用户名: 密码: 验证码:
PPARα激动剂(非诺贝特)在胰腺癌治疗中的应用及可能的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     胰腺癌恶性程度高,在北美和欧洲分别位居恶性肿瘤死亡的第4位和第6位,在我国也长期位列前10位。据统计全球每年约有227,023人因胰腺癌导致死亡。胰腺癌发病隐匿,早期诊断困难,只有10%-15%的患者就诊时具有手术切除机会。即使进行了手术切除,还有相当一部分病人术后发生复发和转移,因此单纯的手术治疗无法取得理想的效果。化疗是目前最主要的辅助治疗手段,尤其针对中晚期胰腺癌患者。健择作为胰腺癌一线化疗药物,对改善症状、延长生存均起到了积极作用。然而由于天然内在性或后天获得性耐药,胰腺癌病人对健择的总体有效率仍不到20%,所以探索新的治疗方案十分必要。
     过氧化物酶体增殖因子激活受体α(Peroxisome Proliferator-activated Receptorα,PPARα)是一类由配体激活的转录因子,属于核激素受体超家族成员。PPARα激动剂非诺贝特(Fenofibrate)是目前临床上用于降血脂的药物,它可以降低极低密度脂蛋白和低密度脂蛋白的合成,加速甘油三酯的代谢。最新研究表明PPARα激动剂对人体肝癌细胞、子宫内膜癌细胞、卵巢癌细胞和结肠癌细胞具有显著的抗肿瘤活性。对人体胰腺癌细胞,PPARα激动剂是否具有类似的抗肿瘤功效目前还未见相关报道。本课题通过一系列实验探讨了PPARα激动剂非诺贝特以及联用非诺贝特和健择对人体胰腺癌细胞生长与转移的影响。
     磷脂酰肌醇3-激酶/蛋白激酶B(Phosphatidylinositol 3-Kinase/Protein Kinase B,PI3K/Akt)信号通路广泛存在于细胞内,被认为与肿瘤细胞的增殖、凋亡和转移等多个事件密切相关,是连接外界信号分子和细胞内反应的纽带。我们使用RT-PCR和Western blot等技术探讨了Akt信号通路在非诺贝特治疗胰腺癌过程中所扮演的角色,为将来以PPARα为靶点防治胰腺癌提供理论基础及实验依据。
     第一部分PPARα激动剂(非诺贝特)抑制胰腺癌生长及可能的分子机制
     目的:
     观察PPARα在人体胰腺癌组织和胰腺癌细胞株的表达情况,检测PPARα激动剂非诺贝特以及联用非诺贝特和健择对人体胰腺癌细胞增殖、凋亡等生物学行为的影响,并从分子水平探讨其可能的作用机制。
     方法:
     (1)采用免疫组化,RT-PCR和Western blot等技术检测了PPARα在人体胰腺癌组织和胰腺癌细胞株的表达情况。
     (2)使用MTT、流式细胞仪分析和Hoechst 33258染色等方法于体外观察单用非诺贝特以及联用非诺贝特与健择对胰腺癌细胞株Bxpc-3和Panc-1增殖、凋亡等生物学行为的影响。
     (3)建立荷瘤鼠模型于体内测试了非诺贝特以及联用非诺贝特和健择对胰腺癌生长的抑制作用;增殖细胞核抗原(PCNA)染色、缺口末端标记法(TUNEL)和CD31染色在病理学水平检测了不同给药组瘤块增殖率、凋亡率及微血管密度的差异。
     (4)Western blot实验检测不同药物干预下胰腺癌细胞内凋亡相关蛋白Caspase-9、Caspase-3和Bcl-2的表达水平。
     (5)Western blot实验检测不同药物干预下胰腺癌细胞内TRB-3、Akt、phospho-Akt和Survivin等蛋白的表达变化。
     结果:
     (1)免疫组化检测9例胰腺癌病人的标本,结果6例样本PPARα呈高表达,3例样本PPARα呈低表达,染色以胞浆阳性为主;RT-PCR和Western blot实验证实胰腺癌细胞株Bxpc-3和Panc-1都表达PPARα基因。
     (2)MTT实验发现PPARα激动剂非诺贝特呈剂量依赖性的抑制胰腺癌细胞生长。对Bxpc-3,25μM非诺贝特作用48小时细胞增殖率为53.1±5.6%,25μM非诺贝特和0.5μg/ml健择联用48小时细胞增殖率仅为36.3±3.9%,联合用药组细胞增殖率显著低于单药组(P<0.05);对Panc-1,50μM非诺贝特作用48小时细胞增殖率为67.5±2.4%,50μM非诺贝特和5μg/ml健择联用48小时细胞增殖率仅为53.5±7.9%,联合用药组细胞增殖率也显著低于单药组(P<0.05)。
     (3)流式细胞仪分析得两药联用(非诺贝特+健择)处理48小时胰腺癌细胞凋亡率明显高于对照组或单药组(P<0.05)。
     (4)光镜及Hoechst 33258染色观察到非诺贝特作用下胰腺癌细胞体积变小,部分细胞的胞膜崩解,细胞核变小,呈致密浓染,并伴碎块状的凋亡小体,两药联用组碎块状的凋亡小体多于单药组。
     (5)成功建立Bxpc-3细胞的荷瘤鼠模型,把荷瘤鼠随机分成对照组(给予生理盐水)、单用非诺贝特组、单用健择组和非诺贝特联用健择组;给药3周后,与对照组相比,单用非诺贝特或健择组肿瘤体积减小,联合用药组比单药组减小的更明显。以PCNA的阳性率作为增殖指数,免疫组化结果显示两药联用组肿瘤细胞增殖指数为61.7±5.2%,显著低于对照组的84.3±3.5%(P<0.05)。TUNEL法检测了不同给药组之间细胞凋亡率的差异,对照组凋亡指数为0.8±0.3%,单用非诺贝特组凋亡指数为7.3±1.1%,单用健择组凋亡指数为4.3±0.9%,非诺贝特和健择联用组凋亡指数为13.3±1.8%,联合用药组的凋亡指数显著高于对照组和单药组(P<0.05)。CD31染色显示两药联用组微血管密度低于对照组,但两者之间无统计学差异。
     (6)Western blot实验发现单用非诺贝特或健择干预48小时,胰腺癌细胞内抗凋亡蛋白Bcl-2的表达水平下降,凋亡蛋白Caspase-9、Caspase-3的活性剪切片断出现;联用非诺贝特和健择进一步下调了Bcl-2的表达水平,而Caspase-9、Caspase-3的活性剪切片断更加明显。
     (7)Western blot实验显示PPARα激动剂非诺贝特干预24小时后胰腺癌细胞中TRB-3蛋白上调,而Akt的磷酸化程度和凋亡蛋白抑制因子Survivin的表达量都有明显下调;单用健择处理24小时Akt的磷酸化程度和Survivin的表达量变化不明显。
     结论:
     (1)人体胰腺癌组织和细胞株都表达PPARα蛋白。
     (2)PPARα激动剂非诺贝特能有效抑制胰腺癌细胞生长,联用非诺贝特和健择进一步增强了对胰腺癌细胞的生长抑制效应。
     (3)非诺贝特能诱导胰腺癌细胞发生凋亡,联用非诺贝特和健择进一步提高了诱导细胞凋亡的能力。
     (4)对胰腺癌细胞,PPARα激动剂非诺贝特可能通过上调TRB-3蛋白水平,降低了Akt的磷酸化程度,并激活凋亡蛋白Caspase-9和Caspase-3,下调抗凋亡蛋白Bcl-2和Survivin的表达量,最终引起细胞凋亡。
     第二部分非诺贝特抑制胰腺癌细胞迁移及可能的作用机制
     目的:
     观察PPARα激动剂非诺贝特以及联用非诺贝特和健择对人体胰腺癌细胞迁移能力的影响,并从分子水平探讨其可能的作用机制。
     方法:
     (1)细胞划痕试验定性观察不同药物处理对胰腺癌细胞迁移能力的影响。
     (2)Transwell细胞迁移实验定量检测胰腺癌细胞在不同药物处理下迁移能力的变化。
     (3)RT-PCR检测不同药物干预下胰腺癌细胞中E-cadherin和Snail在mRNA水平的变化。
     (4)Western blot检测不同药物处理后胰腺癌细胞株中E-cadherin、Snail和phospho-GSK3β蛋白水平的变化。
     结果:
     (1)细胞划痕试验显示:不同药物作用胰腺癌细胞24小时,阴性对照组细胞已接近愈合;单用非诺贝特组和两药联用组可见少量细胞向划痕区爬行,愈合程度远低于阴性对照组;单用健择组有大量细胞向划痕区爬行,愈合程度略低于阴性对照组。
     (2)Transwell细胞迁移试验示:以阴性对照组作参照,阴性对照组细胞迁移指数定为100%;对Bxpc-3,单用非诺贝特处理24小时细胞迁移指数为39.9±3.7%,单用健择处理24小时细胞迁移指数为91.6±2.3%,联用非诺贝特和健择处理24小时细胞迁移指数为35.7±4.6%,单用非诺贝特组和两药联用组的细胞迁移指数显著低于阴性对照组(P<0.05);在另一株胰腺癌细胞Panc-1中也得到了类似结果。
     (3)RT-PCR显示:与阴性对照组相比,单用非诺贝特处理24小时,胰腺癌细胞中E-cadherin的mRNA表达增高,而Snail的mRNA表达下降;单用健择处理24小时,E-cadherin和Snail在mRNA水平变化不明显;两药联用组E-cadherin和Snail在mRNA水平的变化与单用非诺贝特组类似。
     (4)Western blot实验证实:单用非诺贝特处理24小时,胰腺癌细胞内E-cadherin蛋白条带比阴性对照组有一定程度的增强,Snail蛋白条带则相对减弱;健择干预24小时,E-cadherin和Snail的蛋白条带与阴性对照组相比无明显差异;两药联用时上述蛋白条带的变化趋势与单用非诺贝特基本类似。
     (5)Western blot实验进一步检测发现:单用非诺贝特或两药联用干预24小时,胰腺癌细胞中GSK3β磷酸化水平下调,单用健择对GSK3β的磷酸化水平无明显影响。
     结论:
     (1)非诺贝特具有抑制人体胰腺癌细胞迁移的功效。
     (2)非诺贝特可能通过降低胰腺癌细胞内Akt和底物GSK3β的磷酸化程度,活化了的GSK3β抑制Snail的表达,继而上调E-cadherin的表达量来实现抑制胰腺癌细胞迁移的。
Background:
