用户名: 密码: 验证码:
高抗菌核病野生甘蓝C01抗性机理及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是人类主要的植物油来源之一,也是不可再生能源物质的重要替代品,广泛栽培于欧洲、北美洲及亚洲。菌核病是油菜最严重的病害之一,其流行可导致油菜减产10—70%,含油量下降1%—5%。随着机械化栽培倡导高密度栽培和气候条件的变迁,该病害可能日趋严重。油菜菌核病的病源菌为核盘菌,该真菌对植物的侵染具有广谱性,可对400多种植物产生侵染。目前人们采用多种方法来防治油菜菌核病。轮作法因为核盘菌的寄主广谱性而收效甚微,化学防控的效果也受多种因素的限制,且会增加油菜生产成本、污染环境。防治菌核病最有效、最经济的方法就是选育抗性品种。然而,现在油菜中匮乏抗病性资源,阻碍了油菜菌核病抗性改良育种和相关的基础研究。
     近缘物种抗性资源的发掘与利用是改良油菜菌核病抗性的有效途径。甘蓝与甘蓝型油菜同属十字花科芸薹属物种。与甘蓝型油菜相比,甘蓝有多种栽培型和野生型,遗传多样性丰富,可用于拓宽甘蓝型油菜的遗传基础。重庆市油菜工程技术研究中心从国内外收集了大量的野生甘蓝和栽培甘蓝资源,经菌核病抗性鉴定,发现一份来自Brassica incana野生甘蓝(C01)的菌核病抗性突出,为甘蓝型油菜菌核病抗性改良带来了新的希望。
     本研究以野生甘蓝C01及另一份感病甘蓝C41为主要研究材料,观察了该野生甘蓝对核盘菌菌丝的生长、入侵的影响,测定了核盘菌胁迫下叶片中草酸含量的时空变化,分析了多聚半乳糖醛酸酶抑制蛋白编码基因、类萌发素编码基因及SA/JA信号转导途径中相关基因相对表达量动态变化,并以C01为亲本创造了人工合成甘蓝型油菜,检测了人工合成甘蓝型油菜的菌核病抗性,分析了抗性突出的人工合成甘蓝型油菜RB165在核盘菌胁迫下几个病程蛋白编码基因相对表达的动态变化。现将主要结果阐述如下:
     (1)野生甘蓝C01影响核盘菌菌丝的生长、侵染垫的发育
     通过光学显微镜和扫描电镜观察了C01、C41对核盘菌菌丝形态及侵染垫发育的影响,结果表明,较C41而言,菌丝在C01叶片生长缓慢,侵染垫的发育延缓,接种后期形成的侵染垫疏松,且在叶面的分布密度小。
     (2)野生甘蓝C01草酸本底含量高且受核盘菌胁迫影响较小
     用HPLC测定了核盘菌胁迫下,C01、C41叶片中草酸含量的动态变化,发现C01中的草酸本底值高于C41,其草酸含量随接种时间的延长有所增高,但其变化幅度小于C41的变化幅度。在侵染后期,病斑处的草酸含量较高,但低于病健区草酸含量,在病健区外围,草酸含量更低。
     (3)C01中PGlP基因受核盘菌胁迫诱导表达
     检测核盘菌胁迫下,C01、C41叶片多聚半乳糖醛酸酶抑制蛋白编码基因(PGIP)5个成员相对表达量的动态变化,结果表明PGIP1、PGIP5受核盘菌诱导表达,而PGIP9.PGIPl2表达受核盘菌胁迫抑制,PGIP2在甘蓝(C01、C41)中表达量低,在甘蓝型油菜中油821(ZY821)中受核盘菌胁迫诱导,C01和C41中PGIP基因的表达模式相似,但在C01中的相对表达量较高。
     (4)C01中GLP基因的表达量受核盘菌胁迫诱导表达
     CLP基因受核盘菌的诱导表达,但GLP3在接种早期受到诱导表达,GLP12在接种后期被诱导表达,且两基因在C01中的相对表达量高于C41。
     (5)C01的防御反应受SA、JA途径协作调控
     核盘菌胁迫下,SA、JA信号途径部分标志基因相对表达都不同程度受到诱导表达,SA、JA信号转导途径都被激活,可能两条途径交叉作用,利于甘蓝、甘蓝型油菜抗性产生,但是SA途径较JA途径被较早激活。
     (6)以C01为亲本获得了抗性改良的人工合成甘蓝型油菜
     以C01为亲本,获得了人工合成甘蓝型油菜。通过离体叶片鉴定、离体茎杆鉴定检测了人工合成甘蓝型油菜的菌核病抗性,结果表明,人工合成甘蓝型油菜的抗性强于对照甘蓝型油菜中油821,且甘蓝材料抗性与人工合成甘蓝型油菜抗性中度相关。
     (7)人工合成甘蓝型油菜的抗性与几个病程蛋白编码基因表达水平并无直接关系
     人工合成甘蓝型油菜RB165的菌核病抗性低于其抗病亲本C01,但高于目前广泛栽培的耐菌核病油菜品种ZY821(中油821)和ZS9(中双9号);试材对菌核病的抗性水平与OXO、Cu/Zn SOD、PR2、PR3的表达动态变化没有直接关系。
Oilseed rape, not only one of the main sources of plant edible oil for humankind but also the alternative of the non-renewable energy resource, is widely grown in Europe, North America and Asia. Sclerotinia stem rot, infected by Sclerotinia sclerotiorum, is a devastating threat to oilseed rape production with substantial yield loss and quality decline. The burst of the pathogen decrease the yield by10%-70%and deprive the oil content by1%-5%. S. slcerotiorum is a non-specific plant pathogen, which can infect more than400plant species.As the advocation of cultivation with high plant density and the exacerbation of the climate, the damage of the disease may become more serious. Many approaches have been adopted to control the disease including soil amendment, crop rotation, chemical application and variety breeding. However, the effect of cultural practice is limited because of the persistent nature of sclerotia and the wide host range of this pathogen. And chemical control effect dependes on the match of ascospores release with fungicide application during the grow season. In addition, chemical fungicide possiblly pollutes the environment and increases the cost. Among the measures, variety breeding focusing on high resistance is the most effective and economical choice. Whereas, there is no resistance in current Brassica napus gene pools, which hinders the resistance breeding and the relative basic research.
