国内外对直接标刻激光参量的研究大多将其转化为激光能量或激光功率,虽然具有研究方法直接、简便的特点,却无法指导实际加工和具体参量大小的设定,无法辨识激光参量对条码质量的影响。此外直接标刻条码的识读图像与一般打印条码图像相比,具有图像不规则、光学反差低以及标刻表面高反光等特征,这也限制了直接标识的应用。国外针对直接标刻二维条码的研究已开展,制定了一些标准,如ISO/IEC 16022、ISO/IEC 15415等,而国内的研究却比较少。基于此,本课题从激光直接标刻二维条码的加工和图像处理两个方面入手,以提高条码的标刻质量和条码图像质量为目的,对激光参量、标刻过程的物理机制以及低质量条码的图像处理技术进行相应的研究。本课题在山东省自然科学基金(Q2008G02)和山东大学自主创新基金(2010TS036)资助项目资助下,开展了如下研究工作:
     首先,从激光标刻二维条码加工方面对激光参量进行了研究。根据Data Matrix条码矩阵码结构,实验研究激光路径与激光线间距两参量,设计了单向光栅式、交叉光栅式和方形螺旋式三种标刻路径,通过对激光加工表面的粗糙度、符号对比度、对比均衡度进行分析,确定了单向光栅式模块填充激光路径和0.05mm的线间距为较优的选择。
     为了探明激光电流参量对标刻条码的符号对比度影响的规律,提出了一种基于多元非线性模型显著性检验的方法。通过建立激光电流和线间距两因素与符号对比度的多元非线性逐步回归数学模型,利用模型的显著性检验评估因素对符号对比度的影响,最后得出,随着激光电流的增大激光电流对条码质量衡量指标符号对比度的影响逐渐减小的规律。
     采用Nd:YAG激光器作为加工源,通过调节搭配激光有效矢量步长、有效矢量步间延时、Q频率和Q释放时间四参量实现3136种不同能量密度激光在铝合金表面标刻二维条码,并使用INTEGRA条码检测仪对标刻条码进行了分级。统计分析条码质量等级分布推得激光铝合金表面标刻条码的最优加工参量组。发现激光参量对条码质量影响的规律以及目前国际标准无法对黑色外观条码评级的原因。
     其次,研究了激光直接标刻条码微观形貌和生成物对条码质量等级的影响,探讨影响条码质量的深层次原因。将固溶体的概念引入激光标刻过程的物理机制研究中,提出基于材料元素熔点、沸点和比重的标刻物理机制的新理解,并进行了实验验证。采用物理机制新理解分析了铝合金表面直接标刻形成的六种外观及其对条码质量等级的影响。
     从激光标刻微观形貌方面研究黑白外观截然不同的两种条码,研究激光标刻微观形貌的度量,以及微观形貌与激光参量之间的关系。使用非线性内核在多尺度下对图像进行分层,从而改进了图像差分计盒算法,改进的算法具有较高的稳定性和准确性。将新算法应用于条码微观形貌扫描电镜图像,得出Nd: YAG激光加工的材料微观形貌维度数值,初步得到随着激光能量的增大,分形维度同时增大的规律。
     最后,以提高低质量条码图像质量为目的,针对激光标刻二维条码图像光学反差低、高反光等特征引入高动态范围图像合成技术。设计出覆盖全部灰度边缘的18阶灰度卡,提出一种基于此灰度卡的单幅图像相机响应曲线标定方法,解决目前相机响应曲线标定算法使用多幅图像和单幅图像灰度区域覆盖不全的问题。采用基于估算图像曝光分区的算法合成高动态范围图像,并将算法应用于激光标刻低质量二维条码图像,从实验结果上看高动态合成图像的灰度边缘比普通图像更加的陡峭,且获得更大的数据变化范围,这对二维条码识别图像的阈值确定和边缘准确定位有较大的意义。
     低质量二维条码高动态范围图像的色调映射研究中,采用了基于图像分层的各向异性边缘保护的色调映射算法,算法对光照不均和强反射体现出一定的鲁棒性。编写Data Matrix二维条码识别程序,使用高动态范围色调映射图像进行识别实验,实验结果表明借助此项技术提高了激光直接标刻二维条码图像的质量,从而可提高识别率推进激光直接标刻的工业化应用。
Direct part marking refers to mark machine-readable permanently code on the surface directly. Certain applications have recently appeared in industry where a traditional barcode printed on a label will not survive because the item to be tracked has to be exposed to harsh environments. Laser direct part marking is a manufacturing process used to create permanent marks on a substrate that could help to alleviate this problem. The physical interaction of light with materials during the marking process plays an important role in theproduction of laser marks on different types of substrates. Over the last 20 years, the laser-material interaction has been explored by varying several different laser parameters and analyzing the effect of either a single substrate or multiple substrates. Laser parameters that consistently appear in these studies are laser power and pulse frequency. Although such studies will be more direct, it cannot.distinguish the influence of the independent laser parameter to the barcode quality and cannot guide the specific parameters setting in practical processing. Marks produced with a laser can be categorized as images, human-readable characters, or machine-readable symbols (e.g., bar codes). Compared with the general printing technology, machine-readable marks produced with a laser have its own features. For instance, irregular picture, lower optical contrast inconsistent module size and highly reflective surface of substrate materials are all the characteristics of the laser direct part marking.