     Pancreatic cancer is the fourth most common cause of adult cancer death in the U.S. 232,306 people were expected to develop pancreatic cancer,with 227,023 anticipated deaths resulting from this disease.Pancreatic cancer is a highly aggressive malignant disease.Only a small proportion of patients(10%-15%) presented with tumors amenable to surgical resection,but even with surgery,disease recurrence will occur in the majority.Despite therapeutic advances,the prognosis of patients with pancreatic cancer is extremely poor,with 5-year survival of<5%.Chemotherapy for pancreatic cancer is only of modest benefit,with the tumor having propensity to being chemoresistant.Gemcitabine has become the standard treatment for pancreatic cancer, since it was shown to improve clinical benefit response and survival compared with 5-fluorouracil(5-FU).Although superior to bolus 5-FU,the efficacy of gemcitabine as a single agent is modest,with a median survival of only~6 months in randomized trials and a 12-month survival of<20%.Therefore,developing more effective treatment regimens is urgently needed.
     Peroxisome proliferator-activated receptorα(PPARα) is a ligand-inducible transcription factor that belongs to the nuclear-hormone-receptor family.PPARαwas shown to mediate peroxisome proliferation action.PPARαagonist fenofibrate is mainly used in the treatment of dyslipidaemia.Recently,growing evidence indicated that PPARαagonist fenofibrate had antitumor effects,probably because of its anti-proliferative and pro-apoptotic activities.Reports published so far convincingly showed that fenofibrate inhibited proliferation of hepatic cancer cell lines,colon cancer cell lines,endometrical cancer cell lines and ovarian caner cell lines.However,there is no report concerning the antitumor efficacy of fenofibrate on pancreatic cancer cells.To improve the chemotherapeutic response,we investigated the potential of fenofibrate to augment gemcitabine-based chemotherapy for pancreatic cancer.Furthermore,we examined whether fenofibrate could inhibit the metastasis of pancreatic cancer.
     Cancer progression is often associated with prolonged activation of signal transduction pathways,such as phosphatidylinositol 3-kinase/Akt(PI3K/Akt) pathway. This constitutive activation confers resistance to conventional therapeutics.Many papers reported that most human pancreatic tumors showed high levels of activated Akt, a serine/threonine protein kinase that mediates survival signaling.Akt phosphorylates and inactivates numerous pro-apoptotic proteins,such as BAD,caspase-9 and survivin. The progression from an in situ tumor to an invasive disseminating form requires profound changes in the tumor cell phenotype(e.g.gaining the ability to migrate,to intravasate and survive in the anchorage-independent conditions in blood vessels,and to penetrate distant organs).Based on these facts,we hypothesized that the inhibition of PI3K/Akt pathway might be involved in pro-apoptotic and antimetastatic activity of fenofibrate.
     Part One The Anti-proliferative Effect of Fenofibrate on Pancreatic Cancer Cells and Relevant Mechanisms
     Objective:
     We attempted to evaluate whether cell growth and apoptosis are affected by PPARαagonist fenofibrate.
     Materials and Methods:
     (1) Sections of formalin-fixed and paraffin embedded material from pancreatic cancer patients were analyzed to detect PPARα-specific immunoreactivity.RT-PCR and western blot assays were done to detect PPARαexpression in pancreatic cancer cell lines Bxpc-3 and Panc-1.
     (2) MTT assay was performed to analyze the anti-proliferative effect of fenofibrate and combined use of fenofibrate and gemcitabine on pancreatic cancer cell lines.
     (3) The detection of apoptotic cells by flow cytometry was done to evaluate the pro-apoptotic effect of fenofibrate on pancreatic cancer cell lines.
     (4) Hoechst 33258 staining was used to observe the apoptotic characteristics of pancreatic cancer cell lines with different therapeutic regimens.
     (5) Nude mice were implanted with pancreatic cancer cells and randomized into the following treatment groups:(a) control(normal saline),(b) only fenofibrate,(c) only gemcitabine,(d) fenofibrate and gemcitabine.PCNA staining,TUNEL and CD31 staining were used to estimate the proliferation,apoptosis and microvessel density in tumor tissues.
     (6) Western blot analysis was done to detect Bcl-2,caspase-9,caspase-3 in the pancreatic cancer cells with various treatment schedules.
     (7) Western blotting was performed to evaluate Akt,phospho-Akt and survivin in pancreatic cancer cells treated with different regimens.
     Results:
     (1) High PPARαexpression was detected in 6 of 9 pancreatic cancers.Pancreatic cancer cell lines Bxpc-3 and Panc-1 also expressed PPARα.
