用户名: 密码: 验证码:
超高分子量聚乙烯的抗氧化处理及其生物摩擦学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE)具有良好的生物相容性、化学稳定性、抗冲击性、耐磨性及耐腐蚀性,是较为理想的医用高分子材料。然而,在长期的应用过程中,氧化、磨损以及磨屑积聚,易引起骨质溶解,发生无菌松动,从而加重了患者的痛苦,降低了人工关节的使用寿命。本文选用医药级UHMWPE粉末和天然维生素E为原料,采用模压成型法制备出UHMWPE/VE复合材料,并对其进行γ-射线辐照交联处理,最终得到抗氧化、耐磨损辐照交联UHMWPE/VE新型人工关节材料。
     常规气氛模压成型会在UHMWPE内部残留有气孔缺陷,从而降低了其力学性能和生物摩擦学性能;低真空环境下模压成型能有效地消除UHMWPE内的气孔缺陷,从而增加了其力学性能,提高了其生物摩擦学性能。
     辐照交联提高了UHMWPE的综合力学性能和抗磨粒磨损性能,但交联度的增加会降低其塑性;VE掺杂能有效地降低UHMWPE在辐照交联过程中的氧化程度,提高其疲劳性能,但过高浓度的VE掺杂会显著降低辐照交联UHMWPE的交联度,从而降低其力学性能和生物摩擦学性能。
     UHMWPE在辐照过程中会产生大量的残留自由基,这些残留自由基会与氧发生反应,从而导致UHMWPE氧化降解。加速老化后,辐照交联UHMWPE的力学性能和生物摩擦学性能显著降低;由于VE掺杂能显著提高辐照交联UHMWPE的抗氧化稳定性,加速老化前后,其力学性能和生物摩擦学性能变化并不明显。
     模压成型UHMWPE试样的表面晶体结构平行于表面排列。辐照交联增加了UHMWPE的结晶度,提高了其晶体结构致密度。加速老化后,辐照交联UHMWPE样品表面出现了大量的晶体结构断裂现象,而辐照交联UHMWPE/VE样品表面的晶体结构并未发生明显变化。
     表面是受外界环境因素作用最直接的部位,也是直接与空气中氧发生接触的部分。加速老化后,UHMWPE试样的表面硬度和表面弹性模量都有所增加,而其本体硬度和本体弹性模量都有所降低。
     辐射交联增加了UHMWPE的抗蠕变性能,降低了其对载荷变化的响应灵敏度。加速老化后,辐射交联UHMWPE的抗蠕变性能有所降低;而辐照交联UHMWPE/VE的抗蠕变性能降低并不明显。
     辐照交联提高了UHMWPE的表面自由能,增强了样品的润湿性;少量的VE掺杂并没有改变辐照交联UHMWPE的表面自由能和润湿性。UHMWPE的吸水率非常低,辐照交联和VE掺杂都会进一步降低其吸水率。在模拟体液中浸泡6个月后,辐照交联UHMWPE/VE试样中VE的含量并没有发生明显变化。
     人工髋关节磨损模拟试验结果表明,辐照交联UHMWPE/VE髋臼的耐磨损性能有了显著地提高;同时,辐照交联UHMWPE/VE能有效地控制磨屑的尺寸,减少了磨屑数量,并降低了由磨屑而引起细胞不良反应的程度,对于提高人工关节的可靠性和稳定性具有重要的意义。
Ultra-high molecular weight polyethylene (UHMWPE) has excellent biocompatibility, chemical stability, impact resistance, wear resistance and corrosion resistance, and it is more desirable to the medical polymer materials. However, during the long-term application process, oxidation, wear and wear debris accumulation easily lead to osteolysis and aseptic loosening, which increase the suffering of patients, and limit the longevity of artificial joints. In this paper, medicine class UHMWPE powder and natural vitamin E were used as raw materials to prepare UHMWPE/VE composites by thermal compression molding method, and then they were irradiation crosslinked byγ-ray. Eventually, anti-oxidation and wear-resistant irradiation crosslinked UHMWPE/VE was made as a new type of artificial joint materials.
     Conventional atmosphere molding method will lead to the formation of residual internal porosity defects inside UHMWPE, which resulting in a decrease of its mechanical properties and biotribological properties; while low-vacuum environment molding method can effectively eliminate the internal porosity defects inside UHMWPE, and increase its mechanical properties and biotribological properties.
