用户名: 密码: 验证码:
液压锚杆钻机设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚杆钻机是与锚杆支护施工相配套的关键设备之一,影响着支护质量的好坏与支护速度的快慢。采用旋转切削方式破岩钻孔的单体锚杆钻机是目前钻孔机具的主导产品。但机体笨重、可靠性低制约着它们进一步推广使用,迫切需要研制高性能的锚杆钻孔机具。针对这一状况,本论文开展了液压锚杆钻机的设计研究工作。
     首先对锚杆钻机破岩机理进行了研究。论文系统分析研究了锚杆钻机破岩特点、在旋转切削作用下的岩石所表现出的物理性质与机械性质、以及影响旋转切削破岩钻进速度与效果的主要因素。
     本论文提出了将非圆行星齿轮液压马达用于锚杆钻机,在对不同类型非圆行星齿轮液压马达的结构及性能分析的基础上,针对非圆行星齿轮液压马达设计时目标函数及约束条件较多、且设计变量为离散变量、有些参数相互关联而其影响关系不易直接看出的特点,采用了基于正交试验的鲁棒性设计方法对非圆行星齿轮液压马达进行优化设计。建立了非圆行星齿轮液压马达鲁棒性设计的数学模型,通过计算获得了各设计方案的质量特性数据,以信噪比为工具得到了符合设计要求的马达结构参数的组合,且在较宽松的工艺条件下即可使马达具有较强的鲁棒性。在鲁棒优化设计的基础上,完成了非圆行星齿轮液压马达以及新型液压锚杆钻机的产品设计,委托加工厂家试制了样机。
     细长的锚杆钻具在旋转切削破岩钻孔过程中有着复杂的工况,受到复杂的外力,具有复杂的变形和运动学、动力学状态。论文利用有限元仿真软件ANSYS软件对锚杆钻具整体的静力学和动力学特性进行了更加精确、可靠地分析与研究。主要研究内容包括锚杆钻具有限元模型建立、边界条件确定、约束及载荷加载、钻具受力与变形特点分析以及钻具可能同时受到扭转振动、纵向振动和横向振动等激励的模态分析,为科学设计锚杆钻具及钻机、合理确定钻进参数和指导实际生产等提供了重要的参考。
     论文在合理假设的基础上,建立了液压锚杆钻机静动态特性的数学模型,研究了其静动态特性,得到了其在额定负载条件下启动的速度特性方程、在正常工作条件下的负载特性方程以及马达输出转速对阶跃流量输入和阶跃负载输入的动态响应方程。通过试验确定了钻机特性数学模型中的参量值,得到了反映钻机静动态特性的试验曲线,并采用仿真软件MATLAB对其进行了仿真。仿真曲线与试验曲线具有较好的一致性,表明所建立的描述该锚杆钻机特性的物理模型、数学模型以及仿真模型的合理性,验证了理论分析研究的正确性。通过井下实钻试验,表明了该液压锚杆钻机设计合理,具有结构紧凑、重量轻、钻孔速度快、操作方便、可靠性高等特点,完全能满足煤矿现场的使用要求。
Roofbolter is one of the key equipments for the construction of bolt support, which influences support quality and support speed. The monomer roofbolter by rotary cutting breaking rock, has become the main trend of the production and development of drilling machines for bolt support Heavy machine body and low reliability is one of the main common factors restricting them further spreading use. It is urgently necessary to develop a kind of roofbolter with high performance. According to the existing problem, hydraulic roofbolter is designed and researched in this dissertation.
     Firstly, the breaking rock mechanism of roofbolter is studied. This dissertation systematically analyses the breaking rock characteristics, the physical and mechanical property of rock while rotary cutting, and some factors influencing drilling rate and effectiveness of rotary cutting breaking rock.