     (2) Fenofibrate inhibited growth of pancreatic cancer cells in a dose- and time-dependent manner.In Bxpc-3 cells,treatment with 25μM fenofibrate for 48 hours resulted in 53.1±5.6%cell growth relative to the control.In Panc-1,treatment with 50μM fenofibrate for 48 hours resulted in 67.5±2.4%cell growth relative to the control. We subsequently evaluated the effect of fenofibrate plus gemcitabine on cell growth in vitro and found that combined use of fenofibrate and gemcitabine enhanced the anti-proliferative activity.
     (3) As shown by flow cytometry,fenofibrate could induce apoptosis in pancreatic cancer cells.Relative to single agents,cotreatment of fenofibrate and gemcitabine induced much more apoptosis in both pancreatic cancer cell lines(P<0.05).
     (4) Hoechst 33258 staining demonstrated characteristics of apoptosis in cells receiving fenofibrate and/or gemcitabine treatment.
     (5) For in vivo experiments,we determined the mean tumor volume in all treated groups.Single modality treatment with either fenofibrate or gemcitabine alone in mice harboring Bxpc-3 cells caused reduction in tumor volume compared with normal saline treatment after 3 weeks.Treatment with fenofibrate plus gemcitabine simultaneously resulted in greater reduction in tumor volume compared with control tumors.We next examined the expression of the cell proliferation marker PCNA and microvessel density marker CD31 in tumor tissues from the four groups.The results showed that fenofibrate in combination with gemcitabine significantly down-regulated the expression of PCNA in tumors tissues compared with the control group(P<0.05 versus control).The data also showed that fenofibrate suppressed the expression of CD31,but the down-regulation was not statistically different.TUNEL demonstrated that fenofibrate could enhance the induction of apoptosis by gemcitabine.Cotreatment of fenofibrate and gemcitabine induced more apoptotic cells than single agent either fenofibrate or gemcitabine alone(P<0.05).
     (6) Western blotting revealed significant reduction in the expression of Bcl-2 from the fenofibrate-treated pancreatic cancer cell lines compared with those from the control group.The expression of cleaved caspase-9 and cleaved caspase-3 increased with the treatment of fenofibrate.
     (7) Up-regulation of TRB-3 was noticed in pancreatic cancer cell lines with fenofibrate treatment.In the next step,we observed down-regulation of phosphorylation status of Akt after incubation with fenofibrate without a change in total Akt protein level. Similar down-regulation in survivin was detected after fenofibrate treatment.
     Conclusions:
     (1) Pancreatic cancer specimens and cell lines expressed PPARα.
     (2) Fenofibrate inhibited pancreatic cancer cells growth in a dose- and time-dependent manner.Combined treatment of fenofibrate and gemcitabine resulted in greater inhibition of cell growth.
     (3) Fenofibrate induced apoptosis of pancreatic cancer cells and treatment of fenofibrate plus gemcitabine potentiated the pro-apoptotic effects.
     (4) Fenofibrate decreased the phosphorylation status of Akt and expression of survivin via up-regulation of TRB-3.
     Part Two The Inhibitory Effect of Fenofibrate on Migration of Pancreatic Cancer Cells and Relevant Mechanisms
     Objective:
     We attempted to evaluate whether migration of pancreatic caner cells was affected by fenofibrate.
     Materials and Methods:
     (1) We used wound-healing assay to estimate the effect of fenofibrate on migration ability of pancreatic cancer cells.
     (2) Cell migration was assessed quantitatively in Transwell chambers with polycarbonate filters.
     (3) RT-PCR was used to determine the expression of E-cadherin and snail in pancreatic cancer cell lines incubated with different therapeutic modalities.
     (4) Western blotting was done to detect E-cadherin,snail and phospho-GSK3βin pancreatic cancer cells after treatment with various agents.
     Results:
     (1) Wound gap was almost closed in control group after 24 hours wound introduction.In contrast,the speed of wound closure was much slower and the wounds were still widely open in the fenofibrate-treated group.
     (2) Transwell chamber showed that the migration index in the presence of fenofibrate was 39.9±3.7%,significantly lower than the control group(P<0.05). Gemcitabine did not cause significant decrease of migration index.
     (3) RT-PCR results demonstrated that E-cadherin was up-regulated and snail was down-regulated after the fenofibrate treatment.The expression level of E-cadherin and snail was not affected by gemcitabine.
     (4) Western blotting further confirmed that expression of E-cadherin increased and expression of snail decreased simultaneously in the fenofibrate-treated group.The protein levels of E-cadherin and snail remained similar after gemcitabine treatment compared with the control group.
     (5) Down-regulation of phosphorylation status of GSK3βwas observed from the fenofibrate-treated group.
     Conclusions:
     (1) Fenofibrate inhibited migration of pancreatic cancer cells.
     (2) Fenofibrate treatment led to impaired migration ability of pancreatic cancer cells via the attenuation of Akt/GSK3βmediated pathway.The decreased phosphorylation level of GSK3βrestored its kinase activity and subsequently blocked snail expression. Finally,the E-cadherin protein accumulated in pancreatic cancer cells treated with fenofibrate.
引文
1.Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002.CA Cancer J Clin 2005;55:74-108
    2.高玉堂.胰腺癌流行病学研究进展.实用肿瘤杂志2003;18:347-349
    3.Simon B,Pfintz H.Epidemiological trends in pancreatic neoplasias.Dig Dis 2001;19:6-14
    4.李连弟,张思维,鲁风珠.中国恶性肿瘤死亡谱及分类构成特征研究.中华肿瘤杂志1997;9:323-328
    5.Henne-Bruns D,Vogel I,Luttges J,et al.Ductal adenocarcinoma of the pancreas head:survival after regional versus extended lymphadenectomy.Hepatogastroenterology 1998;45:855-866
    6.Mukaiya M,Hirata K,Satoh T,et al.Lack of survival benefit of extended lymph node dissection for ductal adenocarcinoma of the head of the pancreas:retrospective multi-institutional analysis in Japan.World J Surg 1998;22:248-252;discussion 252-243
    7.Greenlee RT,Murray T,Bolden S,et al.Cancer statistics,2000.CA Cancer J Clin 2000;50:7-33
    8.Evans DB,Lee JE,Pisters PW,et al.Advances in the diagnosis and treatment of adenocarcinoma of the pancreas.Cancer Treat Res 1997;90:109-125
    9.Chua YJ,Zalcberg JR.Pancreatic cancer—is the wall crumbling? Ann Oncol 2008;19:1224-1230
    10.Willett CG,Czito BG,Bendell JC.Adjuvant therapy of pancreatic cancer.Cancer J 2007;13:185-191
    11.Aung KL,Smith DB,Neoptolemos JP.Adjuvant therapy for pancreatic cancer.Expert Opin Pharmaeother 2007;8:2533-2541
    12.Burris HA,3rd,Moore MJ,Andersen J,et al.Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer:a randomized trial.J Clin Oncol 1997;15:2403-2413
    13.Abbruzzese JL.New applications of gemcitabine and future directions in the management of pancreatic cancer.Cancer 2002;95:941-945