     In order to effectively produce Data Matrix symbols on a specific substrate with a laser, it is important to establish a relationship between critical laser parameters and the resulting quality of the symbol. Once this relationship is understood, then laser parameters can be set so that the preferred properties of a laser-marked Data Matrix symbol can be obtained. Supported by Natural Science Foundation of Shandong Province (Q2008G02) and Shandong University innovation fund (2010TS036), the research carried out in this dissertation is as followings.
     First, we studied the laser parameters in manufacture of Data Matrix symbols. A Data Matrix symbol may be composed of several hundred individual modules, different tool path patterns may be used to produce a single module of a Data Matrix symbol onto the substrate with the laser. The effect of the laser tool path pattern was investigated via a separate experiment from those employed to assess the effects of laser parameters and type of substrate. We design single direction raster scanning, cross direction raster scanning and square spiral scanning to create Data Matrix minimum module. According to experimental data of laser processed surface roughness, symbol contrast and module illumination values'standard deviations, the best scanning path is single direction raster scanning path.
     Laser current is a key parameter in laser direct-part marking symbols on a substrate. Different laser current can create enormous impact on barcode contrast, but the influencing regularities are unclear. In this paper, a new significance test method based on multivariate nonlinear model was proposed to investigate the influencing regularities. First, the multi-element nonlinear stepwise regression model between the laser current, the laser line spacing and symbol contrast was established, and then the model significance test was employed to evaluate the influence between the two factors and symbol contrast. Finally, the influencing regularities were found by comparing the influence between the laser current and the laser line spacing. These regularities are that along with the laser current value increasing the influence of laser current on symbol contrast decreases and that the effect is much smaller and can even be neglected when the laser current reaches or exceeds a certain value. This certain value is 15 A in the Nd:YAG laser Direct-part marking symbols on aluminum alloy experiment.
     A 1064nm Nd:YAG laser was utilized to produce 3136 Data Matrix symbols onto aluminum substrates. The quality of the laser marked Data Matrix symbol was then evaluated according to the ISO/IEC 16022 bar code technology specification for Data Matrix. Several experiments were conducted to explore the effects that different parameters have on the quality of the laser direct-part marked symbols. The experiment focuses on all interval values of the vector step, inter-step time, laser Q frequency and laser Q release time. From the experiment results, the optimized parameters are the vector step of 0.005-0.009 mm, the inter-step time of 29-43μs, laser Q frequency of 7-10 KHz, and laser Q release time of 13-19μs. And then, by analyzing the higher and the lower power density processing module SEM images and EDS data, it was found that the interaction between the laser and the aluminum alloy can be divided into four stages.
     Second, we studied the laser parameters and materials influence on barcode grade in microstructure and micro-components. We introduced the concept of solid solution into the physical mechanism of laser marking. A new understanding of physical mechanisms, which based on the material elements melting point, boiling point and specific gravity, was bring forward. It was verified by the experimental data, and then the new understanding was used to analysis the six appearances of laser direct marking Data Matrix barcodes on aluminum.
     The micromor-phologies and microstructures of laser marking area were investigated by fractal analysis. We improved the image differential box-counting fractal dimension algorithm by using the non-linear kernel to divide the laser marking SEM image into multi-scale layering, and the box-counting principle also be improved. The experiment testifies the reformative algorithm has high stability and accuracy feature. This new algorithm was used to calculate the SEM image of laser marking, the microstructure was computed by fractal dimensions values. The fractal dimension of materials microstructure that the Nd:YAG laser processed concentrated in 1.7-1.8 range. The result shows that with the laser energy increases, the fractal dimension increased.
     Finally, according as the characteristics of low-quality barcode images to study the irregular, lower optical contrast and higher reflected DPM Data Matrix barcode recognition. The image fusion of high dynamic range algorithm and tone mapping algorithm were studied. We design the 18-ladder grayscale card that covers all the gray edges. Based on this grayscale card, a new algorithm of camera response curve calibration with a single image was advanced. It can solve the common used camera response curve calibration algorithm uses multiple images and single image gray-area coverage question.
     In high dynamic range images tone mapping, we present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an edge-preserving filter called the bilateral filter. This is a non-linear filter, where the weight of each pixel is computed using a Gaussian in the spatial domain multiplied by an influence function in the intensity domain that decreases the weight of pixels with large intensity differences. We build upon a different edge-preserving filter that is easier to control and more amenable to acceleration. The method is fast and requires no parameter setting.
     To my wife Wenshuang Bao I dedicate this PhD thesis in token of affection and gratitude.
