用户名: 密码: 验证码:
水下熔化极电弧热切割方法及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国海洋战略的发展,船舶、海岸结构、海洋平台、海底管道等大量建造,使得对水下切割的需求大大增加。水下切割方法众多,但考虑到目前在水下60米范围以内比较广泛的应用,很多设备安全性不高,灵活性不好而且对水下工装要求高而具有局限性。因此,本文提出了一种新型的水下熔化极电弧热切割技术,利用药芯割丝在割丝与工件之间引燃电弧,通过电弧热熔化金属,再借助药芯产生的气体吹落熔融金属而进行切割。
     文中介绍了水下熔化极电弧热切割工艺的原理,构建了切割试验系统,进行了水下切割工艺试验。研究了水下熔化极电弧热切割工艺参数对切口成形的影响,分析了影响水下切割电弧稳定性的因素。成功实现将超声频脉冲电源与直流切割电源并联,使超声频交变信号经过电容耦合进入切割电弧,建立了超声频脉冲水下熔化极电弧热切割试验系统,通过切割试验,研究了超声频脉冲电流的幅值和频率对切口宽度、切口面倾斜角和直线度的影响。
     试验结果表明:利用大功率直流电源、配套送丝机构、行走机构、水箱及其工装集成的水下熔化极电弧热切割装置,具有较高的稳定性;切割质量是由切割电流与电弧电压、切割速度三者的合理匹配与优化决定的;切割过程中电弧稳定性与切割电流、电弧电压、切割速度三者有密切关系;超声频脉冲调制作用增强了电弧的收缩程度和挺度,同时还明显地改善了切口形状。
With the development of maritime strategy, building quantity of ships, coastal constructions, ocean platforms and submarine pipelines has increased greatly, which leads to an increase in the requirements of underwater cutting. There are many underwater cutting processes, which exits limitations. Because many equipments lost of high security and flexibility, as well as the high requirements and restrictive conditions of underwater equipment tooling and assembly under the depth of 60 meters. This paper introduces a new process of underwater consumable electrode arc cutting. It ignites the arc between the flux-cored wire and the test piece, uses arc heat to melt metal and blows away the melted metal simultaneously by the gas that flux core produced.
     This paper introduces the principle of underwater consumable electrode arc cutting process, designs the underwater cutting system, and then carries out underwater cutting experiments. The effect of underwater consumable electrode arc cutting process parameters on kerf shape was investigated, and the governing factors of underwater cutting arc stability was analyzed in this research. Furthermore, an alternating impulse signal was superimposed via coupling capacitor onto cutting arc by paralleling an ultrasonic frequency pulse generator with an ordinary cutting power supply, and an experimental system was constituted correspondingly. A number of cutting experiments were used to investigate the effect of the cutting process parameters (pulse current amplitude and pulse frequency) on kerf widths, bevel angle and straightness.
     Experimental results show that an integrated set of underwater consumable electrode arc cutting equipment which consists of high-power dc power supply, wire feeder, manipulating mechanism and water tank is stable. The cutting quality is decided by matching and optimizing among the three parameters of cutting current, arc voltage and cutting speed. In addition, the three parameters are closely related to cutting arc stability. The ultrasonic frequency pulse modulation strengthens the constricted degree and stiffness of the arc, and improves the kerf shape obviously.
引文
[1]杜文博,朱胜,孟凡军.水下切割技术研究及应用[J].焊接技术,2009,38(10):1-5.
    [2]付昱华.水下焊接与切割技术综述[J].中国海上油气(工程),2000,12(3):1-8.
    [3] Yamashita, et al. Welding and cutting for very large floating structures[C]. Proceeding of the Seventh International Welding Symposium, 2001, 1: 49-56.
    [4]瓦西列夫KB.水下金属切割与焊接[M].王天富译.北京:人民交通出版社,1958.
    [5]刘海滨,陈晓强.水下焊接与切割技术应用及发展研究[J].大坝与安全,2008,22(1):68-71.
    [6] Zhaohui Zong, Zhouming Sun. Research of underwater plasma arc cutting technology[J]. Locomotive and Roiling Stock Technology, 2001, 1(3): 4-6.
    [7]王宗杰,温瑾林.国外等离子弧切割技术的发展现状及动向[J].沈阳工业大学学报,1986,8(3):105-l16.
    [8] Hypeaherm Incorporation. A history of plasma cutting[R]. USA: Hypeatherm Marketing Department, 1996.
    [9]梅福欣,俞尚知.水下焊接与切割译文集[M].北京:机械工业出版社.1982.
    [10]魏昕防,宋广俊.浅谈我国的切割技术和行业现状及发展前景[J].中国科教博览杂志,2004:100-102.
    [11]李德元等.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005.
    [12]沈阳机电学院焊接教研组.等离子弧与焊接[M].北京:科学出版社,1978.
    [13] Nemchinsky V. A. Liquid metal movement during plasma arc cutting[J]. Welding Journal, 1996, 75(12): 388-392.
    [14]章枚.空气等离子切割技术的应用[J].焊接技术,1995(2):35-38.
    [15] Mawson M.S, et al. How plasma arc cutting gases affect productivity[J]. Welding Journal, 1984, 63(2): 35-39.