    14.Kindler HL,Friberg G,Singh DA,et al.A double-blind,placebo-controlled,randomized phase Ⅲ trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC):a preliminary analysis of Cancer and Leukemia Group B (CALGB),.J Clin Oncol 2007;25:4508
    15.Philip PA,Benedetti J,Fenoglio-Preiser C,et al.Phase Ⅲ study of gemcitabine [G]plus cetuximab [C]versus gemcitabine in patients [pts]with locally advanced or metastatic pancreatic adenocarcinoma [PC]:SWOG S0205 study.J Clin Oncol 2007;254509
    16.Moore MJ,Goldstein D,Hamm J,et al.Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer:a phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group.J Clin Oncol 2007;25:1960-1966
    17.A unified nomenclature system for the nuclear receptor superfamily.Cell 1999;97:161-163
    18.Michalik L,Desvergne B,Wahli W.Peroxisome-proliferator-activated receptors and cancers:complex stories.Nat Rev Cancer 2004;4:61-70
    19.Schoonjans K,Peinado-Onsurbe J,Lefebvre AM,et al.PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene.EMBO J 1996;15:5336-5348
    20.Staels B,Vu-Dac N,Kosykh VA,et al.Fibrates downregulate apolipoprotein C-Ⅲ expression independent of induction of peroxisomal acyl coenzyme A oxidase.A potential mechanism for the hypolipidemic action of fibrates.J Clin Invest 1995;95:705-712
    21.Knopp RH,Brown WV,Dujovne CA,et al.Effects of fenofibrate on plasma lipoproteins in hypercholesterolemia and combined hyperlipidemia.Am J Med 1987;83:50-59
    22.Reddy JK,Rao MS.Peroxisome proliferation and hepatocarcinogenesis.IARC Sci Publ 1992:225-235
    23.Marsman DS,Swanson-Pfeiffer CL,Popp JA.Lack of comitogenicity by the peroxisome proliferator hepatocarcinogens,Wy-14,643 and clofibric acid.Toxicol Appl Pharmacol 1993;122:1-6
    24.Peters JM,Cattley RC,Gonzalez FJ.Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643.Carcinogenesis 1997;18:2029-2033
    25.Bentley P,Calder I,Elcombe C,et al.Hepatic peroxisome proliferation in rodents and its significance for humans.Food Chem Toxicol 1993;31:857-907
    26.Frick MH,Elo O,Haapa K,et al.Helsinki Heart Study:primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia.Safety of treatment,changes in risk factors,and incidence of coronary heart disease.N Engl J Med 1987;317:1237-1245
    27.Oliver MF.Strategy of reducing coronary risk and the use of drugs.J Cardiovasc Pharmacol 1984;6 Suppl 6:S880-887
    28.Lambe KG,Woodyatt NJ,Macdonald N,et al.Species differences in sequence and activity of the peroxisome proliferator response element(PPRE) within the acyl CoA oxidase gene promoter.Toxicol Lett 1999;110:119-127
    29.Maloney EK,Waxman DJ.trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals.Toxicol Appl Pharmacol 1999;161:209-218
    30.Palmer CN,Hsu MH,Griffin KJ,et al.Peroxisome prolifemtor activated receptor-alpha expression in human liver.Mol Pharmacol 1998;53:14-22
    31.Tugwood JD,Aldridge TC,Lambe KG,et al.Peroxisome proliferator-activated receptors:structures and function.Ann N Y Acad Sci 1996;804:252-265
    32.Woodyatt NJ,Lambe KG,Myers KA,et al.The peroxisome proliferator (PP) response element upstream of the human acyl CoA oxidase gene is inactive among a sample human population:significance for species differences in response to PPs.Carcinogenesis 1999;20:369-372
    33.Jiao HL,Zhao BL.Cytotoxic effect of peroxisome proliferator fenofibrate on human HepG2 hepatoma cell line and relevant mechanisms.Toxicol Appl Pharmacol 2002;185:172-179
    34.Holland CM,Saidi SA,Evans AL,et al.Transcriptome analysis of endometrial cancer identifies peroxisome proliferator-activated receptors as potential therapeutic targets.Mol Cancer Ther 2004;3:993-1001
    35.Grau R,Punzon C,Fresno M,et al.Peroxisome-proliferator-activated receptor alpha agonists inhibit cyclo-oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein-1.Biochem J 2006;395:81-88
    36.Cuzzocrea S,Bruscoli S,Mazzon E,et al.Peroxisome proliferator-activated receptor-alpha contributes to the anti-inflammatory activity of glucocorticoids.Mol Pharmacol 2008;73:323-337
    37.Cuzzocrea S,Mazzon E,Di Paola R,et al.The role of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in the regulation of acute inflammation.J Leukoc Biol 2006;79:999-1010
    38.Delerive P,De Bosscher K,Vanden Berghe W,et al.DNA binding-independent induction of IkappaBalpha gene transcription by PPARalpha.Mol Endocrinol 2002;16:1029-1039
    39.Dubrac S,Stoitzner P,Pirkebner D,et al.Peroxisome proliferator-activated receptor-alpha activation inhibits Langerhans cell function.J Immunol 2007;178:4362-4372
    40.Grabacka M,Reiss K.Anticancer Properties of PPARalpha-Effects on Cellular Metabolism and Inflammation.PPAR Res 2008;2008:930705
    41.Vanden Berghe W,Vermeulen L,Delerive P,et al.A paradigm for gene regulation:inflammation,NF-kappaB and PPAR.Adv Exp Med Biol 2003;544:181-196
    42.Saidi SA,Holland CM,Chamock-Jones DS,et al.In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer.Mol Cancer 2006;5:13
    43.Martinasso G,Oraldi M,Trombetta A,et al.Involvement of PPARs in Cell Proliferation and Apoptosis in Human Colon Cancer Specimens and in Normal and Cancer Cell Lines.PPAR Res 2007;2007:93416
    44.Yokoyama Y,Xin B,Shigeto T,et al.Clofibric acid,a peroxisome proliferator-activated receptor alpha ligand,inhibits growth of human ovarian cancer.Mol Cancer Ther 2007;6:1379-1386
    45.Panigrahy D,Kaipainen A,Huang S,et al.PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition.Proc Natl Acad Sci U S A 2008;105:985-990
    46.Grabacka M,Plonka PM,Urbanska K,et al.Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt.Clin Cancer Res 2006;12:3028-3036
    47.Grabacka M,Placha W,Plonka PM,et al.Inhibition of melanoma metastases by fenofibrate.Arch Dermatol Res 2004;296:54-58
    48.Nicholson KM,Anderson NG The protein kinase B/Akt signalling pathway in human malignancy.Cell Signal 2002;14:381-395
    49.Franke TF.PI3K/Akt:getting it right matters.Oncogene 2008;27:6473-6488
    50.Alessi DR,Andjelkovic M,Caudwell B,et al.Mechanism of activation of protein kinase B by insulin and IGF-1.EMBO J 1996;15:6541-6551
    51.Burgering BM,Coffer PJ.Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction.Nature 1995;376:599-602
    52.Henshall DC,Araki T,Schindler CK,et al.Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death.J Neurosci 2002;22:8458-8465
    53.Xin M,Deng X.Nicotine inactivation of the proapoptotic function of Bax through phosphorylation.J Biol Chem 2005;280:10781-10789
    54.Song G,Ouyang G,Bao S.The activation of Akt/PKB signaling pathway and cell survival.J Cell Mol Med 2005;9:59-71
    55.Hideshima T,Catley L,Raje N,et al.Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells.Br J Haematol 2007;138:783-791
    56.Wang J,Yang L,Yang J,et al.Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells.Cancer Res 2008;68:3152-3160
    57.Asanuma H,Torigoe T,Kamiguchi K,et al.Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells.Cancer Res 2005;65:11018-11025
    58.Ng SSW,Tsao MS,Chow S,et al.Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells.Cancer Res 2000;60:5451-5455
    59.Ng SS,Tsao MS,Nicklee T,et al.Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice.Clin Cancer Res 2001;7:3269-3275