     Irradiation crosslinking could improve the comprehensive mechanical properties and the abrasive wear resistant properties of UHMWPE, but the increase in degree of crosslinking will reduce its plastic. VE doping can effectively reduce the oxidation of UHMWE in the process of irradiation crosslinking, improving its fatigue performance. However, high concentrations of VE doping will reduce the crosslinking degree of radiation crosslinked UHMWPE, which will reduce the mechanical properties and biotribological properties.
     Irradiation crosslinking results in the formation of a large number of residual free radicals existing inside the UHMWPE, which will react with oxygen. As a result, the extent of oxidation degradation is very serious during accelerated aging process. After accelerated aging, the mechanical properties and biotribological properties of irradiation crosslinked UHMWPE reduces significantly, while the VE doping can significantly enhance the anti-oxidation stability of irradiation crosslinked UHMWPE, and the change of its mechanical properties and biotribological properties is not obvious.
     The crystal structure of the surface of compression molded UHMWPE parallel to the surface of the specimen. Irradiation crosslinking improves the crystallinity of UHMWPE, increases the density of its crystal structure. After accelerated aging, there have been a large amount of fracture phenomena of crystal structure on the surface of irradiation crosslinked UHMWPE sample; while the crystal structure on the surface of irradiation crosslinked UHMWPE/VE sample has not changed significantly.
     The surface is the site which is affected by environmental factors most directly, and also in direct contact with oxygen in the air. After accelerated aging, the hardness and elastic modules of the surface of UHMWPE specimen increased, while the bulk hardness and bulk modulus of elasticity reduced.
     Irradiation crosslinking increases the anti-creep properties of UHMWPE, reduces its sensitivity to load response. Accelerated aging will lower the anti-creep properties of irradiation crosslinked UHMWPE; while the performance of irradiation crosslinked UHMWPE/VE has not changed obviously after accelerated aging.
     Irradiation crosslinking increases the surface free energy and enhances the wettability of UHMWPE, and a small amount of VE doping does not change its surface free energy and wettability. Water absorption of UHMWPE is very low, irradiation crosslinking and VE doping would further reduce its water absorption. After immersed in simulated body fluid for six months, VE content in irradiation crosslinked UHMWPE/VE does not show a significant change.
     Hip simulation test results indicate that the wear performance of irradiation crosslinked UHMWPE/VE improves significantly. Furthermore, irradiation crosslinked UHMWPE/VE could effectively control the size of wear debris, decrease the number of wear debris, as well as the extent of adverse reactions of cell caused by wear debris, and finally improve the reliability and stability of artificial joints.
引文
[1]葛世荣,王成焘.人体生物摩擦学的研究现状与展望[J].摩擦学学报, 2005, 25(2): 186-191.
    [2] Dowson D, Wright V. The reology of lubricants [M]. Ed. By Davenport T C, Institute of Petroleum, 1973.
    [3] Han S W, Blanchet T A. Experimental evaluation of a steady-state model for the wear of particle-filled polymer composite materials [J]. Journal of Tribology, 1997, 119: 694-699.
    [4] Hills B A. Remarkable anti-wear properties of joint surfactant [J]. Annals of Biomedical Engineering, 1995, 23(2): 112-115.
    [5] McKellop H A, Campbell P, Park S H, et al. The origin of submicron polyethylene wear debris in hip total hip arthroplasty [J]. Clinical Orthopaedics and Related Research, 1995, 311: 3-20.
    [6] Jasty M, Bragdon C, Burke D, et al. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions [J]. The Journal of Bone Joint and Surgery, 1997, 79(5): 707-714.
    [7]熊党生.离子注入超高分子量聚乙烯的摩擦磨损性能研究[J].摩擦学学报, 2004, 24(3): 244-248.
    [8] Xiong D, Ge S. Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions [J]. Wear, 2001, 250: 242-245.
    [9] Ge S R, Wang Q L, Zhang D K, et al. Friction and wear behavior of nitrogen ion implanted UHMW PE against ZrO2 ceramic [J]. Wear, 2003, 255(7-12): 1069-1075.
    [10] McKellop H, Shen F W, Lu B, et al. Development of an extremely wear resistant ultra-high molecular weight polyethylene for total hip replacements [J]. Journal of Orthopaedic Research, 1999, 17(2): 157-167.
    [11] Muratoglu O K, Bragdon C R, O'Connor D O, et al. Unified Wear Model for Highly Crosslinked Ultra-high Molecular Weight Polyethylenes (UHMWPE) [J]. Biomaterials, 1999, 20(16): 1463-1470.
    [12] Muratoglu, O K, O'Connor D O, Bragdon C R, et al. Gradient crosslinking of UHMWPE using irradiation in molten state for total joint arthroplasty [J]. Biomaterials, 2001, 23(3): 717-724.