     This paper puts forward applying non-circular planetary gear hydraulic motor to roofbolter, and analyzes the structures and performances of different types of non-circular planetary gear motors. On the basis of studying on the non-circular planetary gear mechanism and movement, the design formula and constraint condition of pitch curve is theoretically derived. There are many objective functions and design variables to optimally design a non-circular planetary gear motor, the design variables are discrete, some parameters are interdependent and the influence relation among them can not be seen clearly, so the robust optimization design method based on orthogonal test is adopted to design a non-circular planetary gear motor. The mathematical model of robust optimization design for a non-circular planetary gear motor is established. Quality characteristic datum of various design schemes are obtained by computing. By means of signal-to-noise ratio, combination of motor structure parameters to meet design requirements is gained. All these ensure the motor to have a strong robustness under a more loose process condition. Based on robust optimization design for the motor, product design of the non-circular planetary gear motor and the new hydraulic roofbolter is carried out, trial production is performed by a manufacturer.
     While rotary cutting rock, the slender drilling tool for roofbolter bears rather complicated working conditions and outside force. It has complicated deformation, kinematics and dynamics status. This paper analyzes and researches the statics and dynamics characteristics of drilling tool using finite element analysis simulation software ANSYS more accurately and reliably, which mainly includes foundation of finite element model for drilling tool, determination of boundary conditions, setting of restrictions and load, analysis of force-bearing and deformation characteristics, modal analysis including torsional vibration, longitudinal vibration and transverse vibration. The research results can provide important reference for scientifically designing drilling tool and roofbolter, reasonably determining drilling parameters and directing practical production.
     The mathematical model of static and dynamic characteristic of the hydraulic roofbolter is established on the basis of reasonable hypothesis. After studying, the velocity characteristic equation of rated load starting, the load characteristic equation of normal work and the dynamic characteristic equations which are the response of speed output to input of step flow and the response of speed output to input of step load are obtained. By experiment, parameter values in the mathematical model and test curves related to the characteristic of hydraulic roofbolter are gained. The simulation is carried out with MATLAB and the simulation curves are in good consistency with test curves. The results show that physical model, mathematical model and simulation model of roofbolter’s characteristic are reasonable. It verifies the accuracy of theoretical analysis research. Underground practical drilling test has indicated that the roofbolter possesses the features of reasonable design, compact structure, light weight, fast drilling rate, easy operation and high reliability, which can completely meet the demands of application.
引文
[1]何满潮等.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [2]姜有,周贵全.影响回采巷道锚杆支护效果的因素分析[J],东北煤炭技术,1999(5):20-22.
    [3]祝顺义.回采巷道锚杆支护及其机具的应用研究[J],有色矿冶, Vol.19 No.6,2003年12月:7-9,20.
    [4]杨德传.煤巷锚杆支护现状及其存在的问题探讨[J],采矿技术,Vol.6 No.1,2006年3月:40-41,43.
    [5]赵兴东,张永彬.浅谈锚杆支护存在的几个问题[J],矿山压力与顶板管理,2003(4):40-42.
    [6] http://www.mgzh.com
    [7]杨双锁,康立勋.煤矿巷道锚杆支护研究的总结与展望[J],太原理工大学学报,Vol.33 No.4,2002年7月:376-381.
    [8]王金华.我国煤巷机械化掘进机现状及锚杆支护技术[J],煤炭科学技术,Vol.32 No.1,2004年1月:6-10.
    [9]张继远,郑再春.提高锚杆支护可靠性的途径[J],煤矿现代化,2005 (5): 34.
    [10]叶彬.煤巷及半煤巷锚杆支护快速掘进[J],中国西部科技,2006(11):18.
    [11]陈见红.如何提高锚杆支护可靠性[J],科技情报开发与经济, Vol.15 No.13,2005年:285-286.
    [12]张庆云,郑澈.MQT-60B气动侧帮锚杆钻机的设计[J],煤矿机械,2004(6):8-9.
    [13]王焕文,王继良等.锚杆支护[M].北京:煤炭工业出版社,1986.
    [14]王飞,赵喜敬,黄伟建.略论我国煤矿锚杆钻机的发展[J].矿山机械,2005(9):13-15.