引文
[1]张成海,张铎.现代自动识别技术与应用[M].北京:清华大学出版社,2003
    [2]卢瑞文.自动识别技术[M].北京:化学工业出版社,2004
    [3]中国物品编码中心.条码技术与应用[M].北京:清华大学出版社,2003
    [4]National Aeronautics and Space Administration. Applying data matrix identification symbols on aerospace parts[S]. Washington DC:NASA Press,2001
    [5]矫云起,张成海.二维条码技术[M].北京:中国物价出版社,1996
    [6]中国物品编码中心,二维条码技术与应用[M].北京:中国计量出版社,2007
    [7]National Aeronautics and Space Administration. NASA-HDBK-6003C.Application of data of Data Matrix identification symbols to aerospace parts using direct part marking methods/techniques[S].Washington DC:NASA Press,2002
    [8]Jun Rekimoto,Yuji Ayatsuka. Cybercode:designing augmented reality environ ments with visual tags[J].Proceeding of DARE 2000 on Designing Augmented Reality Environments,2000,9(2):1-10
    [9]Chen M F, Hsiao W T, Huang W L, et al.. Laser coding on the eggshell usi ng pulsed-laser marking system[J].Materials Processing Technology,2009,209(a): 737-744
    [10]Chen M F, Hsiao W T, Huang W L, et al.. Finite element analysis and veri fication of laser marking on eggshell[J].Materials Processing Technology,200 9,209(b):470-476
    [11]俞宽新,江铁良,赵启大.激光原理与激光技术[M].北京:北京工业大学出版社,1999
    [12]郭治国,刘晓东,倪宇.激光标刻在条码技术中的应用研究[J].激光杂志,2004,25(3):72-73
    [13]赵巍,撒昱.激光标刻系统研究综述[J].天津工程师范学院学报,2006,16(1):22-25
    [14]徐嘉烨.气动式二维码标记系统的研制[D].浙江大学硕士论文.2007
    [15]王加金.激光加工技术[M].北京:中国计量出版社,1992
    [16]L.A. Dobrzanski,M. Bonek,E. Hafduczed, et al..Comparison of the structures of the hot-work tool steels laser modified surface layers[J].Journal of Materials Processing Technology,2005,164-165(0):1014-1024
    [17]Ming-Fei Chen,Yu-Pin Chen,Wen-Tse Hsiao.Correction of field distortion of laser marking systems suing surface compensation function[J].Optics and Lase rs in Engineering,2009,47(1):84-89
    [18]Palmer R C. The Bar Code Book[M].Helmers Publishing Press,2001
    [19]Richard E.Billo,J.David Porter,Mainak Mazumdar,et al..Impact of bar code pr int quality on the performance of high-speed sortation systems[J].Journal of Manufacturing Systems,2003,22(4):317-326
    [20]杨小天.激光在高反射金属表面刻写条形码[J].光机电信息,2008,25(7):17-21
    [21]Leone C,Genna S.AISI 304 Stainless steel marking by a Q-switched diode pumped Nd:YAG laser[J].Materials Processing Technology,2010,210(6):1297-1303
    [22]J.David Porter. Laser direct-part marking of Data Matrix symbols on carbon steel substrates[J].Manufacturing Science and Engineering,2007,129(3):583-591
    [23]Ling Lei, Lou Qihong, Ye Zhenghuan, et al..Ablation of circuit board by pulsed UV laser[J].Chinese Journal of Lasers,2003,30(10):953-955
    [24]Zhang Fei, Zeng Xiaoyan, Li Xiangyou, et al..Laser etching and cutting printed circuit board by 355 nm and 1064 nm diode pumped solid state lasers[J].Chinese Journal of Lasers,2008,35(10):1637-1643
    [25]Wen Dianzhong. Study on laser etching emitter region-groove approach of m agnetic-sensitive silicon transistor[J].Chinese Journal of Lasers,2003,30(5):454-456
    [26]Zhang Heng,Zhou Yun,Fang Zhongbao,et al..Fabrication of micro-grating structure on glazed stainless-steel by nanosecond laser[J].Chinese Journal of Lasers,2008,35(3):448-451
    [27]Qi J, Wang K L, Zhu Y M.A Study on the laser marking process of stainless steel[J].Materials Processing Technology,2003,139(2):273-276
    [28]Ng T W, Yeo S C. Aesthetic laser marking assessment using luminance ratios[J].Optics and Laser in Engineering,2001,35(3):177-186
    [29]Hayakawa H.A Laser method for marking bar codes on glass substrates[C].First International Symposium on Laser Precision Microfabrication,2000,4088:363-366
    [30]D. Daniel Sheu,Hsinchu. A laser marking system for flexible circuit identification[J].Journal of Manufacturing Systems,2000,19(3):202-212
    [31]Liming Zheng,Shuqing Kou.Shenhua Yang,et al..A study of process parameters during pulsed Nd:YAG laser notching of C70S6 fracture splitting connecting rods[J].Optics & Laser Technology,2010,42(6):985-993
    [32]Ng T W, Yeo S C. Aesthetic laser marking assessment using spectrophotome ters[J].Optics and Laser in Engineering,2000,104(3):280-283
    [33]Chen-Hao Li,Ming-Jong Tsai,Ciann-Dong Yang.Study of optimal laser param eters for cutting QFN packages by taguchi's matrix method[J].Optics & Laser Technology,2007,39(4):783-795
    [34]J David Porter. Artificial Neural Network Approach to Data Matrix Laser Direct Part Marking[J].Journal of Intelligent Manufacturing,2006,17(1):133-147