    [13] Digas G J, Karrholm J, Thanner J, et al. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis [J]. Clinical Orthopaedics and Related Research, 2004, 429: 6-16.
    [14] Martell J M, Verner J J, Incavo S J. Clinical performance of a highly cross-linked polyethylene at two years in total hip arthroplasty: a randomized prospective trial [J].The Journal of Arthroplasty,2003, 18: 55-59.
    [15] Sutula L C, Collier J P, Saum K A, et al. The Otto Aufranc Award. Impact of gamma sterilization on clinical performance of polyethylene in the hip [J]. Clinical Orthopaedics and Related Research, 1995, 319: 28-40.
    [16] Collier J P, Sperling D K, Currier J H, et al. Impact of gamma sterilization on clinical performance of polyethylene in the knee [J]. The Journal of Arthroplasty, 1996, 11(4): 377-389.
    [17] Muratoglu O K, Merrill E W, Bragdon C R, et al. Effect of Radiation, Heat, and Aging on In Vitro Wear Resistance of Polyethylene [J]. Clinical Orthopaedics and Related Research, 2003, 417: 253-262.
    [18] Muratoglu O K, Bragdon C R, O'Connor D O, et al. A novel method of crosslinking UHMWPE to improve wear, reduce oxidation and retain mechanical properties: Recipient of the 1999 HAP Paul Award [J]. The Journal of Arthroplasty, 2001, 16(2): 149-160.
    [19] Landy M M, Walker P S. Wear of ultra-high-molecular-weight polyethylene components of 90 retrieved knee prostheses [J]. The Journal of Arthroplasty, 1988, 3: 73-85.
    [20] Ries M D, Bellare A, Livingston B J, et al. Early delamination of a Hylamer-M tibial insert [J]. Journal of Arthroplasty, 1996, 11(8): 974-976.
    [21] Eyerer P, Ke Y C. Property changes of UHMW polyethylene hip cup endoprostheses during implantation [J]. Journal of Biomedical Materials Research, 1984, 18(9): 1137-1151.
    [22] Davidson, J A, Schwartz C J. Wear, creep, and frictional heat of femoral implant articulating surface and the effect on long-term performance-Part I: A review [J]. Journal of Biomedical Materials Research, 1987, 21(3):261-285.
    [23] Goldman M, Lee M, Gronsky R, et al. Oxidation of ultrahigh molecular weight polyethylene characterized by Fourier Transform Infrared Spectrometry [J]. Journal of Biomedical Materials Research, 1997, 37(1): 43-50.
    [24] Pariente J L. The biocompatibility of cathelers and stents used on urology [J]. Progress Urology, 1994, 8(2): 181.
    [25]赵铭,郑其新.人工关节材料的研究进展[J].生物骨科材料与临床研究, 2004, 1(7): 53-56.
    [26]杨敏,郑昌琼,冉均国等.钛基-TiN-TiC系梯度薄膜材料的生物摩擦磨损特性研究[J].功能材料, 2000, 31(2): 209-211.
    [27]代新祥,陈晓明,李世普.人工关节的发展及未来[J].武汉工业大学学报, 1998, 20(4): 12-14.
    [28] When H B, Wolke J G C, de Wijn J R, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment [J]. Biomaterials, 1997, 18(22): 1471-1478.
    [29]曾绍先.医用生物陶瓷及临床应用[J].化学进展, 1997, 9(1): 90-98.
    [30] Abdullah A B, Treheux D. Friction and wear of ultrahigh molecular weight polyethylene against various new ceramics [J]. Wear, 1991, 142(1): 43-56.
    [31] Zhou Y S, Ikeuchi K, Ohashi M. Comparison of the friction properties of four ceramic materials for joint replacements [J]. Wear, 1997, 210(1-2):171-177.
    [32]周银生.陶瓷人工关节的跑合和摩擦性能研究[J].摩擦学学报, 1998, 18(2): 103-107.
    [33]李肇建,吴祖尧,李万卿.硅胶人工指关节的远期疗效分析[J].中华骨科杂志, 1989, 9(1): 39-42.
    [34] Krzypow D J, Timnacc M. Cyclic steady state stress-strain behavior of UHMWPE polyethylene [J]. Biomaterials, 2002, 21(20): 2081-2087.
    [35] Cooper J R, Dowson D, Fisher. Macroscopic and microscopic wear mechanisms in ultra-high molecular weight polyethylene [J]. Journal Bone and Joint surgery British, 1994, 76(1): 60-67.