    [15]陈荣君,梁明东,黄忠东.浅析锚杆钻机的现状及其发展[J].煤矿机电,2001(4):28-31.
    [16]邹敢.锚杆钻机的发展现状[J].煤矿机械, Vol.21 No.2, 2006年3月:363-366.
    [17]邹敢.浅谈锚杆钻机的发展现状[J].矿山机械, 2006(3):22-24.
    [18]郭孝先.煤矿锚杆钻机合理趋向[J].建井技术, Vol.19 No.1, 1998年2月:36-38.
    [19]张立刚,郭孝先.煤矿锚杆孔钻进设备的发展前途[J].凿岩机械气动工具, 1999(2):27-31.
    [20]张日东.煤矿锚杆孔钻进设备的发展前景[J].同煤科技, 2005(12):5-7.
    [21]邓乐,毋琳.煤矿锚杆钻机的现状与发展方向[J].中州煤炭, 1999(5):7-8.
    [22] W.C.毛勒[美].新式钻岩技术[M].北京:地质出版社,1986年:323-327
    [23]杨善国.叶片式风动锚杆钻机的研究[D].徐州:中国矿业大学,2001.
    [24] Du Chong-long. Design and research on pneumatic vane motor roofbolter [J]. Journal ofCoal Science & Engineering (China), 2003. 9(2):109-112.
    [25]杨善国.叶片式风动锚杆钻机旋转切削机构优化设计[J].中国矿业大学学报,2002,31(4):426-429.
    [26]杨善国.叶片式风动锚杆钻机旋转切削机构模糊优化设计[J].四川大学学报(工程科学版),2003,35(4):74-77.
    [27]李建胜.MQT系列气动锚杆(锚索)钻机的性能与应用[J].煤矿机械,2003,4:64-65.
    [28]王彦海.锚杆钻机气动马达效率分析与提高[J].煤矿机械,2006,27(1):143-144.
    [29]许淑惠.气动锚杆钻机齿轮马达特性的理论分析与实验研究[J].煤矿机械,2004,12:45-46.
    [30]籍成静.气动锚杆钻机的噪声防治[J].建井技术,2002,23(5):37-38.
    [31]杨善国.叶片式风动锚杆钻机的噪声与控制[J].液压与气动,2003,9:49-50.
    [32]黄忠东.气动锚杆钻机玻璃钢支腿的制作和稳定性计算[J].煤矿机电,2005,1:39-41.
    [33]陈桂娥.新型电动锚杆钻机的设计[J].锚杆支护,2000,4(1):34-39.
    [34]王战洲.煤巷轻型电动锚杆钻机的研制[J].煤矿机械,1996,6:40-42.
    [35]杜长龙.新型电动锚杆钻机的设计与选用[J].矿山机械,1998,3:17-18.
    [36]孟铮.MDS3型电动锚杆钻机的设计和应用研究[J].煤炭科学技术,1996,24(7):43-45.
    [37]周明连.液压锚杆钻机系统过热的机理分析与试验研究[J].煤矿机械,1999,5:13-15.
    [38]邓乐.提高MZ-Ⅲ液压锚杆钻机可靠性的探讨[J].煤矿机械,1998,9:20-21.
    [39]蔡津玲.提高YMZ-7.5液压锚杆钻机可靠性的措施[J].中州煤炭,2002,1:29-29,48.
    [40]王振杰.轻型液压锚杆钻机液压系统的污染防治[J].矿山机械,2003,28(3):71-72.
    [41]赵亮.手持式水压锚杆钻机动态特性计算机仿真[J].煤矿机械,2005,11:46-48.
    [42]仝军令.应用于钻机的乳化液马达的设计研究[J].矿山机械,2004,32(12):16-17.
    [43]陶云.一种煤矿用乳化液齿轮泵(马达)研究[J].煤矿机械,2001,12:14-15.
    [44]李宁.基于ADAMS的液压锚杆钻机工作机构仿真与优化[J].建筑机械,2006,4:69-71.