    [35]Salman Nisar,M.A.Sheikh,Lin Li,et al..The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass[J].Optics & Laser Technology,2010,42(6):1022-1031
    [36]M. D.Perry, B. C. Stuart. Ultrashort pulse laser machining of metals and alloys[P]. U.S.:6621040,2003-09-16
    [37]伍珊红,齐军,虞孝舜Nd:YAG激光打标工艺试验研究[J].激光与红外1999,29(2):92-95
    [38]王建平.Nd:YAG激光在线打标系统及其打标工艺研究[D].湖北:华中科技大学物理电子学,2005
    [39]D. Dragomatz, S. Mann.Bibliography of NC tool path literature[J].Computer-Aided Design,1997,29(3):239-247
    [40]Z. Liu, H. Bin ,X. Zhang.The influence of the fractal scanning path on the residual stress field of the layer in material increase manufacturing[J].China Mechanical Engineering,1999,10 (8):848-850
    [41]J.G. Griffiths.Tool path based on Hilbert's curve[J].Computer Aided Design, 1994,26(11):839-844
    [42]E. Ukar, A. Lamikiz, Lopez de Lacalle, et al..Netherlands laser polishing of tool steel with C02 laser and high-power diode laser[J].International Journal of Machine Tools and Manufacture,2010,50(1),115-125
    [43]Salman Nisar,M.A.Sheikh,Lin Li, et al..The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass[J].Optics & Laser Technology,2010,42(10):1022-1031
    [44]Y. Mizugaki, M. Sakamoto, T. Sata.Fractal path generation for a metal-mold polishing robot system and its evaluation by the operability[J].Annals CIRP,1992,41(1):531-534
    [45]J. Yang,H.Bin,X. Zhang,et al..Fractal scanning path generation and control s ystem for selective laser sintering[J].International Journal of Machine Tools & Manufacture,2003,43(3):293-300
    [46]Fencheng Liu,Xin Lin,Chunping Huang,et al..The effect of laser scanning pat h on microstructures and mechanical properties of laser solid formed nickel-b ase super-alloy Inconel 718[J].Journal of Alloys and Compounds,2011,509(13): 4505-4509
    [47]D. Dragomatz.Numerical control tool path generation using space-filling curves and pixel models[D].Canada:University of Waterloo,1995
    [48]J.J. Cox, Y. Takezaki, H.R.P. Ferguson,et al..Space-filling curves in tool-pat h applications[J].ComputerA-ided Design,1994,26(3):215-224
    [49]Guk-chan Han,Suck-joo Na.A Study on torch path planning in laser cutting processes Part 1.calculation of heat flow in contour laser beam cutting[J].Journal of Manufacturing Processes,1999,1 (1):54-61
    [50]Hon-yuen Tam,Haobo Cheng.An investigation of the effects of the tool path on the removal of material in polishing[J].Journal of Materials Processing T echnology,2010,210(5):807-818
    [51]Y.H.Peng, Z.W.Yin. The algorithms for trimmed surfaces construction and to ol path generation in reverse engineering[J].Computers & Industrial Engineeri ng,2008,54(3):624-633
    [52]Young-Keun Choi,A.Banerjee. Tool path generation and tolerance analysis fo r free-form surfaces[J].International Journal of Machine Tools & Manufacture, 2007.47(3-4):689-696
    [53]ISO/IEC 16022:2006, Information technology—automatic identification and data capture techniques—data matrix bar code symbology specification[S].Switzerland: ISO Press,2006
    [54]ISO/IEC 15415:2004, Information technology—automatic identification and d ata capture techniques—bar code print quality test specification—two-dimensio nal symbols[S].Switzerland:ISO Press,2004
    [55]AS9132 Data matrix quality requirements for parts marking[S/OL]. G-14 Am ericas Aerospace Quality Standards Committee,2005,
    [56]AIM direct part mark quality guideline[S/OL].2006,1.0,
    [57]N. Sanner,N. Huot,E. Audouard,et al..Direct ultrafast laser micro-structuring of materials using programmable beam shaping[J].Optics and Lasers in Engineering,2007,45(6):737-741
    [58]S. Valette,E. Audouard,R. Le Harzic,et al..Heat affected zone in aluminum s ingle crystals submitted to femtosecond laser irradiations[J].Applied Surface S cience,2005,239(3-4):381-386
    [59]S. Valette,P. Steyer,L. Richard,et al..Influence of femtosecond laser marking on the corrosion resistance of stainless steels[J].Applied Surface Science,200 6,252(13):4696-4701
    [60]B.S. Yilbas,S.Z. Shuja,S.M.A. Khan. Laser repetitive pulse heating of tool surface[J].Optics & Laser Technology,2011,43(4):754-761
    [61]Chwan-Huei Tsai,Chuen-Hen Ou. Machining a smooth surface of ceramic ma terial by laser fracture machining technique[J].Journal of Materials Processing Technology,2004,155-156(0):1797-1804