    [36]何春霞,顾红艳.不同材料填充超高摩尔质量聚乙烯复合材料的力学性能分析[J].塑料工业, 2002, 30(5): 29-31.
    [37]陈战,王家序,秦大同.填料对超高分子量聚乙烯摩擦磨损性能的影响研究[J].润滑与密封, 2001, 4: 34-35.
    [38]熊党生,何春霞.炭纤维增强人工关节软骨材料——超高分子量聚乙烯的摩擦学特性[J].摩擦学学报, 2002, 22(6): 454-457.
    [39] Silverstein M S, Breitner J. A polytetrafluoroethylene filled ultra-high molecular weight polyethylene composite: Mechanical and wear property relationships [J]. Polymer Engineering and Science, 1995, 35(22): 1785-1794.
    [40] Meng D, Shalaby W. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites [J]. Biomaterials, 1997, 18(9): 645-655.
    [41] Chang N, Bellare A, Cohen R E, et al. Wear behavior of bulk oriented and fiber reinforced UHMWPE [J]. Wear. 2000, 241: 109-117.
    [42] Jacobs O, Kazanci M, Cohu D, et al. Creep and wear behavior of ethylene-butene copolymer reinforced by ultrahigh-molecular weight polyethylene fibers [J]. Wear. 2002, 253: 618-625.
    [43] Suh N P, Mosleh M, Arinez J. Tribology of polyethylene hemo-composites [J]. Wear. 1998, 214(2): 231-236.
    [44]熊党生.氧离子注入增强人工关节软骨材料UHMWPE的耐磨性[J].生物医学工程杂志, 2003, 20(4): 583-585.
    [45]熊党生,张彦华,徐嘉东.氮离子注入超高分子量聚乙烯的生物摩擦学性能[J].中国生物医学工程学报, 2001, 20(4): 380-385.
    [46]朱福英,陈景升,潘浩昌等.离子注入对超高分子量聚乙烯磨损性能的影响[J].核技术, 1999, 22(9): 518-520.
    [47] Valenza A, Visco A M, Torrisi L, et al. Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation [J]. Polymer, 2004, 45: 1707-1715.
    [48] Beveridge C, Sabiston A. Methods and benefits of crosslinking polyolefins for industrialapplications [J]. Materials and Design, 1987, 8(5): 263-268.
    [49] Gladius Lewis. Properties of crosslinked ultra-high-molecular-weight polyethylene [J]. Biomaterials, 2001, 22: 371-40.
    [50]解孝林,伍学诚,邓泽贤.硅烷交联超高分子量聚乙烯[J].高分子材料科学与工程, 2003, 19(4): 208-211.
    [51]伍学诚,解孝林.高耐磨超高分子量聚乙烯改性研究进展[J].工程塑料应用, 2001, 29(5): 46-49.
    [52] Muratoglu O K, Biggs S A. Long term stability of radiation and peroxide cross-linked UHMWPE [J]. Transaction of the 23rd Society of Biomaterials, 1997, 20: 49.
    [53] Taylor S, Serekian P. The performance of irradiation-crosslinked UHMWPE cups under abrasive conditions throughout hip simulation testing [J]. Transaction of the 45th Annual Meeting of Orthopedic Research Society, 1999, 24: 252.
    [54] Kang P H, Nho Y C. The effect ofγ-irradiation on ultra-high molecular weight polyethylene recrystallized under different cooling conditions [J]. Radiation Physics and Chemistry, 2001, 60(1-2): 79-87.
    [55] Kurtz S M, Muratoglu O K, Evans M, et al. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty [J]. Biomaterials, 1999, 20(18): 1659-1688.
    [56] Narkis M, Raiter I. Structure and tensile behavior of irradiation- and peroxide-crosslinked polyethylenes [J]. Journal of Macromolecular Science and Physics, 1987, 26: 37-58.
    [57] Premnath V, Merrill E W, Jasty M, et al. Melt-irradiated UHMWPE for total hip replacements: Synthesis and properties [J]. Transaction of the 43rd Annual Meeting of Orthopedic research Society, 1997, 22: 91.
    [58] McKellop H, Shen, F W, Salovey R. Extremely low wear of gamma-crosslinked/remelted UHMW polyethylene acetabular cups [J]. Transaction of the 44th Annual Meeting of Orthopedic Research Society, 1998, 23: 98.
    [59] Kurtz S M, Villarraga M L, Herr M P, et al. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements [J]. Biomaterials, 2002, 23(17): 3681-3697.
