用户名: 密码: 验证码:
单模场与耦合双原子相互作用的量子动力学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用全量子理论,研究了单模场与耦合双原子相互作用的量子动力学性质。首先,本文研究了压缩相干态场与耦合双原子相互作用系统的光子数统计性质,讨论了光场相干振幅分量|α|~2、光场压缩参量γ、原子-场间的耦合系数λ、原子间耦合系数g取常数和随时间变化两种情况下以及Kerr介质常数μ对系统平均光子数<(?)(t)>挠跋臁=峁砻鳎簗α|~2、γ都直接影响了<(?)(t)>莼叩谋浪?复苏周期和Rabi振荡频率。λ的值决定<(?)(t)>难莼媛桑宝私闲∈保?(?)(t)>怀鱿终竦聪窒螅硐治苑⒎洌挥旭詈舷凳洗笫?(?)(t)>懦鱿终竦聪窒蟆T蛹涞鸟詈匣嵯魅踉佑氤〖涞南嗷プ饔茫坏眊取常数时,g值的增大使曲线的均值下移,崩塌-复苏周期性被破坏:当原子间耦合系数取为时间的函数g(t),且g(t)-V·Sin(ω·t),V为常数,ω为耦合系数变化的频率,ω的变化使g(t)对<(?)(t)>难莼叱氏殖鲋芷谛缘牡髦谱饔茫弑坏髦瞥龈髦智咄迹庥雊取常数时对<(?)(t)>莼叩挠跋烀飨圆煌&痰拇嬖谝不嵯魅踉佑氤〖涞南嗷プ饔茫宝淘黾拥揭欢ㄖ凳保琑abi振荡几乎完全消失。
     其次,本文还研究了压缩相干态场与耦合双原子相互作用的光场相位性质,分析了光场的相位概率分布及相位涨落的性质,同时讨论了|α|~2、γ、g以及μ对光场相位性质的影响。结果发现:光场相位概率分布呈现出三峰高斯分布,在零相位附近概率分布最大,且涨落较小,而其它相位范围内概率分布小且易振荡。随着|α|~2的增加,相位概率分布越来越集中,g的增大破坏了相位概率分布的对称性。同时,由于光场压缩效应的影响使相位概率分布呈现出与相干态光场中所不同的现象。光场的相位概率分布对μ的作用非常敏感,μ的单独作用还使得光场相位发生扩散。
     最后,本文研究了在Kerr介质中单模热辐射场与耦合双原子Raman相互作用过程中的光场压缩效应,讨论了μ、g、初始场强度(?)以及原子的初始状态(θ,φ)对光场压缩效应的影响。结果表明:单模热辐射场与耦合双原子相互作用过程中,光场压缩效应对μ十分敏感,μ的加入将破坏光场的非经典性质,并且使系统的非线性性质加强。μ=0时,随着g的增大,最大压缩量不断减小,压缩次数也减少,μ≠0时,随着g的增大呈现出压缩次数增大、减少交替出现的现象;光场的压缩效应随(?)的增大出现了非线性变化:当两原子初始均处于激发态或基态时,μ=0情况下不被压缩,而μ≠0情况下出现了被压缩现象。
In this paper, the quantum dynamics properties of a single-mode field interacting with two coupling atoms are studied by means of the quantum theory. First, the photon statistical properties of the system of squeezed coherent-state field interacting with two coupling atoms are investigated. And the influence of the coherent vibration amplitude | α |2 of the field, squeezed parameter γof the field, coupling coefficient λ of atom and field, the coupling coefficient g between atoms which is constant or changing with time on the mean photon number of the system is also discussed respectively. It has been shown that | α |2 and y influence the collapse-revival periodicity of the evolution curves of (n(t)> and the frequency of the Rabi oscillation directly. The value of λ, decides the evolution rule of (n(t)>,     small. Only if λ is enough big, appears oscillation phenomenon. The coupling between atoms will weaken the interaction of atom-field. When g is constant, the increase of g destroys the collapse-revival periodicity of the curves and the mean value of the curves descends. While the coupling coefficient between atoms changes with time, which is g(f) and g(t) -V. Sin w . t), and V is constant, and CD is the change frequency of the coupling coefficient, the change of a causes that g(t) modulates the evolution curves of (n(t)> periodically. The modulated curves appear many kinds of figures. It is obviously different from the influence of the constant g on the evolution curves of And the Ken-medium μ can weaken the interaction of the atom and the field. When μ increases to a certain value, Rabi oscillation vanishes almost completely.