     Compared with B. napus, B. oleracea possesses various cultivated and wild genotypes, which can be used to widen the genetic basis of B. napus. A line of wild B. oleracea, B. incana (C01) was identified with high resistance against sclerotinia rot at Chongqing Rapeseed Engineering and Technology Research Center, which is tremendously potential to to improve the resistance againt S. sclerotiorum in B. napus.
     Using C01and C41(another B.oleracea, susceptible to S. sclerotiorum) as the main experimental materials, in the present study we observed the different influence of them on the growth and invasion of the hyphae; measured the dynamics change of oxalic acid content; detected the relative expression of the genes encoding PGIPs and GLP, as well as the marker genes involved in SA and JA signal transduction pathway; resynthesized RS line using C01as parent and identified the resistance; analysized relationship between the relative expression of PR genes and the resistance in RB165, a newly resynthsized B. napus with high resistance. The results are shown as following,
     1) C01affected the growth and infection cushions of S. sclerotiorum
     The morphological character of the hyphae and the formation of the infection cushions on the infected leaves of C01, C41was observed with light microscope and scanning electronic microscope. Compared with C41, C01inhibited the growth and delayed the formation of infection cushions. In addition, the infection cushions on C01leaves were fluffy and scattered on the infected leaves.
     2) Immanent content of oxalic acid in C01is higher and the increment is lessly influenced by S. sclerotiorum infection
     The content of oxalic acid in the leaves of C01and C41infected by S. slcerotiorum was measured with HPLC. The result showed that C01possessed higher oxalaic acid inherently. After the inoculation with S. sclerotiorum, the content of oxalic acid increased but the increase was lower than that in C41. The content of oxalic acid in the lesion is lower than that in the interface part between the lesion and the healthy tissues, but higher than that of the outside of the interface part.
     3) Expression of several members of PGIPs were induced by S. slcerotiorum
     The relative expression of five members of PGIPs was detected in the leaves of C01and C41challenged by S. sclerotiorum. It indicated that PGIP1and PGIP5were induced by the pathogen. On the contrast, PGIP9and PGIP12were inhibited. The expression of PGIP2was induced in B. napus but inhibited in B. oleracea. The expression pattern of PGIP in C01and C41was similar, but the expression level in C01was higher than that in C41.
     4) Expression of GLPs was induced by S. sclerotiorum
     Two members of GLPs, namely GLP3and GLP12, were induced by S. sclerotiorum, but the pattern was different among the members. GLP3was induced in the early inoculation stage and the induced effect in GLP12emerged in the later stage. As far as the expression level was concerned, it was higher in CO1than that in C41.
     5) Defense response in C01was regulated by the coolaboration of SA and JA signal transduction
     Partial marker genes involved in SA and JA signal transduction were induced by S. slcerotiorum to some extent. It is implied that the crosstalk between the ways regulated the response, but the induction related to SA was earlier than JA.
     6) Improvement of resistance against S. sclerotiorum in resynthesized B. napus using C01as resistance donor
     Resynthesized B. napus were obtained using C01as parent hybred with other Brassicas. The resistance in the resynthesized B. napus was identified through detched leaves and stems. The results showed that the resistance in resynthesized B napus was better than that of ZY821and the correlation of the resistance between resynthesized B. napus and the corresponding donor was moderate. RB165is one of the resynthesized B. napus with high resistance. It was more resistant to S. sclerotiorum than natural rapeseed, such ZY821and ZS9(Zhongshuang9). However, the resistance of RB165is not consistent to the expression of some PR genes, i.e., OXO, Cu/Zn SOD, PR2and PR3.