    [60] Grobbelaar C J, Du Plessis T A, Marais F. The radiation improvement of polyethylene prostheses. A preliminary study [J]. Journal of Bone and Joint Surgery, 1978, 60B(3): 370-274.
    [61] Jasty M, Bragdon, C R, O’Connor D O, et al. Marked improvement in the wear resistance of a new form of UHMWPE in a physiologic hip simulator [J]. Transaction of the 43rd Annual Meeting of Orthopedic Research Society, 1997, 43: 785.
    [62] Luisetto Y, Wesslen B, Maurer F, et al. The effect of irradiation, annealing temperature, andartificial aging on the oxidation, mechanical properties, and fracture mechanisms of UHMWPE [J]. Journal of Biomedical Materials Research, 2003, 67A(3): 908-917.
    [63] Kurtz S M, Cooper C, Siskey R, et al. Effects of dose rate and thermal treatment on the physical and mechanical properties of highly crosslinked UHMWPE used in total joint replacement [J]. Transactions of the 49th Annual Meeting of Orthopedic Research Society, 2003, 28: 1411.
    [64] Muratoglu O K, Bragdon C R, O’Connor D O, et al. Electron beam crosslinking of UHMWPE at room temperature, a candidate bearing material for total joint arthroplasty [J]. Transactions of the 23rd Society of Biomaterials, 1997, 20: 74.
    [65] Wang A, Essner A, Polineni V K, et al. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements [J]. Tribology International, 1998, 31(1-3): 17-33.
    [66] Puertolas J A, Urries I. Fatigue behavior of electron-beam irradiation UHMWPE [J]. Transaction of the 50th Annual Meeting of Orthopedic Research Society, 2004, 29: 221.
    [67] Oral E, Arnaz S M, Muratoglu O K. Mechanism of decrease in fatigue crack propagation resistance in irradiation and melted UHMWPE [J]. Biomaterials, 2006, 27(6): 917-925.
    [68] Shibata N, Tomita N, Onmori N, et al. Defect initiation at subsurface grain boundary as a precursor of delamination in ultrahigh molecular weight polyethylene [J]. Journal of Biomedical Materials Research, 2003, 67A(1): 276-284.
    [69]刘功德,李惠林.聚丙烯对超高分子量聚乙烯加工流变性能的影响[J].高分子材料科学与工程, 2003, 19(4): 136-139.
    [70]明艳,贾润礼.超高分子量聚乙烯成型加工及改性[J].合成树脂及塑料, 2002, 19(4): 68-71.
    [71]张炜,张玉梅,汪九山等. UHMWPE/流动改性剂共混物的流动性能与冲击性能研究[J].工程塑料应用, 2004, 32(6): 14-16.
    [72] Edidin A A, Kurtz S M. Influence of mechanical behavior on the wear of 4 clinically relevant polymeric biomaterials in a hip simulator [J]. The Journal of Arthroplasty, 2000, 15(3): 321-331.
    [73] Reno F, Cannas M. Vitamin E bioactivity and UHMWPE: an emerging perspective [J]. Biomaterials, 2006, 27(16): 3039-3043.
    [74] Tomita N, Kitakura T, Onmori N, et al. Prevention of fatigue cracks in ultrahigh molecular weight polyethylene joint components by the addition of vitamin E [J]. Journal of Biomedical Materials Research, 1999, 48(4): 474-478.
    [75] Oral E, Wannomae K K, Hawkins N, et al.α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear [J]. Biomaterials, 2004, 25(24): 5515-5522.
    [76] Kodintseva T A, Kashkarov A M, Kaloshin V A, et al. Hardness Evaluation of Polytetrafluoroethylene Products [C]. Berlin: 9th European Conference on Non-Destructive Testing, 2006.
    [77] Zachariades A E. The effect of powder particle fusion on the mechanical properties of ultra-highmolecular weight polyethylene [J]. Polymer Engineering and Science, 1985, 25(12) 747-750.
    [78] Wu J J, Buckley C P, O’Connor J J. Mechanical integrity of compression molded ultra-high molecular weight polyethylene: effects of varying process conditions [J]. Biomaterials, 2002, 23(17): 3773-3783.
    [79] Wang S B, Ge S R. The mechanical property and tribological behavior of UHMWPE: Effect of molding pressure [J]. Wear, 2007, 263(7-12): 949-956.
    [80] Costa L, Luda M P, Trosarelli L. Ultra-high molecular weight polyethylene: I. Mechano-oxidative degradation [J]. Polymer Degradation and Stability, 1997, 55(3): 329-338.
    [81] Scott G. Atmospheric Oxidation and Antioxidant [M]. Elsevier, Amsterdam, 1993.