    60.Sinicrope FA,Ruan SB,Cleary KR,et al.bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis.Cancer Res 1995;55:237-241
    61.Matsuyama M,Yoshimura R.Peroxisome Proliferator-Activated Receptor-gamma Is a Potent Target for Prevention and Treatment in Human Prostate and Testicular Cancer.PPAR Res 2008;2008:249849
    62.Staels B,Koenig W,Habib A,et al.Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.Nature 1998;393:790-793
    63.Kunnumakkara AB,Guha S,Krishnan S,et al.Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation,angiogenesis,and inhibition of nuclear factor-kappaB-regulated gene products.Cancer Res 2007;67:3853-3861
    64.Soldani C,Scovassi Al.Poly(ADP-ribose) polymerase-1 cleavage during apoptosis:an update.Apoptosis 2002;7:321-328
    65.Duriez PJ,Shah GM.Cleavage of poly(ADP-ribose) polymerase:a sensitive parameter to study cell death.Biochem Cell Biol 1997;75:337-349
    66.Du K,Herzig S,Kulkarni RN,et al.TRB3:a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.Science 2003;300:1574-1577
    67.A unified nomenclature system for the nuclear receptor superfamily.Cell 1999;97:161-163
    68.Issemann I,Green S.Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature 1990;347:645-650
    69.Krogsdam AM,Nielsen CA,Neve S,et al.Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation.Biochem J 2002;363:157-165
    70.Mueller E,Drori S,Aiyer A,et al.Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms.J Biol Chem 2002;277:41925-41930
    71.Shi Y,Hon M,Evans RM.The peroxisome proliferator-activated receptor delta,an integrator of transcriptional repression and nuclear receptor signaling.Proc Natl Acad Sci U S A2002;99:2613-2618
    72.Surapureddi S,Yu S,Bu H,et al.Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator.Proc Natl Acad Sci U S A 2002;99:11836-11841
    73.Reddy JK,Chu R.Peroxisome proliferator-induced pleiotropic responses:pursuit of a phenomenon.Ann N Y Acad Sci 1996;804:176-201
    74.Green S,Wahli W.Peroxisome proliferator-activated receptors:finding the orphan a home.Mol Cell Endocrinol 1994;100:149-153
    75.Schoonjans K,Martin G,Staels B,et al.Peroxisome proliferator-activated receptors,orphans with ligands and functions.Curr Opin Lipidol 1997;8:159-166
    76.Frick MH,Syvanne M,Nieminen MS,et al.Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol.Lopid Coronary Angiography Trial (LOCAT) Study Group.Circulation 1997;96:2137-2143
    77.Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes:the Diabetes Atherosclerosis Intervention Study,a randomised study.Lancet 2001;357:905-910
    78.Ruotolo G,Ericsson CG,Tettamanti C,et al.Treatment effects on serum lipoprotein lipids,apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT).J Am Coll Cardiol 1998;32:1648-1656
    79.Colhoun HM,Betteridge DJ,Durrington PN,et al.Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS):multicentre randomised placebo-controlled trial.Lancet 2004;364:685-696
    80.Lowe SW,Lin AW.Apoptosis in cancer.Carcinogenesis 2000;21:485-495
    81.Vaux DL,Strasser A.The molecular biology of apoptosis.Proc Natl Acad Sci U S A 1996;93:2239-2244
    82.Banerjee S,Zhang Y,Ali S,et al.Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer.Cancer Res 2005;65:9064-9072
    83.Martin SJ,Reutelingsperger CP,McGahon AJ,et al.Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus:inhibition by overexpression of Bcl-2 and Abl.J Exp Med 1995;182:1545-1556
    84.Vermes I,Haanen C,Steffens-Nakken H,et al.A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.J Immunol Methods 1995;184:39-51
    85.Grosshans J,Wieschaus E.A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila.Cell 2000;101:523-531
    86.Hegedus Z,Czibula A,Kiss-Toth E.Tribbles:novel regulators of cell function;evolutionary aspects.Cell Mol Life Sci 2006;63:1632-1641
    87.Koo SH,Satoh H,Herzig S,et al.PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3.Nat Med 2004;10:530-534
    88.Matsushima R,Harada N,Webster NJ,et al.Effect of TRB3 on insulin and nutrient-stimulated hepatic p70 S6 kinase activity.J Biol Chem 2006;281:29719-29729
    89.Cheng JQ,Godwin AK,Bellacosa A,et al.AKT2,a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases,is amplified in human ovarian carcinomas.Proc Natl Acad Sci U S A 1992;89:9267-9271
    90.Bellacosa A,de Feo D,Godwin AK,et al.Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas.Int J Cancer 1995;64:280-285
    91.Ringel MD,Hayre N,Saito J,et al.Overexpression and overactivation of Akt in thyroid carcinoma.Cancer Res 2001;61:6105-6111
    92.Burgering BM,Medema RH.Decisions on life and death:FOXO Forkhead transcription factors are in command when PKB/Akt is off duty.J Leukoc Biol 2003;73:689-701
    93.Vandermoere F,El Yazidi-Belkoura I,Adriaenssens E,et al.The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells.Oncogene 2005;24:5482-5491
    94.Jeong SJ,Pise-Masison CA,Radonovich MF,et al.Activated AKT regulates NF-kappaB activation,p53 inhibition and cell survival in HTLV-1-transformed cells.Oncogene 2005;24:6719-6728
    95.Gagnon V,St-Germain ME,Parent S,et al.Akt activity in endometrial cancer cells:regulation of cell survival through cIAP-1.Int J Oncol 2003;23:803-810
    96.Dan HC,Sun M,Kaneko S,et al.Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP).J Biol Chem 2004;279:5405-5412
    97.Duffy MJ,O'Donovan N,Brennan DJ,et al.Survivin:a promising tumor biomarker.Cancer Lett 2007;249:49-60
    98.Ambrosini G,Adida C,Altieri DC.A novel anti-apoptosis gene,survivin,expressed in cancer and lymphoma.Nat Med 1997;3:917-921
    99.Monzo M,Rosell R,Felip E,et al.A novel anti-apoptosis gene:Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers.J Clin Oncol 1999;17:2100-2104
    100.Tanaka K,Iwamoto S,Gon G,et al.Expression of survivin and its relationship to loss of apoptosis in breast carcinomas.Clin Cancer Res 2000;6:127-134
    101.Satoh K,Kaneko K,Hirota M,et al.Tumor necrosis factor-related apoptosis-inducing ligand and its receptor expression and the pathway of apoptosis in human pancreatic cancer.Pancreas 2001;23:251-258
    102.Kawasaki H,Altieri DC,Lu CD,et al.Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer.Cancer Res 1998;58:5071-5074
    103.Dan HC,Jiang K,Coppola D,et al.Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis.Oncogene 2004;23:706-715
    104.Kim S,Kang J,Qiao J,et al.Phosphatidylinositol 3-kinase inhibition down-regulates survivin and facilitates TRAIL-mediated apoptosis in neuroblastomas.J Pediatr Surg 2004;39:516-521
    105.Nieto J,Grossbard ML,Kozuch P.Metastatic pancreatic cancer 2008:is the glass less empty? Oncologist 2008;13:562-576
    106.DiMagno EP,Reber HA,Tempero MA.AGA technical review on the epidemiology,diagnosis,and treatment of pancreatic ductal adenocarcinoma.American Gastroenterological Association.Gastroenterology 1999;117:1464-1484
    107.Qiao M,Sheng S,Pardee AB.Metastasis and AKT activation.Cell Cycle 2008;7:2991-2996
    108.Kim D,Kim S,Koh H,et al.Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production.FASEB J 2001;15:1953-1962