引文
Agueero, C.B., Uratsu, S.L., Greve, C., Powell, A.L.T., Labavitch, J.M., Meredith, C.P., Dandekar, A.M.,2005. Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Molecular Plant Pathology 6,43-51.
    Allender, C.J., King, G.J.,2010. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC plant biology 10,54-62.
    Barbetti, M.J., Li, C.X., Garg, H., Banga, S.K., Banga, S.S., Sandhu, P.S., Singh, R., Singh, D., Liu, S.Y., Gurung, A.M., Salisbury, P.A.,2011. Host resistance in oilseed Brassicas against Sclerotinia-renewed hope for managing a recalcitrant pathogen.13th International Rapeseed Congress, Prague, Czech, pp.173-175.
    Bateman, D., Beer, S.,1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55,204.
    Berna, A., Bernier, F.,1999. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant molecular biology 39,539-549.
    Boland, G., Hall, R.,1994. Index of plant hosts of Sclerotinia scle-otiorum. Canadian Journal of Plant Pathology 16,93-108.
    Bolton, M.D., Thomma, B.P.H.J., Nelson, B.D.,2005. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7,1-16.
    Bradley, C.A., Lamey, H.A.,2005. Canola disease situation in North Dakota, USA,1993-2004. Proc.14th Aust. Res. Assembly on Brassicas, Port Lincoln, Australia,33-34.
    Browse, J.,2009. Jasmonate passes muster:a receptor and targets for the defense hormone. Annual Review of Plant Biology 60,183-205.
    Buchwaldt, L., Lydiate, F., Yu, F., Fu, F., Hegedus, D.D., Rimmer, R.,2011. QTLs contributing to sclerotinia stem rot resistance in Brassica napus Zhongyou 821.13th Internationa Rapeseed Congress, Prague, Czech, pp.797-780.
    Caliskan, M.,2000. The metabolism of oxalic acid. Turk Journal of Zoology 24,103-106.
    Cao, T., Srivastava, S., Rahman, M.H., Kav, N.N.V., Hotte, N., Deyholos, M.K., Strelkov, S.E., 2008. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Science 174,97-115.
    Castresana, C., de Carvalho, F., Gheysen, G, Habets, M., Inze, D., Van Montagu, M.,1990. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1, 3-glucanase gene. The Plant Cell Online 2,1131-1143.
    Cessna, S.G, Sears, V.E., Dickman, M.B., Low, P.S.,2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Science Signalling 12, 2191.
    Collins, R.M., Afzal, M., Ward, D.A., Prescott, M.C., Sait, S.M., Rees, H.H., Tomsett, A.B.,2010. Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PloS one 5, e10103.
    Collmer, A., Keen, N.T.,1986. The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology 24,383-409.
    Cotton, P., Kasza, Z., Bruel, C., Rascle, C., Fevre, M.,2006. Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum. FEMS microbiology letters 227,163-169.
    D'Ovidio, R., Raiola, A., Capodicasa, C., Devoto, A., Pontiggia, D., Roberti, S., Galletti, R., Conti, E., O'Sullivan, D., De Lorenzo, G,2004. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant physiology 135,2424-2435.
    D'ovidio, R., Roberti, S., Di Giovanni, M., Capodicasa, C., Melaragni, M., Sella, L., Tosi, P., Favaron, F.,2006. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta 224,633-645.
    da Silva, L.F., Dias, C.V., Cidade, L.C., Mendes, J.S., Pirovani, C.P., Alvim, F.C., Pereira, G.A.G, Aragao, F.J.L., Cascardo, J.C.M., Costa, M.G.C.,2011. Expression of an Oxalate Decarboxylase Impairs the Necrotic Effect Induced by Nepl-like Protein (NLP) of Moniliophthora perniciosa in Transgenic Tobacco. Molecular Plant-Microbe Interactions 24,839-848.
    Del Rio, L., Bradley, C., Henson, R., Endres, G., Hanson, B., McKay, K., Halvorson, M., Porter, P., Le Gare, D., Lamey, H.,2007. Impact of Sclerotinia stem rot on yield of canola. Plant Disease 91, 191-194.
    Diederichsen, M., Frauen, M., Linders, E.G.A., Hatakeyama, K., Hirai, M.,2009. Status and perspectives of clubroot resistance breeding in Crv:cifer crops. Journal of Plant Growth Regulation 28,265-281.
    Donaldson, P.A., Anderson, T., Lane, B.G., Davidson, A.L., Simmonds, D.H.,2001. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat germin gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiological and Molecular Plant Pathology 59,297-307.
    Dong, X., Ji, R., Guo, X., Foster, S.J., Chen, H., Dong, C., Liu, Y., Hu, Q., Liu, S.,2008. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228,331-340.
    Dunker, S., Tiedemann, A.,2004. Disease/yield loss analysis for Sclerotinia stem rot in winter oilseed rape. IOBC wrps Bulletin 27,59-65.