    [82] Malhi A S, Wannomae K K. A novel processing methodology for improvement of mechanical properties in highly crosslinked UHMWPE [R]. Transactions of the 52nd Annual Meeting of Orthopedic Research Society, 2006.
    [83] Premnath V, Harris W H, Jasty M, et al. Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem [J]. Biomaterials, 1996, 17(18): 1741-1753.
    [84] Laermer S F, Zambetti P F. Alpha-tocopherol (vitamin E)-The natural antioxidant for polyolefins [J]. Journal of Plastic Film and Sheeting, 1992, 8(3): 228-248.
    [85] Al-Malaika S. Vitamin E: an effective biological antioxidant for polymer stabilization [J]. Polymer and Polymer Composites, 2000, 8(8): 537-542.
    [86] Mallegol J, Carlssson D J, Deschenes L. Antioxidant effectiveness of vitamin E in HDPE and tetradecane at 32℃[J]. Polymer Degradation and Stability, 2001, 73(2): 269-280.
    [87] Tomita N. Design concept of artificial knee joint for high durability [M]. Tokyo: Springer, 1999.
    [88] Neil P O, Birkinshaw C, Buggy M, et al. The distribution of oxidation products in irradiated ultra-high molecular weight polyethylene [J]. Polymer Degradation and Stability, 1995, 49: 239-244.
    [89] Rose D G. Oxidation of linear polyethylene caused by irradiation [D]. Evanston: Northwestern University, 1948.
    [90] Nusbaum H J, Rose R M, Paul I, et al. Wear mechanisms for UHMWPE in the total hip prosthesis [J]. Journal of Applied Polymer Science, 1979, 23(3): 777-789.
    [91] Sutula L J, Collier K, Saum B, et al. Impact of gamma sterilization on clinical performance of polyethylene in the hip [J]. Clinical Orthopaedics and Related Research, 1995, 319: 28-40.
    [92] Burroughs B R. Improvement of Wear and Oxidation Resistance of Irradiation Sterilized Ultra-high Molecular Weight Polyethylene via Environmental Manipulation [D]. New York: Rensselaer Polytechnic Institute, 2003.
    [93] Carlsson D J. Degradation and stabilization of polymers subjected to high energy radiation in Atmospheric oxidation and antioxidants [M]. New York: Elsevier Amsterdam, 1993: 495-528.
    [94] Clegg D W, Collyer A A. Irradiation effects on polymers [M]. New York: Elsevier Applied Science, 1991.
    [95] Shen F W, McKellop H A, Salovey R. Irradiation of chemically crosslinked ultrahigh molecular weight polyethylene [J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(6): 1063-1077.
    [96] Lacoste J, Carlsson D J. Gamma-, photo-, and thermally initiated oxidation of linear low density polyethylene: a quantitative comparison of oxidation products [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30: 493-500.
    [97] Igarashi M. Free radical identification by ESR in polyethylene and nylon [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1983, 21: 2405-2425.
    [98] De Vries K L, Smith R H, Franconi B H. Free radicals and new end groups resulting from chain scission: Gamma-irradiation of polyethylene [J]. Polymer, 1980, 21: 949-956.
    [99] Dole M, Milner D C, Williams T F. Irradiation of polyethylene II: Kinetics of unsaturation effects [J]. Journal of American Chemistry Society, 1958, 80: 1580-1588.
    [100] Perez E, Vanderhart A. 13C CP-MAS NMR study of irradiated polyethylene [J]. Journal of Polymer Science Part B: Polymer Physics, 1988, 26: 1979-1993.
    [101] Arnaud R, Moisan J Y, Lemaire J. Primary hydroperoxidation in low-density polyethylene [J]. Macromolecules, 1984, 17(3): 332-336.
    [102] Bhateja S K, Duerst R W, Martens J A, et al. Radiation-induced enhancement of crystallinity in polymer [J]. Journal of Materials Science-Review: Macromolecular Chemistry and Physics, 1995, C35(4): 581-659.
    [103] Randall J C. Crosslinking and scission in polymer [M]. Dordecht: Kluwer Academic Publishers, 1988: 57-76.
    [104] Shinde A, Salovey R. Irradiation of ultrahigh-molecular-weight polyethylene [J]. Journal of Polymer Science Part B: Polymer Physics, 1985, 23: 1681-1689.
    [105] Smedberg A, Hjertberg T, Gustafsson B. Crosslinking reactions in an unsaturated low density polyethylene [J]. Polymer, 1997, 38: 4127-4138.