    [62]Da-ping Wan,Bing-kui Chen,Yi-min Shao, et al..Microstructure and mechanic al characteristics of laser coating-texturing alloying dimples[J].Applied Surfac e Science,2008,255(5):3251-3256
    [63]S.P. Lynch. Progression markings striations and crack-arrest markings on fracture surfaces[J].Materials Science and Engineering,2007,468(470):74-80
    [64]Yongjun Shi,Zhenqiang Yao,Hong Shen,et al..Research on the mechanisms of laser forming for the metal plate[J].International Journal of Machine Tools & Manufacture,2006,46(12-13):1689-1697
    [65]钟敏霖,刘文令.Satellite6+WC激光熔覆层微观组织的演变[J].金属学报,2002,38(5):495-500
    [66]Young Whan Park,Sehun Rhee. Study of a line width estimation model for 1 aser micro material processing using a photodiode[J].Optics & Laser Technolo gy,2007,39(7):1461-1471
    [67]Ronald L.Plaut,Angelo F.Padilha,N.B.Lima,et al..Medium carbon steel deep drawing:A study on the evolution of mechanical properties, texture and simulations, form cold rolling to the end product[J].Materials Science and Engineering A,2009,499(1-2):377-341
    [68]M. SeDao,T. Hua,M. Shao,et al..Surface modification of DF-2 tool steel under the scan of a YAG laser in continuously moving mode[J].Journal of Materials Processing Technology,2009,209(10):4689-4697
    [69]F. Costache,M. Henyk,J. Reif. Surface patterning on insulators upon femtosecond laser ablation[J].Applied Surface Science,2003,208-209(0):486-491
    [70]D.von der Linde,K.Sokolowski-Tinten. The physical mechanisms of short-pulse laser ablation[J].Applied Surface Science,2000,154-155(1-4):1-10
    [71]刘院省,刘世炳,陈涛.短脉冲激光刻蚀加工铜材料的机制[J].强激光与粒子束,2007,19(8):1271-1274
    [72]赵刚.飞秒脉冲激光对固体材料热损伤的研究[D].四川:四川大学电子信息学院,2007
    [73]杨霄.光学玻璃在激光作用过程中的热力效应研究[D].吉林:长春理工大学,2008
    [74]徐白.激光打标的物理机制研究[D].吉林:长春理工大学激光与物质相互作用,2006
    [75]J.H. Liu, G.M. Li, C.Q. Wanget al..Thermal lens stabilized flat-flat resonator 15W CW Nd:YVO4 laser end-pumped by a diode laser array[C] International Conference in Industrial Lasers (IL'99),1999:297-230
    [76]刘院省.金属材料脉冲激光刻蚀微加工的基础研究[D].北京:北京工业大学光学,2007
    [77]温诗铸,黄平.摩擦学原理[M].修订本.北京:清华大学出版社,2002
    [78]李成贵,董申.三维表面微观形貌的表征趋势[J].中国机械工程,2000,11(5):488-492
    [79]丽伟,董申,程凯.表面微观形貌定量表征中几种新方法的应用[J].中国机械工程,2002,13(19):1702-1705
    [80]史立新.分形理论在机械加工表面分析中的应用[J].农机化研究,2000,(2):112-114
    [81]周新聪.分形理论和小波分析在磨损表面形貌及磨损分析中的应用[D].武汉:武汉理工大学专业,2000
    [82]刘莹,陈定方.准分子激光加工表面微观形貌测量和数据处理方法研究[J].中国机械工程,2002,(19):1692-1695
    [83]Shellhammer S. J.,Goren David P.,Pavlidis, T..Novel signal-processing techniques in barcode scanning[J].IEEE Robotics and Automation Magazine,1999,6(1):57-65
    [84]Shellhammer S. J.,Goren D. P.,Pavlidis T..Selective sampling and edge enhan cement in bar code laser scanning[C].Proceedings of SP1E,1996,2660:354-366
    [85]Liao Hong Yuan, Liu Shu-Jen, Chen Liang-Hua,et al..Bar-code recognition s ystem using back propagation neural networks[J].Engineering Applications of Artificial Intelligence,1995,8(1):81-90
    [86]Turin W.,Boie R. A..Bar code recovery via the EM algorithm[J].IEEE Transactions on Signal Processing,1998,46(2):354-363
    [87]陈强,朱立新,夏德深.结合Canny算子的图像二值化[J].计算机辅助设计与图形学学报,2005,17(8):1302-1306.
    [88]李了了,邓善熙,丁兴号.基于大津法的图像分块二值化算法[J].微计算机信息(管控一体化),2005,21(8):76-77
    [89]Sahoo P K,Wong AKC, Chen Y C.Survey of thresholding techniques[J].Computer Graphics, Vision and Image Processing,1988,41(3):233-260.
    [90]Byeong Rae Lee,Kyungsoo Park,Hyunchul Kang,et al.Adaptive local binarization method for recognition of vehicle license plates[A].combinatorial image analysis proceedings lecture in computer science,2004,4:646-655
    [91]杨硕,尚振宏.一种新的二维条码图像二值化算法[J].昆明理工大学学报(理工版),2008,33(1):43-51
    [92]陈柏生.一种二值图像连通区域标记的新方法[J],计算机工程与应用,2006,25:46-47
    [93]袁远松,赵小敏,杨东勇Data Matrix条码的畸变校正[J].计算机系统应用,2008,10:47-50
    [94]激光打标技术手册[M].深圳大族激光技术有限公司,2004
    [95]Philipp Slusallek,Wolfgang Heidrich,Christian Vogelgsang,et al..Radiance maps:An image-Based approach to global illumination[R].Germany:University Erlangen-Nurnberg, Computer Graphics Group,1998
    [96]Gordon Wetzstein,Oliver Bimber.Radiometric compensation through inverse light transport[C].Proceeding of the 15th Pacific conference on Computer Graphics and Applications,2007:391-399
    [97]白钊,白波,周丽华,等.CDD摄像机照度检测装置的研制[J].应用光学,2010,31,(5):772-776
    [98]胡理乐,朱教君,李俊生,等.林窗内光照强度的测量方法[J].生态学报,2009,29(9):5056-5065
    [99]Shanableh T., Assaleh K.. Feature modeling using polynomial classifiers and stepwise regression[J].Neurocomputing,2010,73(10):1752-1759.