    Durman, S.B., Menendez, A.B., Godeas, A.M.,2005. Variation in oxalic acid production and mycelial compatibility within field populations of Sclerotinia sclerotiorum. Soil Biology and Biochemistry 37,2180-2184.
    Dutton, M.V., Evans, C.S.,1996. Oxalate production by fungi:its role in pathogenicity and ecology in the soil environment. CanadianJournal of Microbiology 42,881-895.
    Elke, D., Martin, F., Enrico, G.A.L., Katsunori, H., Hirai, M.,2009. Status and Perspectives of Clubroot Resistance Breeding in Crucifer Crops. Journal of Plant Growth Regulation,28:265-281. Errakhi, R., Meimoun, P., Lehner, A., Vidal, G., Briand, J., Corbineau, F., Rona, J.P., Bouteau, F., 2008. Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. Journal of Experimental Botany 59,3121-3129.
    Eva, P., Jana, P.,2011. The infestation of winter rapeseed by Sclerotinia sclerotiorum and Phoma lingam in years 2006-2010 in chosen districts of Czech Republic.13th Internationa Rapeseed Congress, Prague, Czech, pp.1301-1304.
    Falak, I., McNabb, W., Hacault, K., Patel, J.,2011a. Field performance of Brassica napus L. spring canola hybrids with improved resistance to Sclerotinia stem rot.13th International Rapeseed Congress, Prague, Czech, pp.622-626.
    Falak, I., Primomo, V., Tulsieram, L.,2011b. Mapping of QTLs associated with Sclerotinia Stem Rot resistance in Spring Canola Brassica napus.13th Internationa Rapeseed Congress, Prague, Czech, pp.772-774.
    Favaron, F., Sella, L., D'Ovidio, R.,2004. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Molecular Plant-Microbe Interactions 17,1402-1409.
    Ferrari, S., Galletti, R., Vairo, D., Cervone, F., De Lorenzo, G.,2006. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Molecular Plant-Microbe Interactions 19,931-936.
    Ferrari, S., Vairo, D., Ausubel, F.M., Cervone, F., De Lorenzo, G.,2003. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. The Plant Cell Online 15, 93-106.
    Fraissinet-Tachet, L., Fevre, M.,1996. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Current Microbiology 33,49-53.
    Fu, X., Wen, M., Wang, F., Tang, Q., Tian, Q., Luo, K.,2013. Overexpression of an nsLTPs-like antimicrobial protein gene from motherwort(Leonurus japonicus) enhances resistance to Sclerotinia sclerotiorum in oilseed rape(Brassica napus). Physiological and Molecular Plant Pathology.
    Garg, H., Atri, C., Sandhu, P.S., Kaur, B., Renton, M., Banga, S.K., Singh, H., Singh, C., Barbetti, M.J., Banga, S.S.,2010a. High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea Field Crops Research 117,51-58.
    Garg, H., Li, H., Sivasithamparam, K., Kuo, J., Barbetti, M.J.,2010b. The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus. Annals of Botany 106,897-908.
    Garg, H., Sivasithamparam, K., Banga, S., Barbetti, M.,2008. Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australas Plant Path 37,106-111.
    Glauser, G, Dubugnon, L., Mousavi, S.A.R., Rudaz, S., Wolfender, J.L., Farmer, E.E.,2009. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. Journal of Biological Chemistry 284,34506.
    Glazebrook, J.,2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annuals Reviews of Phytopathology.43,205-227.
    Godfrey, D., Able, A.J., Dry, I.B.,2007. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection:a possible role in defense? Molecular Plant-Microbe Interactions 20,1112-1125.
    Godoy, G., Steadman, J., Dickman, M., Dam, R.,1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology 37,179-191.
    Guimaraes, R.L., Stotz, H.U.,2004. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology 136,3703-3711.
    Gundlach, H., Miiller, M.J., Kutchan, T.M., Zenk, M.H.,1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences 89,2389.
    Guo, X., Stotz, H.U.,2007. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Molecular Plant-Microbe Interactions 20, 1384-1395.
    Guo, X.L., Dong, C., Hu, X., Liu, Y., Liu, S.,2004. Transformation of oilseed rape with a novel gene from a bacterial strain to improve resistance to Sclerotinia sclerotiorum. IV International Symposium on Brassicas and XIV Crucifer Genetics Workshop 706, pp.265-268.
    Gygi, S.P., Rochon, Y., Franza, B.R., Aebersold, R.,1999. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology 19,1720-1730.
    Huckelhoven, R., Dechert, C., Trujillo, M., Kogel, K.H.,2001. Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Molecular Biology 47,739-748.
    Hegedus, D.D., Li, R., Buchwaldt, L., Parkin, I., Whitwill, S., Coutu, C., Bekkaoui, D., Roger Rimmer, S.,2008. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta 228,241-253.
    Hu, X., Bidney, D.L., Yalpani, N., Duvick, J.P., Crasta, O., Folkerts, O., Lu, G,2003. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology 133,170-181.