    Secondly, the phase properties of squeezed coherent-state field interacting with two coupling atoms are studied. Meanwhile, the influence of |α|2,$, g, and μ on the phase properties is also discussed. The results show that the phase probability distribution presents three-peak Gaussian configuration. The maximum of the phase probability distribution lies at the point of the zero phase and the phase fluctuation is small, while at other place, the value of the phase probability distribution is relatively small and vibrates easily. The phase probability distribution centralizes more and more with the increase of | α |2. And the increase of g destroys the symmetry of the phase probability distribution. At the same time, because of the influence of light squeezing effect, the phase probability distribution has different phenomena from that of coherent-state field. The phase probability distribution has a thin skin with μ. The phase diffuses because of the effect of μ.
    
    
    
    
    
    Finally, the squeezing effect of the light produced by the Raman interaction of single-mode thermal radiation field with two coupling atoms is studied. And the influence of μ, g, the intensity n of the initial field and the initial state ( θ,φ) of atoms on the squeezing effect of the light is also discussed. The results show that the light squeezing has a thin skin with μ in the course of the interaction of the single-mode thermal radiation field with the two coupling atoms. μ destroys the non-sutra properties of the field and reinforces the non-linearity properties of the system. When μ = 0, The increase of g cuts down the maximum compression degree and compression times. While μ≠0, compression times increase and decrease by turns with the increase of g. The squeezing effect of the light appears tion-linearity change with the increase of n .When both of the atoms originally locate excitable state or passive state simultaneously, the field can not be squeezed with μ = 0, yet it can be squeezed with
    μ≠0.
引文
[1] E T Jaynes, F W Cummings. Comparision of quantum and semiclassical radiation theories with application to beam maser. Proc. IEEE. 1963, 51(1):89~109
    [2] M Brune, J N Raimend, S Harcoche. Theory of the Rydberg-atom two-photon micromaser. Phys Rev(A), 1987, 35(1): 154~163
    [3] G S Agarwal. Vacuum-field Rabi oscillations of atoms in a cavity. J Opt Soc Am, 1985, B2(3): 480~485
    [4] 郭红,彭金生.双光子T-C模型中双原子算符的压缩及其崩溃与回复效应.量子电子学,1991,8(3):311~315
    [5] N B Narozhny, et al. Coherence versus incoherence: Collapse and revival in a simple quantum model. Phys Rev(A), 1981, 23(1): 236~247
    [6] G J Milburn. Interaction of a two-level atom with squeezed light. Optica Acta, 1984, 31(6): 671~679
    [7] S J D Phoenix, P L Knight. Periodicity, phase, and entropy in modes of two-photon resonance. J Opt Soc Am(B), 1990, 7(1): 116~124
    [8] L Xu, Z F Luo, ZHANG Zhi-min. Validity of the effective Hamiltonian for the degenerate Raman process. J Phys B: Atom Mol Opt Phys(B):1994, 27(6): 1648~1656
    [9] A Vaglica. Jaynes-Cummings model with atomic position distribution. Phys Rev(A), 1995, 52(3): 2319~2326
    [10] X G Wang, C P Sun. Effects of a moving mass center on atomic dynamics in locally inhomogencous cavity field. J Mod Opt, 1995, 42(3): 515~521