    109.Tanno S,Mitsuuchi Y,Altomare DA,et al.AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells.Cancer Res 2001;61:589-593
    110.Ju X,Katiyar S,Wang C,et al.Aktl governs breast cancer progression in vivo.Proc Natl Acad Sci U S A 2007;104:7438-7443
    111.Jiao W,Miyazaki K,Kitajima Y.Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo.Br J Cancer 2002;86:98-101
    112.Huang W,Zhang Y,Varambally S,et al.Inhibition of CCN6 (Wnt-1-induced signaling protein 3) down-regulates E-cadherin in the breast epithelium through induction of snail and ZEB1.Am J Pathol 2008;172:893-904
    113.Hotz B,Arndt M,Dullat S,et al.Epithelial to mesenchymal transition:expression of the regulators snail,slug,and twist in pancreatic cancer.Clin Cancer Res 2007;13:4769-4776
    114.Hirohashi S.Inactivation of the E-cadherin-mediated cell adhesion system in human cancers.Am J Pathol 1998;153:333-339
    115.Kremer M,Quintanilla-Martinez L,Fuchs M,et al.Influence of tumor-associated E-cadherin mutations on tumorigenicity and metastasis.Carcinogenesis 2003;24:1879-1886
    116.Chen H,Paradies NE,Fedor-Chaiken M,et al.E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms.J Cell Sci 1997;110 (Pt 3):345-356
    117.Nieto MA.The snail superfamily of zinc-finger transcription factors.Nat Rev Mol Cell Biol 2002;3:155-166
    118.Rosivatz E,Becker I,Specht K,et al.Differential expression of the epithelial-mesenchymal transition regulators snail,SIPl,and twist in gastric cancer.Am J Pathol 2002;161:1881-1891
    119.Batlle E,Sancho E,Franci C,et al.The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.Nat Cell Biol 2000;2:84-89
    120.Zhou BP,Deng J,Xia W,et al.Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition.Nat Cell Biol 2004;6:931-940
    121.Bachelder RE,Yoon SO,Franci C,et al.Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription:implications for the epithelial-mesenchymal transition.J Cell Biol 2005;168:29-33
    122.Hynes RO.Metastatic potential:generic predisposition of the primary tumor or rare,metastatic variants-or both? Cell 2003;113:821-823
    123.Christofori G,Semb H.The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene.Trends Biochem Sci 1999;24:73-76
    124.Takeichi M.Cadherin cell adhesion receptors as a morphogenetic regulator.Science 1991;251:1451-1455
    125.Nigam AK,Pignatelli M,Boulos PB.Current concepts in metastasis.Gut 1994;35:996-1000
    126.Perez-Moreno M,Jamora C,Fuchs E.Sticky business:orchestrating cellular signals at adherens junctions.Cell 2003;112:535-548
    127.Moll R,Mitze M,Frixen UH,et al.Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas.Am J Pathol 1993;143:1731-1742
    128.Huiping C,Kristjansdottir S,Jonasson JQ et al.Alterations of E-cadherin and beta-catenin in gastric cancer.BMC Cancer 2001;1:16
    129.Jeffers MD,Paxton J,Bolger B,et al.E-cadherin and integrin cell adhesion molecule expression in invasive and in situ carcinoma of the cervix.Gynecol Oncol 1997;64:481-486
    130.Grau Y,Carteret C,Simpson P.Mutations and Chromosomal Rearrangements Affecting the Expression of Snail,a Gene Involved in Embryonic Patterning in DROSOPHILAMELANOGASTER.Genetics 1984;108:347-360
    131.Hajra KM,Chen DY,Fearon ER.The SLUG zinc-finger protein represses E-cadherin in breast cancer.Cancer Res 2002;62:1613-1618
    132.Kurrey NK,K A,Bapat SA.Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level.Gynecol Oncol 2005;97:155-165
    133.Barrallo-Gimeno A,Nieto MA.The Snail genes as inducers of cell movement and survival:implications in development and cancer.Development 2005;132:3151-3161
    134.Mann GN.Less is (usually) more:when is amputation appropriate for treatment of extremity soft tissue sarcoma? Ann Surg Oncol 2005;12:1-2
    135.Poser I,Dominguez D,de Herreros AG,et al.Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail.J Biol Chem 2001;276:24661-24666
    136.殷涛,王春友,刘涛,等.胰腺癌组织中Snail与E-钙粘素蛋白的表达及临床意义.中华医学杂志2006;86:2821-2825
    137.Come C,Arnoux V,Bibeau F,et al.Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression.J Mammary Gland Biol Neoplasia 2004;9:183-193
    138.Palmer HG,Larriba MJ,Garcia JM,et al.The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer.Nat Med 2004;10:917-919
    139.Marelli MM,Moretti RM,Procacci P,et al.Insulin-like growth factor-Ⅰpromotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling.Int J Oncol 2006;28:723-730
    140.Qiao M,Iglehart JD,Pardee AB.Metastatic potential of 21T human breast cancer cells depends on Akt/protein kinase B activation.Cancer Res 2007;67:5293-5299
    141.Alessi DR,Caudwell FB,Andjelkovic M,et al.Molecular basis for the substrate specificity of protein kinase B;comparison with MAPKAP kinase-1 and p70S6 kinase.FEBS Lett 1996;399:333-338
    142.Cross DA,Alessi DR,Cohen P,et al.Inhibition of glycogen synthase kinase-3by insulin mediated by protein kinase B.Nature 1995;378:785-789
    143.Shaw PC,Davies AF,Lau KF,et al.Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and-3 beta encoding genes.Genome 1998;41:720-727
    144.Grimes CA,Jope RS.The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling.Prog Neurobiol 2001;65:391-426
    145.Plyte SE,Hughes K,Nikolakaki E,et al.Glycogen synthase kinase-3:functions in oncogenesis and development.Biochim Biophys Acta 1992;1114:147-162
    1.A unified nomenclature system for the nuclear receptor superfamily.Cell.1999 Apr 16;97(2):161-3.
    2.Kersten S,Wahli W.Peroxisome proliferator activated receptor agonists.EXS.2000;89:141-51.
    3.Shi Y,Hon M,Evans RM.The peroxisome proliferator-activated receptor delta,an integrator of transcriptional repression and nuclear receptor signaling.Proc Natl Acad Sci U S A.2002 Mar 5;99(5):2613-8.
    4.Krogsdam AM,Nielsen CA,Neve S,et al.Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation.Biochem J.2002 Apr l;363(Pt l):157-65.
    5.Surapureddi S,Yu S,Bu H,et al.Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator.Proc Natl Acad Sci USA.2002 Sep 3;99(18):11836-41.
    6.Mueller E,Drori S,Aiyer A,et al.Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms.J Biol Chem.2002 Nov 1;277(44):41925-30.
    7.Desvergne B,Wahli W.Peroxisome proliferator-activated receptors:nuclear control of metabolism.Endocr Rev.1999 Oct;20(5):649-88.
    8.Michalik L,Desvergne B,Dreyer C,et al.PPAR expression and function during vertebrate development.Int J Dev Biol.2002 Jan;46(1):105-14.
    9.Michalik L,Desvergne B,Wahli W.Peroxisome proliferator-activated receptors beta/delta:emerging roles for a previously neglected third family member.Curr Opin Lipidol.2003 Apr;14(2):129-35.
    10.Lock EA,Mitchell AM,Elcombe CR.Biochemical mechanisms of induction of hepatic peroxisome proliferation.Annu Rev Pharmacol Toxicol.1989;29:145-63.
    11.Vanden Heuvel JP,Kreder D,Belda B,et al.Comprehensive analysis of gene expression in rat and human hepatoma cells exposed to the peroxisome proliferator WY14,643.Toxicol Appl Pharmacol.2003 May 1;188(3):185-98.
    12.Corton JC,Lapinskas PJ,Gonzalez FJ.Central role of PPARalpha in the mechanism of action of hepatocarcinogenic peroxisome proliferators.Mutat Res.2000 Mar 17;448(2):139-51.