    Ikotun, T.,1984. Production of oxalic acid by Penicillium oxalicum in culture and in infected yam tissue and interaction with macerating enzyme. Mycopathologia 88,9-14.
    James, J.T., Dubery, I.A.,2001. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry 57,149-156.
    Juge, N.,2006. Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science 11, 359-367.
    Kesarwani M, A.M., Natarajan K, Mehta A, Datta A,2000. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. Journal of Biological Chemistry,8.
    Kim, K.S., Min, J.Y., Dickman, M.B.,2008. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions 21,605-612.
    Kinkema, M., Fan, W., Dong, X.,2000. Nuclear localization of NPR1 is required for activation of PR gene expression. The Plant Cell Online 12,2339-2350.
    Kliebenstein, D.J., Dietrich, R.A., Martin, A.C., Last, R.L., Dangl, J.L.,1999. LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 12,1022-1026.
    Knecht, K., Seyffarth, M., Desel, C., Thurau, T., Sherameti, I., Lou, B., Oelmuller, R., Cai, D.,2010. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Molecular Plant-Microbe Interactions 23, 446-457.
    Koch, S., Dunker, S., Kleinhenz, B., Rohrig, M., von Tiedemann, A.,2007. Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology 97,1186-1194.
    Kuzniak, E., Sklodowska, M.,2005. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222,192-200.
    Lamey, A., Knodel, J., Endres, G.,2001. Canola disease survey in Minnesota and North Dakota. Extension Report 71.
    Lamey, H.,2003. The status of Sclerotinia sclerotiorum on canola in North America. Proc.2003 Sclerotinia Initiative Annual Meeting, Bloomington, MN.
    Lee, H.I., Leon, J., Raskin, I.,1995. Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences 92,4076.
    Li, C.X., Li, H., Sivasithamparam, K., Fu, T.D., Li, Y.C., Liu, S.Y., Barbetti, M.J.,2006a. Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasmand its relationwith stem diameter. Australian Journal of Agricultural Research 57,1131-1135.
    Li, C.X., Liu, S., Sivasithamparam, K., Barbetti, M.J.,2009. New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm screened under Western Australian conditions. Australas Plant Pathology 38,149-152.
    Li, J., Brader, G, Palva, E.T.,2004. The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Science's STKE 16,319.
    Li, M., Chen, X., Meng, J.,2006b. Intersubgenomic Heterosis in Rapeseed Production With a Partial New-Typed Brassica napus Containing Subgenome Ar from B.rapa and Cc from Brassica carinata. Crop Science,46:234-242.
    Liu, H., Guo, X., Naeem, M.S., Liu, D., Xu, L., Zhang, W., Tang, G, Zhou, W.,2011. Transgenic Brassica napus L. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell, Tissue and Organ Culture 106,143-151.
    Liu, S., Wang, H., Zhang, J., Fitt, B., Xu, Z., Evans, N., Liu, Y., Yang, W., Guo, X.,2005. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Reports 24,133-144.
    Livak, K.J., Schmittgen, T.D.,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method. Methods 25,402-408.
    Livingstone, D.M., Hampton, J.L., Phipps, P.M., Grabau, E.A.,2005. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiology 137, 1354-1362.
    Lumsden, R.,1976. Pectolytic enzymes of Sclerotinia sclerotiorum and their localization in infected bean. Canadian Journal of Botany 54,2630-2641.
    Lumsden, R.,1979. Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology 69,890-895.
    MA, L.-1., Huo, R., GAO, X.-w., HE, D., SHAO, M., WANG, Q.,2008. Transgenic rape with hrf2 gene encoding harpin subxoocsub resistant to Sclerotinia sclerotinorium. Agricultural Sciences in China 7,455-461.
    Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., Okada, Y.,2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proceedings of the National Academy of Sciences 97,9487-9492.
    Magro, P., Marciano, P., Di Lenna, P.,1984. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS microbiology letters 24,9-12.
    Manosalva, P.M., Davidson, R.M., Liu, B., Zhu, X., Hulbert, S.H., Leung, H., Leach, J.E.,2009. A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiology 149,286-296.
    Marciano, P., Di Lenna, P., Magro, P.,1983. Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiological Plant Pathology 22,339-345.
    Maxwell, D., Lumsden, R.,1970. Oxalic acid production by Sclerotinia sclerotiorum in infected Bean and in culture. Phytopathology 60,1395-1398.
    Mei, J., Li, Q., Qian, L., Fu, Y., Li, J., Frauen, M., Qian, W.,2010. Genetic investigation of the origination of allopolyploid with virtually synthesized lines:Application to the C subgenome of Brassica napus. Heredity 106,955-961.
    Mei, J., Qian, L., Disi, J.O., Yang, X., Li, Q., Li, J., Frauen, M., Cai, D., Qian, W.,2011. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica crops with emphasis on B. oleracea. Euphytica 177,393-400.