    [45]郭孝先,袁和生.不同动力回转式锚杆钻机的基本特性(上) [J].锚杆支护,1997(1):11-16,33.
    [46]郭孝先,袁和生.不同动力回转式锚杆钻机的基本特性(下)[J].锚杆支护,1997(2):9-10.
    [47]梅苏华,秦信康.不同动力锚杆钻机性能分析[J].中州煤炭,1999(3):16-17.
    [48]欧阳俊.我国锚杆钻机现状及发展方向[J].煤矿机械, 1998(1):1-2.
    [49]马有仁.旋转式锚杆钻机的参数研究[J].煤, Vol.7 No.3,1998年6月:33-35,74.
    [50]毛君,陈洪月,王丽丽.液压锚杆钻机钻削性能分析[J].煤矿机电, 2007(4):52-54.
    [51]王大元.波兰SOK型液压马达[J].舰船液压技术简讯,1985(10):10-11
    [52]陈宇生,窦立宏.一种非圆齿轮轮系液压马达[J].工程机械,1999(10):18-19
    [53]杨球来,许贤良,赵连春.大扭矩液压马达的发展现状与展望[J].机械工程师,2004(3):6-9
    [54]许益民.非圆齿轮行星传动式液压马达运动学数学模型的建立[J].南昌大学学报(工科版),Vol.17 No.1,1995:1-8
    [55]非圆时代科技有限公司.NCM型液压马达产品说明书[OL].北京:非圆时代科技有限公司,2007.
    [56]武丽梅.非圆齿轮技术的发展及应用[J].沈阳航空工业学院学报,2000,17(1):23-26.
    [57] D. Mundo. Geometric Design of A Planetary Gear Train with Non-circular Gears[J]. Mechanism and Machine Theory, 2006, 41: 456-472.
    [58] F. E. Cunningham, D. S. Cunningham. Rdiscovering the Non-circular Gear[J]. Journal of Machine Design, 1973, (11)1: 80-85.
    [59] S. H. Tong, D. C. H. Yang. Generation of Noncircular Pitch Curves[J]. ASME Journal of Mechanical Design, 1998, 120:337-341.
    [60] Ming-Jun Lai. An Investigation of the Dynamic Behavior of Systems with Noncircular Gears[D]. University of Wisconsin-Madison, 1996.
    [61] Yokoyama. Y, Ogawa. K, Masukawa. H. Dynamic Characteristics of the Noncircular Planetary Gear Mechanisms with Nonuniform Motion[J]. Bll. of the JSME, 1974, 17(103): 149-156.
    [62] Cunningham, F. W. Designing and Using Noncircular Gear to Generate Mathematical Functions[J]. Machine Design, 1959, 2: 161-164.
    [63] S. L. Chang, C. B. Tsay. Computerized Tooth Profile Generation and Undercut Analysis of Noncircular Gears Manufactured with Shaper Cutters[J]. Journal of Mechanical Design, 1998, 120:92-99.
    [64] Ogawa Kiyoshi, Yokoyama Yoshiaki, Koshiba Takashi. Studies On the Noncircular Motions [J], Bulletin of the JSME, 1973, 16(99): 1433-1442.
    [65] Yokoyama Yoshiiaki, Ogawa Kiyoshi, Kurebayashi Shin. Studies on the Noncircular Planetary Gear Mechanisms [J], Bulletin fo the JSME, 1982, 25(210): 2046-2051.
    [66]李建生.非圆行星齿轮液压马达的设计研究[J].机械工程学报,1993,17(1):23-26.
    [67]李建生,李华敏.变中心距非圆行星齿轮机构运动规律的研究[J].机械传动,1994,18(1):16-19.
    [68]唐德威.新型非圆齿轮液压马达的CAD/CAM系统与测量方案的研究[D].哈尔滨:哈尔滨工业大学,2000.
    [69]熊镇芹.非圆齿轮CAD/CAM关键技术及其应用研究[D].西安交通大学,2004.