    13.Boitier E,Gautier JC,Roberts R.Advances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models:relevance for human health and disease.Comp Hepatol.2003 Jan 31;2(1):3.
    14.Reddy JK,Rao MS.Peroxisome proliferation and hepatocarcinogenesis.IARC Sci Publ.1992(116):225-35.
    15.Marsman DS,Swanson-Pfeiffer CL,Popp JA.Lack of comitogenicity by the peroxisome proliferator hepatocarcinogens,Wy-14,643 and clofibric acid.Toxicol Appl Pharmacol.1993 Sep;122(1):1-6.
    16.Peters JM,Cattley RC,Gonzalez FJ.Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643.Carcinogenesis.1997 Nov;18(11):2029-33.
    17.Conway JG,Tomaszewski KE,Olson MJ,et al.Relationship of oxidative damage to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and Wy-14,643.Carcinogenesis.1989 Mar;10(3):513-9.
    18.Kasai H,Okada Y,Nishimura S,et al.Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator.Cancer Res.1989 May 15;49(10):2603-5.
    19.Takagi A,Sai K,Umemura T,et al.Relationship between hepatic peroxisome proliferation and 8-hydroxydeoxyguanosine formation in liver DNA of rats following long-term exposure to three peroxisome proliferators;di(2-ethylhexyl) phthalate,aluminium clofibrate and simfibrate.Cancer Lett.1990 Aug;53(1):33-8.
    20.Cattley RC,Glover SE.Elevated 8-hydroxydeoxyguanosine in hepatic DNA of rats following exposure to peroxisome proliferators:relationship to carcinogenesis and nuclear localization.Carcinogenesis.1993 Dec;14(12):2495-9.
    21.Frick MH,Elo O,Haapa K,et al.Helsinki Heart Study:primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia.Safety of treatment,changes in risk factors,and incidence of coronary heart disease.N Engl J Med.1987 Nov 12;317(20):1237-45.
    22.Oliver MF.Strategy of reducing coronary risk and the use of drugs.J Cardiovasc Pharmacol.1984;6 Suppl 6:S880-7.
    23.Bentley P,Calder I,Elcombe C,et al.Hepatic peroxisome proliferation in rodents and its significance for humans.Food Chem Toxicol.1993 Nov;31(11):857-907.
    24.Palmer CN,Hsu MH,Griffin KJ,et al.Peroxisome proliferator activated receptor-alpha expression in human liver.Mol Pharmacol.1998 Jan;53(1):14-22.
    25.Tugwood JD,Aldridge TC,Lambe KG,et al.Peroxisome proliferator-activated receptors:structures and function.Ann N Y Acad Sci.1996 Dec 27;804:252-65.
    26.Maloney EK,Waxman DJ.trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals.Toxicol Appl Pharmacol.1999 Dec 1;161(2):209-18.
    27.Woodyatt NJ,Lambe KG,Myers KA,et al.The peroxisome proliferator (PP) response element upstream of the human acyl CoA oxidase gene is inactive among a sample human population:significance for species differences in response to PPs.Carcinogenesis.1999 Mar;20(3):369-72.
    28.Lambe KG,Woodyatt NJ,Macdonald N,et al.Species differences in sequence and activity of the peroxisome proliferator response element (PPRE) within the acyl CoA oxidase gene promoter.Toxicol Lett.1999 Oct 29;110(1-2):119-27.
    29.Jiao HL,Zhao BL.Cytotoxic effect of peroxisome proliferator fenofibrate on human HepG2 hepatoma cell line and relevant mechanisms.Toxicol Appl Pharmacol.2002 Dec 15;185(3):172-9.
    30.Holland CM,Saidi SA,Evans AL,et al.Transcriptome analysis of endometrial cancer identifies peroxisome proliferator-activated receptors as potential therapeutic targets.Mol Cancer Ther.2004 Aug;3(8):993-1001.
    31.Grau R,Punzon C,Fresno M,et al.Peroxisome-proliferator-activated receptor alpha agonists inhibit cyclo-oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein-1.Biochem J.2006 Apr l;395(1):81-8.
    32.Aggarwal BB.Nuclear factor-kappaB:the enemy within.Cancer Cell.2004 Sep;6(3):203-8.
    33.Ahn KS,Sethi G,Aggarwal BB.Embelin,an inhibitor of X chromosome-linked inhibitor-of-apoptosis protein,blocks nuclear factor-kappaB (NF-kappaB) signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products.Mol Pharmacol.2007 Jan;71(1):209-19.
    34.Fabre C,Carvalho G,Tasdemir E,et al.NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia.Oncogene.2007 Jun 14;26(28):4071-83.
    35.Nair AS,Shishodia S,Ahn KS,et al.Deguelin,an Akt inhibitor,suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression,potentiation of apoptosis,and inhibition of cellular invasion.J Immunol.2006 Oct 15;177(8):5612-22.
    36.Delerive P,De Bosscher K,Vanden Berghe W,et al.DNA binding-independent induction of IkappaBalpha gene transcription by PPARalpha.Mol Endocrinol.2002 May;16(5):1029-39.
    37.Cuzzocrea S,Bruscoli S,Mazzon E,et al.Peroxisome proliferator-activated receptor-alpha contributes to the anti-inflammatory activity of glucocorticoids.Mol Pharmacol.2008 Feb;73(2):323-37.
    38.Cuzzocrea S,Mazzon E,Di Paola R,et al.The role of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in the regulation of acute inflammation.J Leukoc Biol.2006 May;79(5):999-1010.
    39.Dubrac S,Stoitzner P,Pirkebner D,et al.Peroxisome proliferator-activated receptor-alpha activation inhibits Langerhans cell function.J Immunol.2007 Apr 1;178(7):4362-72.
    40.Vanden Berghe W,Vermeulen L,Delerive P,et al.A paradigm for gene regulation:inflammation,NF-kappaB and PPAR.Adv Exp Med Biol.2003;544:181-96.
    41.Grabacka M,Reiss K.Anticancer Properties of PPARalpha-Effects on Cellular Metabolism and Inflammation.PPAR Res.2008;2008:930705.
    42.Saidi SA,Holland CM,Charnock-Jones DS,et al.In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer.Mol Cancer.2006;5:13.
    43.Martinasso G,Oraldi M,Trombetta A,et al.Involvement of PPARs in Cell Proliferation and Apoptosis in Human Colon Cancer Specimens and in Normal and Cancer Cell Lines.PPAR Res.2007;2007:93416.
    44.Yokoyama Y,Xin B,Shigeto T,et al.Clofibric acid,a peroxisome proliferator-activated receptor alpha ligand,inhibits growth of human ovarian cancer.Mol Cancer Ther.2007 Apr;6(4):1379-86.
    45.Panigrahy D,Kaipainen A,Huang S,et al.PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition.Proc Natl Acad Sci USA.2008 Jan 22;105(3):985-90.
    46.Grabacka M,Plonka PM,Urbanska K,et al.Peroxisome proliferator-activated receptor alpha activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt.Clin Cancer Res.2006 May 15;12(10):3028-36.
    47.Grabacka M,Placha W,Plonka PM,et al.Inhibition of melanoma metastases by fenofibrate.Arch Dermatol Res.2004 Jul;296(2):54-8.
    48.Kliewer SA,Forman BM,Blumberg B,et al.Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.Proc Natl Acad Sci U S A.1994 Jul 19;91(15):7355-9.
    49.Dreyer C,Krey G,Keller H,et al.Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors.Cell.1992 Mar 6;68(5):879-87.