    Mei, J., Wei, D., Disi, J.O., Ding, Y., Liu, Y., Qian, W.,2012. Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. European Journal of Plant Pathology,1-6.
    Mullins, E., Quinlan, C., Jones, P.,1999. Isolation of mutants exhibiting altered resistance to Sclerotinia sclerotiorum from small M2 populations of an oilseed rape (Brassica napus) variety. European Journal of Plant Pathology 105,465-475.
    Nawrath, C., Metraux, J.P.,1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. The Plant Cell Online 11,1393-1404.
    Nishi S, K.J., Toda M.,1959. In the breeding of interspecific hibrids betwwen two genomes "c" and "a" of Brassica through the application of embryo culture techniques. Japanese Journal of Breeding,5:215-222.
    Noyes, R., Hancock, J.,1981. Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiological Plant Pathology 18,123-132.
    Paranidharan, V., Palaniswami, A., Vidhyasekaran, P., Velazhahan, R.,2003. Induction of enzymatic scavengers of active oxygen species in rice in response to infection by Rhizoctonia solani. Acta Physiologiae Plantarum 25,91-96.
    Park, C.J., An, J.M., Shin, Y.C., Kim, K.J., Lee, B.J., Paek, K.H.,2004. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta 219,797-806.
    Pedras, M.S.C., Ahiahonu, P.W., Hossain, M.,2004. Detoxification of the cruciferous phytoalexin brassinin in Sclerotinia sclerotiorum requires an inducible glucosyltransferase. Phytochemistry 65, 2685-2694.
    Petraitiene, E., Brazauskiene, I.,2011. Complex of major fungal diseases in winter and spring oilseed rape in Lithuanian.13th International Rapeseed Congress, pp.1128-1132.
    Philip, S., Joseph, A., Kumar, A., Jacob, C., Kothandaraman, R.,2001. Detection of (3-1, 3-glucanase isoforms against Corynespora leaf disease of rubber(Hevea brasiliensis). Indian Journal of Natural Rubber Research 14,1-6.
    Pieterse, C.M.J., Leon-Reyes, A., Van der Ent, S., Van Wees, S.C.M.,2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5,308-316.
    Pope, S., Varney, P., Sweet, J.,1989. Susceptibility of cultivars of oilseed rape to Sclerotinia sclerotiorum and the effect of infection on yield. Aspects of applied biology 23,451-456.
    Powell, A.L.T., van Kan, J., ten Have, A., Visser, J., Greve, L.C., Bennett, A.B., Labavitch, J.M., 2000. Transgenic expression of pear PGIP in tomato limits fungal colonization. Molecular Plant-Microbe Interactions 13,942-950.
    Punja, Z., Huang, J.S., Jenkins, S.,1985. Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence in Sclerotium rolfsii. Canadian Journal of Plant Pathology 7,109-117.
    Punja, Z., Jenkins, S.,1984. Light and scanning electron microscopic observations of calcium oxalate crystals produced during growth of Sclerotium rolfsii in culture and in infected tissue. Canadian Journal of Botany 62,2028-2032.
    Qian, W., Chen, X., Fu, D., Zou, J., Meng, J.,2005. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theoretical and Applied Genetics 110,1187-1194.
    Quazi, M.H.,1988. Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theoretical and Applied Genetics 75,309-318.
    Rao, D., Tewari, J.,1989. Occurrence of magnesium oxalate crystals on lesions incited by Mycena citricolor on coffee. Phytopathology 79,783-787.
    Ren, J., Dickson, M., Earle, E.,2000a. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theoretical and Applied Genetics 100,810-819.
    Ren, J.P., Dickson, M.H., Earle, E.D.,2000b. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theoretical and Applied Genetics 100,810-819.
    Rietz, S., Bernsdorff, F.E.M., Cai, D.,2012. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Journal of Experimental Botany 63,5507-5519.
    Rimmer, S., Kutcher, H., Morrall, R., Bailey, K., Gossen, B., Gugel, R.,2003. Diseases of canola and mustard. Diseases of field crops in Canada. Edited by KL Bailey, BD Gossen, RK Gugel, and RAA Morrall. Canadian Phytopathol. Soc, Saskatoon, SK,129-146.
    Riou, C., Fraissinet-Tachet, L., Freyssinet, G., Fevre, M.,1992. Secretion of pectic isoenzymes by Sclerotinia sclerotiorum. FEMS Microbiology Letters 91,231-237.
    Riou, C., Freyssinet, G., Fevre, M.,1991. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Applied and Environmental Microbiology 57, 1478-1484.
    Ripley, V., Beversdorf, W.,2003. Development of self-incompatible Brassica napus:(Ⅰ) introgression of S-alleles from Brassica oleracea through interspecific hybridization. Plant Breeding 122,1-5.
    Rollins, J.A.,2003. The Sclerotinia sclerotiorum pacl gene is required for sclerotial development and virulence. Molecular Plant-Microbe Interactions 16,785-795.