    [11] Z Ficek, R Tans, S Kielich. squeezed states in the transient regime of resonance fluorescence. J Opt Soc Am(B), 1974, 1(6): 882~886
    [12] 周鹏,彭金生.双光子Jaynes-Cummings模型中原子的压缩效应.物理学报,1989,38(12):2044~2048
    [13] 董传华.原子偶极矩的高阶压缩.物理学报,1996,45(6):946~951
    [14] 聂义友,郑富年,刘三秋等.混合态二能级原子双光子过程原子的压缩效应.量子电子学报,2002,19(2):38~42
    [15] 彭金生,李高翔.虚光子过程对光场压缩的影响.物理学报,1993,42(4):568~574
    [16] Kuklinski J R, Madajczyk J L. Strong squeezing in the Jaynes-Cummings model. Phys Rev(A), 1988, 37(8): 3175~3178
    [17] Gerry C C. Two-photon Jaynes-Cummings model interacting with the squeezed vacuum. Phys Rev(A), 1988, 37(7): 2683~2686
    [18] 刘三秋,万琳,刘素梅.克尔介质中“耦合双原子-场”模型的光场压缩效应.光学学报,2002,22(8):902~906
    [19] 刘正东.级联型三能级原子受激辐射中的反聚束效应.物理学报,1987,36(12):1645~1651
    [20] 雷敏生,杨千里,刘世炳.类科尔介质中受激辐射场的量子统计性质.光子学报,1996,25(12):1057~1060
    [21] 周鹏,彭金生.多光子Jaynes-Cummings模型的演化.光学学报,1990,10(9):837~844
    [22] 万琳,陶向阳,刘三秋.Kerr介质中“耦合双原子-单模光场”模型的反聚束效应.量子电子学报,
    
    2002, 19(4): 337~342
    [23] X S Li, N Y Bei, A generalized three-level Jaynes-Cummings model. Phys Lett(A), 1984, 101(3): 169~174
    [24] 李孝中,量子统计的级联三能级Jaynes-Cummings模型.物理学报,1985,34(6):833~840
    [25] Lin D L, Li X S. Nonresonant interaction of a three-level atom with cavity fields. Phys Rev(A), 1989, 39(4): 1933~1940
    [26] Lai W K, Buzek V, Knight P L. Dynamics of a three-level atom in a two-mode squeezed vacuum. Phys Rev(A), 1991, 44:6043~6056
    [27] Li Xiao shen, Gong Changde. Coherent properties of the stimulated emission from a three-level atom. Phys Rev(A), 1986, 33(10): 2801~2804
    [28] 朱小芹.耦合系数随时间变化的“V”型三能级J-C模型.光子学报,1998,27(1):18~23
    [29] Li Xiao shen, Bei Nianyu. A generalized three-level Jaynes-Cummings. Phys Lett(A), 1984, 101(1): 169~174
    [30] Li X S, Peng Y N. Quantum properties of the three-level atom interacting with radiation fields. Phys Rev(A), 1985, 32(3): 1501~1514
    [31] V Buzek, I Jex. Dynamics of a two-level atom in a Kerr-like medium. Opt. Commun, 1990, 78(5/6): 425-435
    [32] V Buzek, I Jex. Emission spectra of a two-level atom in a Kerr-like medium [J]. J. Mod Opt., 1991, 38(5): 987-996
    [33] Joshi A, Puri R R. Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium. Phys Rev(A), 1992, 45(7): 5056~5060
    [34] 李高翔,彭金生.高Q Kerr介质腔中非简并双光子Jaynes-Cummings模型中光场的性质.物理学报,1993,42(9):1443~1451
    [35] 赖云忠、梁九卿.Kerr介质中双模SU(1,1)相干态场与V型三能级原子的相互作用.物理学报,1997,46(9):1710-1717
    [36] 李高翔,彭金生,周鹏.被克尔介质包围的∧型三能级.原子的粒子布居几率.光学学报,1993,13(10):902-907
    [37] 赖云忠,杨峻峰,杨型健.高Q Kerr介质腔中双模SU(1,1)相干态场与级联三能级原子相互作用的动力学特性.量子电子学报,1997,14(5):421~427
    [38] 刘堂昆.含类Kerr介质的双光子Jaynes-Cummings模型中光子的反聚束效应.量子电子学报,1997,14(3):197~201
    [39] 何德日.类Kerr媒质中双光子J-C模型场的压缩效应.量子电子学报,1999,16(2):122~201
    [40] 刘三秋,刘金明,陶向阳.Kerr介质中三能级原子与压缩光场相互作用的光子统计分布特性.光子学报,1999,28(3):193~197
    [41] 陶向阳,刘三秋,刘金明,申世华.虚光场对克尔介质中受激原子统计性质的影响.光学学报,2000,20(1):46~50
    [42] 刘三秋,万琳,刘素梅.克尔介质中“耦合双原子-场”模型的光场压缩效应.光学学报,2002.22(8):902-906
    [43] 万琳,陶向阳,刘三秋,聂义友.Kerr介质中“耦合双原子-单模光场”模型的反聚束效应[J].量子电子学报,2002,19(4):337~342
    
    
    [44] 万琳,刘三秋,聂义友.Kerr介质中耦合双原子与单模光场相互作用的光子统计演化[J].量子电子学报,2002,19(5):440~445
    [45] Tavis M, Cummings F W. Exact solution for an N-molecule-radiation-field Hamiltonian. Phys Rev, 1968, 170(2): 379~384
    [46] 罗振飞,徐至展,徐磊.两个双能级原子与辐射场的拉蔓相互作用.物理学报,1992,41(9):1950~1954
    [47] 雷敏生,刘世炳.类克尔介质中受激三能级原子的光子统计演化[J].光子学报,1996,25:774-777
    [48] 刘三秋,刘正东,李佛铨等.两个级联型三能级原子受激辐射的非线性性质.物理学报,1991,40(7):1049-1057
    [49] 陶向阳,刘三秋,刘金明.Kerr介质中耦合双原子与场相互作用的原子占居态儿率的动力学性质.江西师范大学学报,1999,23(1):10~13