    50.He TC,Chan TA,Vogelstein B,et al.PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs.Cell.1999 Oct 29;99(3):335-45.
    51.Shao J,Sheng H,DuBois RN.Peroxisome proliferator-activated receptors modulate K-Ras-mediated transformation of intestinal epithelial cells.Cancer Res.2002 Jun 1;62(11):3282-8.
    52.Park BH,Vogelstein B,Kinzler KW.Genetic disruption of PPARdelta decreases the tumorigenicity of human colon cancer cells.Proc Natl Acad Sci U S A.2001 Feb 27;98(5):2598-603.
    53.Jaeckel EC,Raja S,Tan J,et al.Correlation of expression of cyclooxygenase-2,vascular endothelial growth factor,and peroxisome proliferator-activated receptor delta with head and neck squamous cell carcinoma.Arch Otolaryngol Head Neck Surg.2001 Oct;127(10):1253-9.
    54.Tong BJ,Tan J,Tajeda L,et al.Heightened expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-delta in human endometrial adenocarcinoma.Neoplasia.2000 Nov-Dec;2(6):483-90.
    55.Suchanek KM,May FJ,Lee WJ,et al.Peroxisome proliferator-activated receptor beta expression in human breast epithelial cell lines of tumorigenic and non-tumorigenic origin.Int J Biochem Cell Biol.2002 Sep;34(9):1051-8.
    56.Michalik L,Desvergne B,Tan NS,et al.Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice.J Cell Biol.2001 Aug 20;154(4):799-814.
    57.Tan NS,Michalik L,Noy N,et al.Critical roles of PPAR beta/delta in keratinocyte response to inflammation.Genes Dev.2001 Dec 15;15(24):3263-77.
    58.Peters JM,Lee SS,Li W,et al.Growth,adipose,brain,and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta).Mol Cell Biol.2000 Jul;20(14):5119-28.
    59.Schachat FH,Harris HE,Epstein HF.Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans.Cell.1977 Apr;10(4):721-8.
    60.Hatae T,Wada M,Yokoyama C,et al.Prostacyclin-dependent apoptosis mediated by PPAR delta.J Biol Chem.2001 Dec 7;276(49):46260-7.
    61.Hellemans K,Michalik L,Dittie A,et al.Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells.Gastroenterology.2003 Jan;124(1):184-201.
    62.Zhang J,Fu M,Zhu X,et al.Peroxisome proliferator-activated receptor delta is up-regulated during vascular lesion formation and promotes post-confluent cell proliferation in vascular smooth muscle cells.J Biol Chem.2002 Mar 29;277(13):11505-12.
    63.Vosper H,Patel L,Graham TL,et al.The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages.J Biol Chem.2001 Nov 23;276(47):44258-65.
    64.Saluja I,Granneman JG,Skoff RP.PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture.Glia.2001 Mar l;33(3):191-204.
    65.Sarraf P,Mueller E,Jones D,et al.Differentiation and reversal of malignant changes in colon cancer through PPARgamma.Nat Med.1998 Sep;4(9):1046-52.
    66.Tanaka T,Kohno H,Yoshitani S,et al.Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats.Cancer Res.2001 Mar 15;61(6):2424-8.
    67.Osawa E,Nakajima A,Wada K,et al.Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice.Gastroenterology.2003 Feb;124(2):361-7.
    68.Saez E,Tontonoz P,Nelson MC,et al.Activators of the nuclear receptor PPARgamma enhance colon polyp formation.Nat Med.1998 Sep;4(9):1058-61.
    69.Lefebvre AM,Chen I,Desreumaux P,et al.Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice.Nat Med.1998 Sep;4(9):1053-7.
    70.Gimun GD,Smith WM,Drori S,et al.APC-dependent suppression of colon carcinogenesis by PPARgamma.Proc Natl Acad Sci USA.2002 Oct 15;99(21):13771-6.
    71.Michalik L,Desvergne B,Wahli W.Peroxisome-proliferator-activated receptors and cancers:complex stories.Nat Rev Cancer.2004 Jan;4(1):61-70.
    72.Elstner E,Muller C,Koshizuka K,et al.Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice.Proc Natl Acad Sci USA.1998 Jul 21;95(15):8806-11.
    73.Mehta RG,Williamson E,Patel MK,et al.A ligand of peroxisome proliferator-activated receptor gamma,retinoids,and prevention of preneoplastic mammary lesions.J Natl Cancer Inst.2000 Mar l;92(5):418-23.
    74.Suh N,Wang Y,Williams CR,et al.A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma),GW7845,inhibits rat mammary carcinogenesis.Cancer Res.1999 Nov 15;59(22):5671-3.
    75.Kubota T,Koshizuka K,Williamson EA,et al.Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo.Cancer Res.1998 Aug 1;58(15):3344-52.
    76.Mueller E,Smith M,Sarraf P,et al.Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer.Proc Natl Acad Sci U S A.2000 Sep 26;97(20):10990-5.
    77.Hisatake JI,Ikezoe T,Carey M,et al.Down-Regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-aetivated receptor gamma in human prostate cancer.Cancer Res.2000 Oct 1;60(19):5494-8.
    78.Altiok S,Xu M,Spiegelman BM.PPARgamma induces cell cycle withdrawal:inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A.Genes Dev.1997 Aug 1;11(15):1987-98.
    79.Shao D,Lazar MA.Peroxisome proliferator activated receptor gamma,CCAAT/enhancer-binding protein alpha,and cell cycle status regulate the commitment to adipocyte differentiation.J Biol Chem.1997 Aug 22;272(34):21473-8.
    80.Heaney AP,Fernando M,Melmed S.PPAR-gamma receptor ligands:novel therapy for pituitary adenomas.J Clin Invest.2003 May;111(9):1381-8.
    81.Kitamura S,Miyazaki Y,Hiraoka S,et al.PPARgamma agonists inhibit cell growth and suppress the expression of cyclin D1 and EGF-like growth factors in ras-transformed rat intestinal epithelial cells.Int J Cancer.2001 Nov 1;94(3):335-42.
    82.Toyota M,Miyazaki Y,Kitamura S,et al.Peroxisome proliferator-activated receptor gamma reduces the growth rate of pancreatic cancer cells through the reduction of cyclin D1.Life Sci.2002 Feb 15;70(13):1565-75.
    83.Qin C,Burghardt R,Smith R,et al.Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells.Cancer Res.2003 Mar 1;63(5):958-64.
    84.Wang C,Fu M,D'Amico M,et al.Inhibition of cellular proliferation through IkappaB kinase-independent and peroxisome proliferator-activated receptor gamma-dependent repression of cyclin D1.Mol Cell Biol.2001 May;21(9):3057-70.
    85.Chen GG,Lee JF,Wang SH,et al.Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and NF-kappaB in human colon cancer.Life Sci.2002 Apr 19;70(22):2631-46.
    86.Satoh T,Toyoda M,Hoshino H,et al.Activation of peroxisome proliferator-activated receptor-gamma stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells.Oncogene.2002 Mar 28;21(14):2171-80.
    87.Patel L,Pass I,Coxon P,et al.Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN.Curr Biol.2001 May 15;11(10):764-8.
    88.Farrow B,Evers BM.Activation of PPARgamma increases PTEN expression in pancreatic cancer cells.Biochem Biophys Res Commun.2003 Jan 31;301(1):50-3.
    89.Xin X,Yang S,Kowalski J,et al.Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo.J Biol Chem.1999 Mar 26;274(13):9116-21.
    90.Demetri GD,Fletcher CD,Mueller E,et al.Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma.Proc Natl Acad Sci USA.1999 Mar 30;96(7):3951-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700