    [106] Tilman P, Tilquin B, Claes P. Estimation du rapport kd/kc pour des radicaux alkyle en phase solide [J]. Journal of Chemical Physics, 1982, 79: 629-632.
    [107] Shibata N, Tomita N, Ikeuchi K. Effect of gamma-irradiated degradation on delamination of UHMWPE [J]. Journal of Japanese Society for Clinical Biomechanics, 2002, 23: 367-371.
    [108] Suparno S, Lacoste J, Raynal S, et al. Stereoregularity of polystyrenes obtained by different ion-pairs and mechanism of polymerization [J]. Polymer Journal, 1981, 13(4):313-317.
    [109] Carlsson D J, Bazan G, Chmela S, et al. Oxidation of solid polyethylene films: effects of backbone branching [J]. Polymer Degradation and Stability, 1987, 19(3): 195-206.
    [110] Costa L, Luda M P, Trossarelli L. Ultra-high molecular weight polyethylene: II Thermal and photo-oxidation [J]. Polymer Degradation and Stability, 1997, 58: 41-54.
    [111] Zahradnickova A, Sedlar J, Dastych D. Peroxy acids in photo-oxidized polypropylene [J]. Polymer Degradation and Stability, 1991, 32(2): 155-176.
    [112] Costa L, Luda M P, Trossarelli L, et al. Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide [J]. Biomaterials, 1998, 19(7-9): 659-668.
    [113] Carlsson D J, Brousseau R, Zhang C, et al. Polyolefin oxidation: quantification of alcohol and hydroperoxide products by nitric oxide reactions [J]. Polymer Degradation and Stability, 1987, 17: 303-314.
    [114] Lacoste J, Carlsson D J, Falicki S, et al. Polyethylene hydroperoxide decomposition products [J]. Polymer Degradation and Stability, 1991, 34: 30.
    [115] Yu Y J, Shen F W, McKellop H A, et al. Hydroperoxide formation in irradiated polyethylene [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37: 3309-3316.
    [116] Costa L, Jacobson K, Bracco P, et al. Oxidation of orthopaedic UHMWPE [J]. Biomaterials, 2002, 23(7): 1613-1624.
    [117] Yeom B, Yu Y J, McKellop H A, et al. Profile of oxidation in irradiated polyethylene [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36: 329-339.
    [118] Lazar M, Rychly J, Klimo V, et al. Free radicals in chemistry and biology [M]. Florida: CRC Press, 1989: 11.
    [119] Billingham N C, Calvert P D, Uzuner A. Studies of diffusion in polymers by ultraviolet microscopy [J]. Polymer, 1990, 31(2): 258-264.
    [120] Birkinshaw C, Buggy M, Daly S. et al. The effect ofγ-radiation on the physical structure and mechanical properties of ultrahigh molecular weight polyethylene [J]. Journal of Applied Polymer Science, 1989, 38(11): 1967-1973.
    [121] Yasukazu O, Tetsuto K, Yuji A. Antioxidant activities of tocopherols [J]. Polymer Degradation and Stability, 2001, 72: 303-311.
    [122] Al-Malaika S, Ashley H, Issenhuth S. The antioxidant role of alpha-tocopherol in polymers I: The nature of transformation products of alpha-tocopherol formed during melt processing of LDPE [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32: 3099-3113.
    [123] Costa L, Brach E M, Bracco P, et al. Stabilisation of UHMWPE with vitamin E [J]. Proceedings of UHMWPE for Arthroplasty 2005: Degradation, Stabilization and Crosslinking. 2005: 148-156.
    [124] Sperling L H. Introduction to physical polymer science [M]. New Jersey: John Wiley, 2006.
    [125] Suresh S, Alcala J, Giannakopoulos A E. Spherical indentation of compositionally graded materials: Theory and experiments [J]. Acta Materialia, 1997, 45(4): 1307-1321.
    [126]朱讯,王明寅,王荣国等.纤维增强聚合物基复合材料的蠕变力学研究进展[J].纤维复合材料, 2004, 51(3):51-53.
    [127]徐敏,罗怡,王晓东等.聚合物结构热压成形温度有限元分析[J].传感技术学报, 2006, 19(5):2015-2017.
    [128] Neideck K, Franzel W, Grau P. Dynamic ball hardness tests on polymers [J]. Journal of Macromolecular Science-Physics B, 1999, 38: 669-680.
    [129] Kourtesis G, Renwick G M, Fischer-Cripps A C, et al. Mechanical property characterization of a number of polymers using uniaxial compression and spherical tipped indention tests [J]. Journal of Material Science, 1997, 32: 4493-4500.