    [100]贾俊平.统计学[M].第2版.北京:清华大学出版社,2004:329-331.
    [101]王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社,2002:266-268.
    [102]Andreas Bortfeldt, Hermann Gehring. A hybrid genetic algorithm for the co ntainer loading problem[J].European Journal of Operational Research,2001,13 (1):143-161.
    [103]Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal,et al..A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary C omputation,2002,6(2):182-197
    [104]冯端.固体物理学大辞典[M].北京:高等教育出版社,1995
    [105]Avanish Kr.Dubey,Vinod Yadava. Experimental study of Nd:YAG laser bea m machining:An overview[J].Journal of Materials Processing Technology,200 8,195(1-3):15-26
    [106]张楠.超短脉冲激光烧蚀固体材料的物理机制及其在激光推进中的应用[D].天津:南开大学,2009
    [107]张恒.纳秒激光诱导若干金属材料微结构及其应用研究[D].苏州:苏州大学,2008
    [108]李强.激光微细加工在电子行业中若干应用的研究[D].浙江:浙江大学,2010
    [109]戴玉堂,崔健磊,徐刚,等.157nm激光微加工过程中激光参量对刻蚀性能的影响[J].激光技术,2011,35(1):36-38
    [110]李明玉,晁明举,梁二军,等.Cu材料激光表面强化研究[J].中国激光,2011,38(8):0803001
    [111]徐红玉,张元冲,宋亚勤,等,脉冲激光加热薄膜微尺度热传递研究进展[J].物理学进展,2004,24(2):152-162
    [112]凌磊,楼祺洪,李抒智,等.水浴条件下YAG倍频激光切割Si片的实验研究[J].激光技术,2004,28(2):]31-133
    [113]余林华.应用于激光打标的PMMA材料的增韧改性研究[D].苏州:苏州大学材料学,2009
    [114]王晓雷,张楠,赵友博等.飞秒激光激发空气电离的阈值研究[J].物理学报,2008,57(1):354-357
    [115]石磊,赵尚弘,方绍强等.空间机动平台在轨激光推进技术研究[J].激光杂志,2007,28(2):6-8
    [116]童慧峰,唐志平.激光推进的基本原理和实验进展综述[J].高能量密度物理,2007,3(1):32-36
    [117]Rajesh Kumar, H.S. Mavi, A.K. Shukla. Impact conditions required for for mation of melt by jetting in silicates[J]. Journal of Geophysical Research,199 7,104(12):751-769
    [118]P.Solis-Fernandez.A comparison between physically and chemically driven e tching in the oxidation of graphite surfaces[J].Journal of Colloid and Interfac e Science,2010,344(2):451-459
    [119]Sugita S,Schultz P H.Spectroscopic characterization of hypervelocity jetting: comparison with a standard theory[J].Journal of Geophysical Research,1999,1 04(E12):30825-30845
    [120]Sucharita Sinha,E.Ramadasan,V.P.Jathar,et al..Laser etching of Thoria pellets for micro structural investigations[J].Applied Surface Science,2007,254(9):4404-4408
    [121]Z.L. Li,H.Y. Zheng,K.M., et al..Analysis of oxide formation induced by UV laser coloration of stainless steel[J].Applied Surface Science,2009,256(5):1582-1588
    [122]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,2008
    [123]黄仲涛.工业催化[M].北京:化学工业出版社,2006
    [124]李炯辉.金属材料金相图谱[M].北京:机械工业出版社,2006
    [125]韩凤麟.粉末冶金基础教程[M].广州:华南理工大学出版社,1998
    [126]L.Kaplan, Extended fractal analysis for texture classification and segmentation[J].IEEE Transactions on Image Processing,1999,8(11):1572-1585
    [127]T. Ida,Y. Sambonsugi,. Image segmentation and contour detection using fra ctal coding [J].IEEE transactions on circuits and systems for video technolog y,1998,8(8):968-975
    [128]B. Sanderson,A. Goulding. The fractal dimension of relative lagrangian mot ion[J].Tellus,1990,42(A):550-556
    [129]Q. Guo,J. Shao,F. Guo, et al..Classification of mammographic masses using geometric symmetry and fractal analysis[J].International Journal of Computer Assisted Radiology and Surgery,2007,2(l):336-338
    [130]W. Lee,Y. Chen,Y. Chen, et al..Unsupervised segmentation of ultrasonic Iiv er images by multiresolution fractal feature vector[J].Information Sciences,200 5,175(3):177-199
    [131]Y. Xia,D. Feng,R. Zhao.Morphology-based multi-fractal estimation for textu re segmentation[C].IEEE Transactions on Image Processing,2006,15(3):614-624
    [132]R. Glenny,H. Robertson. Fractal modeling of pulmonary blood flow heterog eneity[J].Journal of Applied Physiology,1991,70(3):1024-1030
    [133]R. Rangayyan,T. Nguyen. Pattern classification of breast masses via fractal analysis of their contours[C].Proceedings of Computer Assisted radiology an d Surgery (CARS),2005,1281:1041-1046
    [134]G. Krenz.J. Linehan,C. Dawson. A fractal continuum model of the pulmonary arterial tree[J].Journal of Applied Physiology,1992,72(6):2225-2237
    [135]S. Cross,R. Start,P.Silcocks, et al..Quantitation of the renal arterial tree by fractal analysis[J].Journal of Pathology,1993,170(4),479-484
    [136]S.Spasic, A.Kalauzi, G.Grbic,et al..Fractal analysis of rat brain activity after injury[J]. Medical and Biological Engineering and Computing,2005,43(3):345-348