    [50] 黄春佳.周明,厉江帆等.双模压缩真空场与耦合双原子相互作用系统中光场的量子特性.物理学报,2000,49(11):2159~2163
    [51] 黄春佳,周明.双模压缩真空场与耦合双相互作用系统中光场的量子特性.物理学报,2000,49(11):2159~2164
    [52] 黄春佳,厉江帆,贺慧勇.压缩真空场与耦合双原子Raman相互作用过程中光场的量子特性.物理学报,2001,50(3):473~477
    [53] 黄春佳,周明,厉江帆等.单模辐射场与耦合双原子相互作用系统中场熵的压缩特性.物理学报,2002,51(4):805~808
    [54] Loudon R. The quantum theory of light. Oxford:Clarendon Press, 1973:140~147
    [55] 张重华,王勤谋.关于光子场相位算符的厄密性.量子电子学,1986,3(3):240~244
    [56] Pegg D T, Barnett S M. Unitary phase operator in quantum mechanics. Europhys. Lett., 1988, 8(6): 483~485
    [57] Pegg D T, Barnett S M. Phase properties of the quantized single-mode electromagnetic field [J]. Phys. Rev. (A), 1989, 39(4): 1665-1675
    [58] Barnett S M, Pegg D T. On the Hermitian optical phase operator [J]. J. Mod. Opt., 1989, 36(1): 7-19
    [59] J A Vaccaro, D T Pegg. Phase properties of squeezed states of light. Opt Commun, 1989, 70(6): 529~534
    [60] R Nath, P Kumer. Phase properties of squeezed number states. J Mod Opt, 1991, 39(8): 1655~1658
    [61] S.N.Dixit, I.M.Thomas, B.W.woods, et. Random phase plates for beam smoothing on the Nova laser. Appl.Opt., 1993, 32 (14): 2543
    [62] 郭弘,郭光灿.光场相位统计性质.物理学报,1993,42(6):918-924
    [63] 谭维翰,刘娟.能量有限系统的相位算符与相位本征态.物理学报,1997,46(12):2348-2358
    [64] Meng H X, Chai C L. Phase properties of coherent light in the Jaynes-Cummings model. Phys Lett(A),1991,155(8,9):500~505
    [65] Peng J S, Li G X. Phase fluctuation of the light in the Jaynes-Cummings model with in and without RWA. Phys Rev(A),1992,45(5): 3289~3293
    [66] Fan A F. Phase properties of a field in the Jaynes-Cummings model for non-resonant behavior. Opt Commun, 1993, 98(4,5,6): 340~348
    
    
    [67] 周鹏.与原子相互作用的量子光场的位相特性.科学通报,1992,37(12):1078~1082
    [68] 李高翔,彭金生.失谐量对双光子J-C模型中光场位相扩散及频率漂移的影响.光学学报,1993,13(2):120~123
    [69] 吴美钧,彭金生.在Jaynes-Cummings模型中压缩真空初态场位相演化特性.光学学报,1995,15(10):1375~1379
    [70] 李博峰,马爱群等.k(k>2)光子Jaynes-Cummings模型中自发辐射场的位相演化特性.光学学报,1998,18(8):1040~1044
    [71] 方卯发,王麓雅.依赖强度耦合的多光子Jaynes-Cummings模型场的位相特性.量子电子学,1993,10(3):255~260
    [72] 田永红,彭金生,韩立波,徐大海.单模真空场与[Ⅰ]型三能级原子相互作用系统中光场的相位特性.量子电子学报,1998,15(5):454~459
    [73] S M Barnett, D T Pegg. Quantum theory of optical phase correlations. Phys Rev(A), 1990, 42(11): 6713~6720
    [74] 路洪,彭金生.双模SU(2)相干态光场的位相特性.量子电子学,1996,13(4):310~315
    [75] Ho Trung,Nguyen Dinh Huyen and A.S.Shumovsky. Phase properties of a coherent field in teracting with two two-level atoms in a cavity. Physical A, 1992, 182: 467
    [76] Peng J S, Li Gao X. Effects of the dipole-dipole interaction on dynamic properties and atomic coherent trapping of a two-atom system. Phys Rev(A), 1993, 47:4212~4218
    [77] 谢芳森,嵇英华,聂义友,雷敏生.附加Kerr介质三能级原子系统中光场的相位特性.量子电子学报,2002,19(2):139~142
    [78] 路洪.压缩光透过克尔介质时光场的相位和压缩特性及其关联.光子学报,1997,26(10):882~886
    [79] 方卯发.附加克尔介质Jaynes-Cummings模型场的位相特性.光学学报,1993,13(4):324~329
    [80] 田永红、徐大海、彭金生.含Kerr介质的A型三能级原子系统中光场的相位性质光子学报,2001,30(8):913~917
    [81] 田永红,彭金生,陶少华,等.Tavis-Cummings模型系统中光场的相位特性.量子电子学报,1999,16(5):406~412
    [82] 郭红,彭金生.与双原子相互作用的双模关联场的相位性质.光学学报,2001,21(5):530~533
    [83] H P Yuen. Two-photon coherent states of the radiation field. Phys Rev(A), 1976, 13(6): 2226~2243
    [84] Slusher R E, Hollberg L W, Yurke et al. Phys. Rev. Lett. 1985, 55: 2409
    [85] 彭金生,李高翔著.近代量子光学导论(科学出版社,北京,1996),第77页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700