    [130] Berthoud P, Sell C G, Hiver J M. Elastic-plastic indentation creep of glassy poly(methyl methacrylate) and polystyrene: characterization using uniaxial compression and indentation tests [J]. Journal of Physics D (Applied Physics), 1999, 32: 2923.
    [131] Hrouz J, Vojta V, Ilavsky M. Penetration behavior of the system sphere-cylinder [J]. Polymer Engineering and Science, 1980, 20: 402-405.
    [132] Darlix B, Montmitonnet P, Monasse B. Creep of polymers under ball indentation: a theoretical and experimental study [J]. Polymer Testing, 1986, 6: 189-203.
    [133] Low I M, Paglia G, Shi C. Indentation responses of viscoelastic materials [J]. Journal of Application Polymer Science, 1998, 70: 2349-2352.
    [134] Rikards R, Flores A, Macromol J. Numerical modeling of micro-hardness tests for polymer materials [J]. Journal of Macromolecular Science-Physics B, 2001, 40: 763-774.
    [135] Feng W W, Yang W H. On the contact problem of an inflated spherical nonlinear membrane [J]. Journal of Applied Mechanics, 1973, 40(1): 209-214.
    [136] Field J S, Swain M V. Observation analysis and simulation of the hystersis of silicon using ultra-micro-indentation with spherical indenters [J]. Journal of Materials Research, 1993, 8: 830-840.
    [137] Oliver W C, Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564-1580.
    [138] Flores A, Balta Calleja F J, Asano T. Creep behavior and elastic properties of annealed cold-drawn poly(ethylene terephthalate): The role of the smectic structure as a precursor of crystallization [J]. Journal of Applied Physics, 2001, 90(12): 6006-6010.
    [139]欧阳国恩.实用塑料材料学[M].长沙:国防科技大学出版社, 1987:85-88.
    [140]徐修成.高分子工程材料[M].北京:北京航空航天大学出版社, 1990:140-144.
    [141]温诗铸,黄平.摩擦学原理(第3版)[M].北京:清华大学出版社, 2008.
    [142] Fowkes F M. Attractive forces at interfaces [J]. Industrial and Engineering Chemistry, 1964,56(12): 40-52.
    [143] Dann J R. Forces involved in adhesive process I: Critical surface tensions of polymeric solids as determined with polar liquids [J]. Journal of Colloid and Interface Science, 1970, 32(2): 302.
    [144] Lin F Y, Li D. The effect of surface heterogeneity on the drop size dependence of contact angles [J]. Chemical Engineering Science, 1995, 50(16): 2633-2639.
    [145] Wenzel R N. Resistance of solid surface to wetting by water [J]. Industrial and Engineering Chemistry, 1936, 28: 988-994.
    [146] Houwink R, Salomin G. Adhesion and adhesives [M]. London: Elsevier, 1965.
    [147] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity [J]. Biomaterials, 2006, 27: 2907-2915.
    [148] Bragdon C R, O'Connor D O, Lowenstein J D, et al. The importance of multidirectional motion on the wear of polyethylene [J]. The Journal of Arthroplasty, 1996, 11(2): 229-230.
    [149] Wang A, Sun D C, Stark C, et al. Wear Mechanisms of UHMWPE in Total Joint Replacement [J]. Wear, 1995, 181(1): 241-249.
    [150]刘洪涛.人工关节磨屑表征及磨屑生物反应研究[D].徐州:中国矿业大学机电工程学院, 2007.
    [151]黄孝龙.改性超高分子聚乙烯髋关节臼的磨损行为及磨粒形态研究[D].徐州:中国矿业大学机电工程学院, 2006.
    [152] Dowson D, Wallbridge N C. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints: I: Charnley prostheses with polytetrafluoroethylene acetabular cups [J]. Wear, 1985, 104(3): 203-215.
    [153] Atkinson J R, Dowson D, Isaac G H, et al. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints II: A microscopical study of the surfaces of charnley polyethylene acetabular sockets [J]. Wear, 1985, 104(3): 217-224.
    [154] Atkinson J R, Dowson D, Isaac G H, et al. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints III: The measurement of internal volume changes in explanted charnley sockets after 2-16 years in VIVO and the determination of wear factors [J]. Wear, 1985, 104(3): 225-244.
    [155] Goodman S B, Ma T, Chiu R, et al. Effects of orthopaedic wear particles on osteoprogenitor cells [J]. Biomaterials, 2006, 27(36): 6096-6101.
    [156] Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement [J]. Biomaterials, 2005, 26(11): 1271-1286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700