    [137]T. Stojic,I. Reljin,B. Reljin. Adaptation of multi-fractal analysis to segment ation of micro calcifications in digital mammograms[J].Physica A:Statistical Mechanica and its Applications,2006,367:494-508
    [138]M. Phothisonothai,M. Nakagawa. Fractal-based EEG data analysis of body parts movement imagery tasks[J].Journal of Physiological Sciences,2007,57(4):217-226
    [139]M. Nagao,K. Murase. Measurement of heterogeneous distribution on Techne gas SPECT images by three-dimensional fractal analysis[J].Annals of Nuclear Medicine,2002,16(6):369-376
    [140]P. Smrcka,R. Bittner,P. Vysoky, et al..Fractal and multi-fractal properties of heartbeat interval series in external states of the human organism[J]. Measur ement Science Review,2003,3(2):13-15
    [141]W.Y. Hsu,C.C. Lin,M.S. Ju,et al..Wavelet-based fractal features with active segment selection:application to single-trial EEG data[J].Journal of Neuroscie nce Methods,2007,163(6):145-160
    [142]K. Iftekharuddin,W. Jia,R. Marsh. A fractal analysis approach to identification of tumor in brain MR images[C].Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2002, 4:3064-3066.
    [143]K. Iftekharuddin,W. Jia,R. Marsh. A fractal analysis of tumor in brain MR images[J].Machine Vision and Applications,2003,13(5):352-362
    [144]J. Byng,N. Boyd,E. Fishell, et al..Automated analysis of mammographic de nsities[J].Physics in Medicine and Biology,1996,41(5):909-923
    [145]J. Zook,K. Iftekharuddin. Statistical analysis of fractal-based brain tumor d etection algorithms[J].Magnetic Resonance Imaging,2005,23(5):671-678
    [146]祝文化,李建雄,张明中.混凝土损伤裂纹的二位数字图像盒维数算法[J].武汉理工大学学报,2008,30(6):60-62
    [147]邓勇,施文康,刘淇.小波变换的信号分形分析及其在心电信号处理中的应用研究[J].物理学报,2002,51(4):759-762
    [148]杨书申,邵龙义.环境下图像分形维数的计算[J].中国矿业大学学报,2008,35(4):478-482
    [149]S. M.Miller,P.C. McWilliams,L.C. Kerkering. Ambiguities in estimating fractal dimensions of rock fracture surfaces[C].The 13th U.S.Symposim on Rock Mechanics,1990,471-478
    [150]Huang S.L.,Oelfke S.M.,Speck R.C..Application of fractal characterization and modeling to rock joint profiles[J].International Journal of Rock Mechanics and Mining Sciences and Geomechaincs Abstracts,1992,29 (2):89-98
    [151]Lee Y.H.,Barr D.J.,Haas C.J..The fractal dimension as a measure of the roughness of rock discontinuity profile[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechaincs Abstracts,1990,127:453-464
    [152]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997
    [153]张济忠.分形[M].北京:清华大学出版社,1995
    [154]Benoit B.M.,Dann E.P.,Alvin J.P..Fractal character of fracture surfaces of metals[J].Nature,1984,308(19):721
    [155]Pierre Soille,Jean-F.Rivest. On the validity of fractal dimension measureme nts in image analysis[J].Journal of Visual Communication and Image Represen tation,1996,7(3):217-229
    [156]W.E. Leland,M.S. Taqqu,W. Willinger,et al..On the self-similarnature of eth ernet traffic(extended version)[J].Transaction on networking,1994,2(2):1-15
    [157]Li Ming,W.Zjao,W.Jia,et al..Modeling autocorrelation functions of self-similar teletraffic in communication works based on optimal approximation in Hilbert space[J].Applied Mathematical Medelling,2003,27(3):155-168
    [158]Tilmann Geniting,Martin Schlather.Stochastic models that separate fractal dimension and Hurst effect[J].SIAM Review,2004,46(22):269-282
    [159]Tilmann Geiting, Zoltan Sasvari, Martin Schlather. Analogies and correspon dences between variograms and covariance functions[J].Advances in Applied P robability,2001,33(3):617-630
    [160]G.W. Wormell. Wavelet-based representations for the 1/f family of fractal processes[J].Proceedings of the IEEE,1993,81(10):1428-1450
    [161]华顺刚,王丽丹,欧宗瑛.基于多幅不同曝光量照片的场景高动态范围图像合成[J].大连理工大学学报,2007,47(5):678-682
    [162]Vaclav Hlavac. High dynamic range images from multiple exposures[D].Czech Technical University in Prague Faculty of Electrical Engineering,Department of Computer Science and Engineering,2006
    [163]Katrien Jacobs,Celine Loscos,Greg Ward.Automatic High-dynamic range ima ge generation for dynamic scenes[J].Computer Graphics and Applications,2008, 28(2):84-93
    [164]Jie Yuan,Ho Yeung Chan. Power analysis and design of wide dynamic range CMOS imaging sensors[J].Microelectronics Journal,2010,41 (12):585-593