    [70]李建生.不同类型非圆行星齿轮液压马达的性能分析[J].中国机械工程,1994,5(4):21-23.
    [71]熊镇芹.非圆行星齿轮液压马达的配流设计研究[J].机械科学与技术(西安),2000,23(5):509-511.
    [72]熊镇芹.非圆行星齿轮液压马达参数设计[J].机床与液压,2004,5:50-52.
    [73]陈玉凡,朱祥.钻孔机械设计[M].北京:机械工业出版社,1987:336-339
    [74]陈玉凡.矿山机械(钻孔机械部分)[M].北京:冶金工业出版社,1981.
    [75]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [76]王人杰,蒋荣庆,韩军智.液动冲击回转钻探[M].北京:地质出版社,1988.
    [77]张国忠.气动冲击设备及其设计[M].北京:机械工业出版社,1991.
    [78]赵统武.冲击钻进动力学[M].北京:冶金工业出版社,1996.
    [79]陶兴华.冲击旋转钻井破岩特点分析[J].钻采工艺,1996(3):1-3.
    [80]黄园月,郭孝先,徐广义.影响液压凿岩机凿孔速度的因素分析[J].煤矿机械,1995(6):24-27.
    [81]孙正心.风动锚杆钻机的研究[D].徐州:中国矿业大学,1994
    [82]陈图.非圆行星齿轮机构节曲线研究[J].机电设备,1997,1:30-35.
    [83]张振林.非圆行星齿轮机构节曲线的设计[J].机械设计,2002,19(6):41-43.
    [84]吴序堂.非圆齿轮及非匀速传动比[M].北京:机械工业出版社,1997.
    [85]吴杰,上官文斌.基于6σ的动力总成悬置系统鲁棒优化设计[J].振动与冲击,2008,27(8):64-67
    [86]肖方豪,蹇开林.鲁棒优化设计方法在结构动力学中的应用[J].工程力学,2007,24:62-65
    [87]陈建江,钟毅芳,肖人彬.基于正交试验的稳健优化设计方法及其工程应用[J].中国机械工程,2004,15(4):283-286
    [88]程贤福,肖人彬.基于容差模型和正交试验的四连杆变幅机构稳健优化设计[J].中国机械工程,2006,17(21):2274-2278
    [89]Zang C, Friswell M I, Mottershead J M. A Review of Robust Optimal Design and Its Application in Dynamics[J].Computers & Structures,2005,83:315-326
    [90]Taguchi G. On Robust Technology Development: Bringing Quality Engineering up Stream[M].New York: ASME Press,1993
    [91]Parkinson A. Robust Mechanical Design Using Engineering Models[J].Tran. of the ASME, Journal of Mechanical Design,1995,117:48-54
    [92]Lee K H, Park G J. Robust Optimization Considering Tolerances of Design Variables[J]. Computers & Structures,2001,79:77-86
    [93]Yimin Zhan, Chris K. Mechefske. Robust Detection of Gearbox Deterioration Using Compromised Autoregressive Modeling and Kolmogorov–Smirnov Test Statistic[J]. Mechanical Systems and Signal Processing, 2007, 21(7): 1953-1982.
    [94] D.S. Lee, L.F. Gonzalez, J. Periaux, K. Srinivas. Robust Design Optimization Using Multi-objective Evolutionary Algorithms [J]. Computers & Fluids, 37(7): 565-583.
    [95] Janak, Stacy L., Lin.Xiaoxia. A new Robust Optimization Approach for Scheduling under Uncertainty. II. Uncertainty with Known Probability Distribution [J]. Computers and Chemical Engineering, v 31, n 3, January 19, 2007: 171-195
    [96] Dou Yi-fang, Wang Zhong-wei. Robust Optimization Design and Its Application in Design of Solid Rocket Motor Grain[J]. Journal of Solid Rocket Technology, v 30, n 6, p 478-81, Dec. 2007: 478-481
    [97] Kwon-Hee Lee, Gyuang-jin Park. A Global Robust Optimization Using Kriging Based Approximation Model[J].JSME International Journal, Series C (Mechanical Systems, Machine Elements and Manufacturing), v 49, n 3, Sept. 2006:779-788
    [98] Koch.P.N., Yang R.J..Design for Six Sigma Through Robust Optimization[J].Structural and Multidisciplinary Optimization, v 26, n 3-4, February 2004:235-248
    [99]陈卓如.低速大扭矩液压马达理论、计算与设计[M].北京:机械工业出版社,1991.