    [16] Shapiro I.S, et al. The energy characteristics of the plasma arc in cutting with pulsed current[J]. Welding Production, 1977, 24(2): 33-36.
    [17] Jiayou Wang, et al. Recent application of plasma arc cutting technology in Japan[J]. Int. J. for Joining of Materials (Sweden), 2001, 13(2): 48-52.
    [18]宗朝晖,孙周明.水下等离子弧切割技术的研究[J].机车车辆工艺,2001(1):4-6.
    [19]宋宝天,宋场.我国水下焊接与切割技术发展概况[C].救捞专业委员会学术交流会论文集,2002:91-93.
    [20] Steve Szczesniak.创新的水喷射切割技术[J],现代制造.2008,(18):58-60.
    [21]梁仁圻.高速水束切割技术[J].机械制造,1998,(07):36-39.
    [22]周晓莉,夏波拉.水喷射加工技术及应用[J].工具技术,1993,(06):25-29.
    [23]赵寿元,李勇,高军伟,廖燕.水下切割技术的研究[J].机械研究与应用,2007,10(20):27-37.
    [24] Shilong Yan, et al. Experimental research on cutting steel plate of underwater explosion[J]. Explosive Materials, 2004, 33(2): 26-29.
    [25]颜事龙,王尹军,王昌建.水下爆炸切割钢板的实验研究[J].爆破器材,2004,4(2):26-29.
    [26]颜事龙,王尹军,王昌建.水下爆炸切割钢板厚度影响因素的模糊评判方法[J].爆破器材,2000,29(5):27-30.
    [27]续守成,贝全荣.水下焊接与切割技术[M].北京:海洋出版社,1986.
    [28]许明.超高压喷水切割设备及其应用[DB],http://www.cqvip.com.
    [29]杨振林.水射流切割工艺及应用[J].焊接研究与生产.1993,(1):5-8.
    [30]晓新.高压水射流切割的应用[J].机械工艺师,1990:11-12.
    [31] Meng Q. X, Cao L. W, Wang L. Q, et al. Research on cutting technology of underwater diamond wire saw[D]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2006, 27 (3): 429-433.
    [32]龙斌,刘明珠,胡艳华,牛虎理.水下切割技术现状及其发展趋势[J].中国造船,2009,(50):455-459.
    [33] Penger W. Diamond wire saw contribution to new Berlin interchange[J]. Industrial Diamond Review, 2000, 60(2): 44-47.
    [34]王慧.水下金刚石绳锯机试验样机研究[D].哈尔滨:哈尔滨工程大学,2008:1-60.
    [35]英国焊接研究所,乌克兰巴顿电焊研究所.水下湿式焊接与切割[M].石油工业出版社,2007:101-120.
    [36]吴敏生,段向阳,李路明等.电弧超声的激发及其特性研究[J].清华大学学报(自然科学版),1999,39(6):110-112.
    [37]吴敏生,张春雷,段向阳.电弧超声的频率响应特性及其谐振机理[J].清华大学学报(自然科学版),1999,39(11):97-99.
    [38]吴敏生,段向阳等.受激电弧超声发射实验研究[J].焊接学报,1999(5):10-12.
    [39]周荣林,郭德伦,李从卿等.TC4钛合金电弧超声TIG焊[J].焊接学报,2004,25(6):97-98.
    [40]何龙标,文雄伟,郝红伟等.电弧超声改善堆焊和热喷涂质量的试验研究[J].中国机械工程,2007,18(7):760-763.
    [41] Rosenberg L D. Physical principles of ultrasonic technology[J]. New York: Plenum Press, 1973, 24(2): 264-270.
    [42]李亚江等.切割技术及应用[M].北京:化学工业出版社,2002.
    [43] Jiayou Wang, Junhua Yu, et al. Effect of arc current ultrasonic-frequency pulsation on plasma cutquality[J]. Materials Science Forum, Vols. 2009(628-629): 721-726.
    [44]王加友,王晓梁,于军华等.超声频脉冲等离子切割电弧振动特性研究[J].江苏科技大学学报(自然科学版),2008,22(4):24-27.
    [45]于军华.超声频脉冲等离子弧切割工艺研究[D].镇江:江苏科技大学硕士学位论文.2009,3.
    [46]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986.
    [47]王晓梁.超声频脉冲等离子切割方法及电弧物理研究[D].镇江:江苏科技大学硕士学位论文.2008,3.
    [48]胡特生.电弧焊[M].北京:机械工业出版社,1984.
    [49]王飞等.CO2气体保护药芯焊丝双丝焊接电信号稳定性分析[J].上海交通大学学报,2010,44(4):457-462.
    [50]李勇,童彦刚,曾钢.电弧电压对混合气体保护焊电弧稳定性的影响[J].电焊机,2005,35(5):30-33.
    [51]赖忠民,高飞.几种交流TIG焊电弧稳定性的比较研究[J].江苏科技大学学报(自然科学版),2006,20(5):86-89.
    [52]冯晓庆,刘海云,周增.自保护药芯焊丝电弧稳定性分析[J].电焊机,2009,39(6):30-33.
    [53]赵家瑞.电流脉冲频率对TIG焊电弧影响机理的研究[J].电焊机,1993:16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700