    [165]K. Leppanen,M. Massi,M. Rioja,et al..High dynamic range imaging with the EVN[J].Vistas in Astronomy,1997,41 (2):291-295
    [166]M. Ochs,A. Schulz.H.J. Bauer. High dynamic range infrared thermograph b y pixel wise radiometric self calibration[J].Infrared physics & Technomogy,20 10,53(9):112-119
    [167]B. Anconelli,M. Bertero,P. Boccacci,et al..Iterative methods for the reconstruction of astronomical images with high dynamic range[J].Journal of Computational and Applied Mathematics,2007,198(5):321-331
    [168]Marta de Lasarte,Montserrat Arjona,Meritxell Vilaseca,et al..Luminance adaptation model for invreasing the dynamic range of an imaging system based on a CCD camera[J].Optik,2011,122(14):1367-1372
    [169]Andrey Vavilin,Kaushik Deb,Kang-Hyun Jo. Fast HDR image generation tec hnique based on exposure blending[C].Proceedings of the 23rd international c onference on Industrial engineering and other applications of applied intellige nt systems,2010,Part Ⅲ:379-388
    [170]Laurence Meylan,Sabine Susstrunk.High dynamic rang image rendering with a retinex-based adaptive filter[J].Transactions on imaging processing,2006,15 (9):2820-2830
    [171]Daniel Tamburrino,David Alleysson,Laurence Meylan,et al..Digital camera workflow for high dynamic range images using a model of retinal processing[J].IS&T/SPIE Electronic Imaging:Digital Photography IV,2008,6817
    [172]Zhengyou Zhang.A flexible new technique for camera calibration[R].Transac tions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334
    [173]程丽红,田晓东,谢存.编码孔径成像系统中的点扩散函数[J].应用光学,2005,26(5):13-16
    [174]程万胜,赵杰,蔡鹤皋.CCD像素响应非均匀的校正方法[J].光学精密工程,2008,16(2):314-318
    [175]王煜,吴厚平,李平,等.曝光量国家计量基准技术的改造[J].计量学报,2009,30(6A):66-69
    [176]史坚.衰减全反射测量系统的研究[D].上海:上海交通大学光学,2005
    [177]H. Farid. Blind inverse gamma correction[J]. IEEE Transactions on Image Processing,2011,10(10):1428-1433
    [178]S. Lin, J. Gu, S. Yamazaki,et al..Radiometric calibration from a single image[J]. In Proc. IEEE Comp. Vision and Pattern Recog,2004:938-945
    [179]Ruifeng Xu,Sumanta N.Pattanaik,Charles E.Hughes.High-dynamic-range still-i mage encoding in JPEG 2000[J].Computer Graphics and Applications,2005,25 (6):57-64
    [180]王家亮,顾耀林.基于JPEG2000的高动态范围图像压缩[J].计算机工程与应用,2007,43(26):81-83
    [181]Sung Ho Park,Ethan D. Montag.Evaluating tone mapping algorithms for rendering non-pictorial (scientific) high-dynamic-range images[J]. Journal of Visual Communication and image Representation,2007,18:415-428
    [182]Martin Cadik,Michael Wimmer,Laszlo Neumann,et al..Evaluation of HDR tone mapping methods using essential perceptual attributes[J].Computers & Graphics,2008,32:330-349
    [183]Fredo Durand,Julie Dorsey. Fast bilateral filtering for the display of high-dynamic-range images[J].ACM Transactions on Graphics,2002,21 (3)
    [184]Masahiro Okuda,Nicola Adami.Two-layer coding algorithm for high dynamic range images based on luminance compensation[J]. Journal of Visual Communication and Image Representation,2007,18(5):377-386
    [185]Rafal Mantiuk,Grzegorz Krawczyk,Radoslaw Mantiuk,et al..High dynamic range imaging pipeline:Perception-motivated representation of visual content[J].Human Vision and Electronic Imaging XII,2077,6492
    [186]Laurence Meylan,David Alleysson,Sabine Susstrunk.Model of retinal local a daptation for the tone mapping of color filter array images[J].Optical Society of America,2007,24(9):2807-2816
    [187]Jiang Duan,Marco Bressan,Chris Dance,et al..Tone-mapping high dynamic range images by novel histogram adjustment[J].Pattern Recognition,2010,43:1847-1862
    [188]胡惊.高动态范围图像的色阶重建算法的研究与应用[D].广东:中山大学计算机应用技术专业,2006
    [189]余志俊.高动态范围图像色调影射算法的研究与实现[D].北京;北京交通大学计算机科学与技术,2010
    [190]刘冬梅,赵宇明.高动态范围图像梯度压缩算法[J].计算机工程,2009,35(20):210-215
    [191]邹沿新.Data Matrix二维条码条形码图像预处理及识别技术研究[D].湖南:湖南大学计算机应用技术,2009
    [192]李雅静.Data Matrix二维条码图像识别的算法研究与实现[D].北京:北京交通大学电路与系统,2009
    [193]Lim Kart Leong, Wang Yue.Extraction of 2D barcode using key point selection and line detection[C].Proceedings of the 10th Pacific Rim Conference on Multimedia:Advances in Multimedia Information Processing,2009:826-835

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700