    [100]何存,张贴华.液压传动与气压传动[M].武汉:华中科技大学出版社,2000,8.
    [101]饶振纲.行星传动机构设计[M].北京:国防工业出版社,1994.
    [102]胡来瑢.行星传动设计及计算[M].北京:煤炭工业出版社,1996.
    [103]李泳鲜,孟庆国,李自贵.基于三次设计和模糊理论的圆柱螺旋弹簧文件设计[J].机械强度,2001,23(2):198-201.
    [104]曾凤章.稳健性设计原理、技术、方法、案例[M].北京:兵器工业出版社,2004,6.
    [105]汪荣鑫.数理统计[M].西安:西安交通大学出版社,2004,4.
    [106] S.S.Rao.The Finite Element Method in Engineering[M].Perganon press,1982
    [107]王勖成,邵敏.有限元法基本原理与数值方法[M].北京:清华大学出版社,1997
    [108]桑任松,张彦青.有限元分析基础篇ANSYS与Mathematica[M].北京:清华大学出版社,2002
    [109]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.6
    [110]倪栋,段进,徐久成等.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003年
    [111]张朝晖.ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社,2006.2
    [112]盛和太,喻海良,范训益.ANSYS有限元原理与工程应用实例大全[M].北京:清华大学出版社,2006.12
    [113]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.4
    [114] Ramos R.Jr.,Pesce C.P.,Martins C.A.Comparative Analysis Between Analytical and FE-based Models for Flexible Pipes Subjected to Axisymmetric Loads[J].Proceedings of theInternational Offshore and Polar Engineering Conference ,2 May 28-Jun 2 2000:135-141
    [115] Halsey G W,et al.Drillstring Torsional Vibrations:Comparison Between Theory and Experiment on a Full-Scale Research Drilling Rig[J].SPE 15564
    [116] D.Popovic,G.J.Hancock,K.J.R.Rasmussen.Compression Tests on Cold-Formed Angles Loaded Parallel with a Leg[J].Journal of Structural Engineering,2000,127(6):600-607
    [117] Voronov, S.A.; Gouskov, A.M.; Kvashnin, A.S..Influence of Torsional Motion on the Axial vibrations of a Drilling Tool[J] Transactions of ASME. Journal of Computational and Nonlinear Dynamics, v 2, n 1, p 58-64, Jan. 2007:58-64
    [118] Schen, A.E.; Snell, A.D.; Stanes, B.H. Optimization of Bit Drilling Performance Using a new Small Vibration Logging Tool[J].SPE/IADC Drilling Conference, Proceedings, 2005:383-393,
    [119]孟铮.浅析锚杆钻机[J].煤矿机电,1994(5):8-11.
    [120]何存兴,张贴华.液压传动与气压传动[M].武汉:华中科技大学出版社,2000,8
    [121]甄少华.低速大扭矩马达[M].北京:人民交通出版社,1995,12
    [122]董景新等.控制工程基础[M].北京:清华大学出版社,2007,3.
    [123]韩於羹.应用数理统计[M].北京:北京航空航天大学出版社,2004,9
    [124]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2006,1
    [125]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2002,1
    [126]高会生,李新叶,胡智奇等.MATLAB原理与工程应用[M].北京:电子工业出版社,2002
    [127]唐胜利等.煤矿井巷用PDC锚杆钻头的研究[J].锚杆支护,2000(2):38-42.
    [128]李磊.非圆齿轮式液压锚杆钻机的设计研究[D].徐州:中国矿业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700