    SASInstitute,1992. SAS technical report. SAS statistics software:changes and enhancements. Release 6.07.
    Sato, M.,1980. Inhibition by oxalates of spinach chloroplast phenolase in unfrozen and frozen states. Phytochemistry 19,1613-1617.
    Scelonge, C., Wang, L., Bidney, D., Lu, G., Hastings, C., Cole, G., Mancl, M., D'Hautefeuille, J., Sosa-Dominguez, G., Coughlan, S.,2000. Transgenic Sclerotinia resistance in sunflower (Helianthus annuus L.). The Proceedings of 15th International Sunflower Conference. Toulouse, France.
    Senthilkumar, R., Cheng, C.P., Yeh, K.W.,2010. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnology Journal 8,65-75.
    Siebolid, M., Tiedemann, A.,2011. Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology 2011, online. doi:10.1016/j.funeco.2011.1004.1003.
    Tamura, M., Gao, M., Tao, R., Labavitch, J., Dandekar, A.,2004. Transformation of persimmon with a pear fruit polygalacturonase inhibiting protein (PGIP) gene. Scientia horticulturae 103, 19-30.
    Tariq, V., Jeffries, P.,1986. Ultrastructure of penetration of Phaseolus spp. by Sclerotinia sclerotiorum. Canadian Journal of Botany 64,2909-2915.
    Thompson, C., Dunwell, J., Johnstone, C., Lay, V., Ray, J., Schmitt, M., Watson, H., Nisbet, G, 1995. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica 85,169-172.
    Tu, J.,1985. Tolerance of white bean (Phaseolus vulgaris) to white mold (Sclerotinia sclerotiorum) associated with tolerance to oxalic acid. Physiological Plant Pathology 26,111-117.
    Tu, J.,1989. Oxalic acid induced cytological alterations differ in beans tolerant or susceptible to white mould. New Phytologist 112,519-525.
    U, N.,1935. Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar bode of fertilization. Japanese Journal Botany 7,389-452.
    Van der Ent, S., Van Wees, S., Pieterse, C.M.J.,2009. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70,1581-1588.
    Verberne, M.C., Verpoorte, R., Bol, J.F., Mercado-Blanco, J., Linthorst, H.J.M.,2000. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology 18,779-783.
    Verma, S.S., Yajima, W.R., Rahman, M.H., Shah, S., Liu, J.-J., Ekramoddoullah, A.K., Kav, N.N., 2012. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMPl) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Molecular Biology,1-14.
    Walz, A., Zingen-Sell, I., Theisen, S., Kortekamp, A.,2008a. Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum. European Journal of Plant Pathology 120,317-330.
    Walz, A., Zingen-Sell, I., Loeffler, M., Sauer, M.,2008b. Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathology 57,453-458.
    Wang, H., Liu, G., Zheng, Y., Wang, X., Yang, Q.,2004a. Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Chinese Academy of Agricultural Sciences 37(1),23-28.
    Wang, H., Liu, G., ZHENG, Y., WANG, X., Yang, Q.,2004b. Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Scientia Agricultura Sinica 1,003.
    Wang, Y, Fristensky, B.,2001. Transgenic canola lines expressing pea defense gene DRR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Molecular Breeding 8, 263-271.
    Wang, Z., Tan, X., Zhang, Z., Gu, S., Li, G., Shi, H.,2011. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Science 184,75-82.
    Wei, W., Li, Y., Wang, L., Liu, S., Yan, X., Mei, D., Li, Y, Xu, Y., Peng, P., Hu, Q.,2010. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theoretical and Applied Genetics 120,1089-1097.
    Wildermuth, M.C., Dewdney, J., Wu, G, Ausubel, F.M.,2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414,562-565.
    Williams, B., Kabbage, M., Kim, H.J., Britt, R., Dickman, M.B.,2011. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathogens 7, e1002107.
    Wojtaszek, P.,1997. Mechanisms for the generation of reactive oxygen species in plant defence response. Acta Physiologiae Plantarum 19,581-589.
    Xu, M.J., Dong, J.F., Zhu, M.Y.,2005. Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiology 139,991-998.
    Yajima, W., Kav, N.N.V.,2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6,5995-6007.
    Yajima, W, Verma, S.S., Shah, S., Rahman, M.H., Liang, Y, Kav, N.N.,2010. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stern rot. New Biotechnology 27,816-821.
    Yin, X.R., Yi, B., Chen, W., Zhang, W.J., Tu, J.X., Fernando, W.G.D., Fu, T.D.,2010. Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173,25-35.
    Yu, B., Liu, P., Hong, D., He, Q., Yang, G.,2010. Improvement of Sclerotinia resistance of a Polima CMS restorer line of rapeseed via phenotypic selection, marker-assisted background selection and microspore culture. Plant Breeding 129,39-44.
    Zhang, J., Qi, C., Pu, H., Chen, S., Chen, F.,2011. Genetic map construction and Sclerotinia resistance QTLs identification in rapeseed (Brassica napus L.).13th Internationa Rapeseed Congress, Prague, Czech, pp.673-676.
    Zhang, J.F., Yuan, Y.L., Niu, C., Hinchliffe, D.J., Lu, Y.Z., Yu, S.X., Percy, R.G., Ulloa, M., Cantrell, R.G.,2007. AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Science 47,180-187.
    Zhao, J., Meng, J.,2003. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L). Theoretical and Applied Genetics 106,759-764.
    Zhao, J., Peltier, A., Meng, J., Osborn, T., Grau, C.,2004. Evaluation of Sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Disease 88,1033-1039.
    Zhao, J.W., Udall, J.A., Quijada, P.A., Grau, C.R., Meng, J.L., Osborn, T.C.,2006. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theoretical and Applied Genetics 112,509-516.
    Zou, Q.J., Liu, S.Y., Dong, X.Y., Bi, Y.H., Cao, Y.C., Xu, Q., Zhao, YD., Chen, H.,2007. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape. Phytochemical Analysis 18,341-346.
    陈碧云,伍晓明,陆光远,高桂珍,许鲲,2008.欧洲野生甘蓝资源的菌核病抗性鉴定与评价.中国油料作物学报30,393-396.
    戴芳澜,1979.中国真菌总汇.科学出版社.
    傅廷栋,2008.油菜杂种优势研究利用的现状与思考.中国油料作物学报(增刊)30,1-5.
    郭学兰,江木兰,胡小加,2003.油菜菌核病分子诊断的初步研究.中国油料作物学报25,64-66.
    何昆燕,2003. DH (Doubled Hapliod)群体对甘蓝型油菜菌核病抗性基因的QTL定位和分析.华中农业大学,武汉.
    李爱民,张永泰,蒋金金,刘胜毅,王幼平,2009.白芥和甘蓝型油菜属间杂种后代菌核病抗性鉴定.中国油料作物学报31,249-252.
    李玉芳,官春云,2005.油菜菌核病菌侵染的组织病理学,致病及抗病机制的研究.作物研究5,327-331.
    李云峰,2008.水稻小穗不确定性基因LHS1-3和雄蕊雌蕊化基因PS的图位克隆与功能分析.西南大学.
    刘澄清,黄有菊,1990.中双二号双低高产多抗(耐)甘蓝型油菜新品种选育.中国油料4,59-63.
    刘春林,官春云,李枸,阮颖,廖晓兰,熊兴华,周小云,王国槐,陈社员,2000.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报27,918-924.
    刘胜毅,潘家荣,1998.油菜对毒素草酸的吸收代谢与抗性机理.植物病理学报28,33-37.
    刘文静,潘葳,2011.采用反相高效液相色谱法同时测定杨梅果实中的有机酸.热带作物学报32,172-175.
    刘世尧,2012.不同产区皱皮木瓜有机酸组成及主要活性成分分离纯化研究.西南大学.
    毛玮,侯英敏,刘志文,2011.核盘菌和草酸诱导下的油菜几种酶活力的变化分析.大连工业大学学报30,39-42.
    梅家琴,2011.甘蓝与甘蓝型油菜C亚基因组遗传关系调查及甘蓝抗菌核病QTL定位.西南大学.
    齐绍武,官春云,刘春林,2004.甘蓝型油菜品系一些酶的活性与抗菌核病的关系.作物学报30,270-273.
    宋志荣,官春云,2008.甘蓝型油菜硫苷特性与对菌核病抗性关系.湖南农业大学学报:自然科学版34,462--465.
    王汉中,2007.我国油菜产需形势分析及产业发展对策.中国油料作物学报29,101-105.
    王汉中,刘贵华,王新发,郑元本,杨庆,2008.高含油量油菜新品种中双11号选育简报.中国油料学报30,275-276.
    吴纯仁,刘后利,1991a.油菜菌核病的致病机制:Ⅲ.罹病组织内草酸毒素积累和分布的初步分析.植物病理学报21,135-140.
    吴纯仁,刘后利,1991b.油菜菌核病致病机理的研究:Ⅶ.抗(耐)病性.中国油料,27-29.
    杨鸯鸯,李云,丁勇,徐春雷,张成桂,刘英,甘莉,2009.甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达.作物学报35,71-78.
    俞乐,彭新湘,杨崇,刘拥海,范燕萍,2002.反相高效液相色谱法测定植物组织及根分泌物中草酸.分析化学30,1119-1112.
    张晓伟,高睦枪,原玉香,耿建峰,文雁成,张书芬,栗根义,2001.人工合成甘蓝型油菜研究.河南农业科学2:7-10.
    张志元,张翼,罗永兰,官春云,2007.油菜抗菌核病的部分生理生化机制.中国油料作物学报29,189-194.
    赵小虎,陈翠莲,焦春香,甘莉,鲁剑巍,2006.不同油菜品种对油菜菌核病敏感性差异的生理生化特性研究.华中农业大学学报25,488-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700