用户名: 密码: 验证码:
高速面铣刀模态参数及其对切削性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速面铣刀主要应用于铸铁、铝合金等材料的平面粗、精加工,可满足汽车、航空航天、模具等工业高效加工的需要。随着高速加工中心等高性能机床的不断升级,对高速面铣刀的动态性能提出了更高技术要求。
     高速面铣刀的结构具有直径大、齿数多的特点,其切削过程是断续的,在刀齿周期性切入、切出工件过程中,存在振动和冲击现象;每个刀齿的切屑层厚度随着面铣刀的旋转角度发生变化,产生的铣削力具有周期性、时变性的特点。面铣削过程中的离心力和动态铣削力等载荷激发面铣刀的受迫振动和自激振动,影响高速面铣刀的铣削稳定性和工件表面质量。
     对高速面铣刀进行模态分析获取面铣刀的模态参数,研究模态参数对面铣刀铣削稳定性和工件表面粗糙度的影响规律,建立高速面铣刀的动态特性与其切削性能之间的联系,是改善面铣刀铣削稳定性和提高工件表面质量的主要研究内容。
     对面铣刀振动系统性质及其阻尼特性进行分析,建立面铣刀的多自由度结构比例阻尼振动系统微分方程。通过对其特征值求解,得到面铣刀频响函数的解析表达式,为面铣刀有限元模态分析和实验模态分析提供理论基础。
     由于可转位面铣刀具有装配结构的特点,选用具备接触建模功能的ABAQUS有限元分析软件,建立面铣刀有限元模型,提高模态分析结果的精确程度。
     刀体是面铣刀尺寸和质量最大的零件,对刀体材料和刀齿密度对模态参数的影响进行重点研究,分析五种刀体材料及三种刀齿密度面铣刀的前六阶固有频率和振型,发现五种刀体材料面铣刀的一阶固有频率从高到低为碳素纤维增强塑料、40CrMo、45#钢、铝合金AlCuMg2和钛合金Ti6A14V。刀齿密度是影响刀体结构的重要因素,在推荐的刀齿数范围内,刀齿密度越小,固有频率越高,面铣刀安全稳定切削的转速范围越大。
     根据高速面铣刀的结构特点,确定面铣刀模态实验分析的原理和方法。模态实验采用频域辨识法中的单输入单输出方式;激振器采用自制电子冲击力锤,使产生的冲击力具有可重复性和可调节性;支承方式采用自由模态法和工作模态法两种方式;对所获得的频率响应函数的实频图和虚频图,运用分量分析法进行参数辨识。通过实验模态分析法获得面铣刀模态参数之后,和有限元模态分析结果进行比较,验证面铣刀有限元模型的有效性。
     根据组合结构系统设计法,运用二分量响应耦合子结构分析法(RCSA),在有限元模态分析和实验模态分析的基础上,求解获得“主轴-刀柄”和面铣刀的结合面参数(线性刚度Kx和线性阻尼Gx、旋转刚度Kθ和旋转阻尼Gθ),并对结合面参数进行实验验证。面铣刀采用工作模态法测试刀尖频响函数时,利用结合面参数可以消除机床的影响,间接获得面铣刀的模态参数;利用结合面参数和面铣刀有限元等效模型,可以分析在该机床上使用的高速面铣刀的动态性能。
     面铣削稳定性是评价高速面铣刀切削性能的重要方面。分析了面铣刀切削角度对铣削过程的影响,根据再生颤振机理建立刀片径向瞬时切屑厚度模型和动态面铣削力模型,动态铣削力系数矩阵反映了面铣削力断续性、时变性和周期性变化的特点。根据面铣削系统频响函数的负实部,计算临界轴向切削深度,并绘制轴向切削深度和主轴转速之间的关系图,即面铣削稳定性极限图,实现对颤振现象的预报和控制。
     设计面铣削实验系统和实验参数,通过三维面铣削力测试结果,以及测量、计算已加工工件表面硬化程度,并利用二维和三维工件表面形貌验证面铣削稳定性极限图预报的有效性和可靠性。对比不同面铣刀的稳定性极限图发现:在推荐的刀齿数范围内,随着一阶固有频率的降低和模态阻尼的减小,稳定切削域减小;随着刀齿密度的增加,面铣刀的铣削稳定性降低。
     工件表面质量反映了高速面铣刀切削性能的优劣。工件表面质量一般由表面粗糙度值来评定。通过研究面铣削过程中对工件表面粗糙度的主要影响因素,考虑平面刃口型式刀片的径向和轴向跳动误差、每齿进给量、切削刃长度、刀尖圆弧半径、刀片主偏角、轴向切削深度、受迫振动引起的刀齿与工件间的轴向相对位移等动静态因素的影响,沿工件表面粗糙度值最大的方向建立了铣削工件表面粗糙度模型。根据所测得的刀齿径向和轴向跳动误差,依据静态表面粗糙度模型模拟计算出刀齿轨迹;结合模态实验和铣削实验的结果,求解面铣削振动微分方程,得到面铣刀刀齿和工件的轴向动态相对位移;将静态模型和动态模型分别预测的结果进行综合,预测出铣削工件表面轮廓,实现对面铣刀铣削工件表面质量的预估和评价。验证了工件表面粗糙度模型,同时发现在相同切削参数下,在推荐的刀齿数范围内,随着刀齿密度的增加,表面粗糙度值增加,表面质量恶化。
High-speed face-milling cutter is mainly used for machining flat surface, and widely used for rough and finish machining of cast iron, aluminum. For its high cutting speed, face-milling cutting process has been widely used in automotive, aerospace, mold and other manufacturing fields. With high speed CNC machining centers and other high-performance machine tools upgraded, more and more technical requirements has been purposed for improve the dynamic performance of face-milling cutter.
     High speed face-milling cutter has the features of large diameter, more teeth, and its cutting process is intermittent. When cutting teeth periodically cut in and off of the workpiece, there exits phenomenon of the vibration and impact. The chip thickness of each cutting teeth changes with rotation angle, hence cutting force is cyclical and time varying. The forced and self-vibration generated by centrifugal force and dynamic cutting force during cutting process, has significant effect on milling stability and workpiece surface quality.
     By applying modal analysis on face-milling cutter, the modal parameters are extracted in this paper. By analyzing the effect of modal parameters on milling stability and workpiece surface roughness, the relationship between the dynamic characteristic and cutting performance are established, which is the main research content of improve cutting stability and workpiece surface quality.
     By analyzing the nature of face-milling vibration system and damping characteristic, the multi-freedom structural proportion damping vibration system differential equation is built. By solving of eigenvalue, the analytical expression of FRF is got, which can supply theory basis for FEM modal analysis and experimental modal analysis for face-milling cutter.
     Owing to the assembly of structural features of indexable face-milling cutter, ABAQUS software is selected in this paper for its contact modeling function to improve the accuracy of the modal analysis results.
     Because cutting tool body is the largest part of the face-milling cutter, in this paper, the effects on modal parameters by the materials'properties and the density of cutting teeth are investigated. There are five different cutting tool body materials and three different densities of cutting teeth for different face-milling cutters. The first six natural frequencies and modal of these face-milling cutters are analyzed in this paper. Results show that, for the five different materials, the natural frequencies from high to low are: carbon fiber reinforced plastics,40CrMo,45#steel, AlCuMg2and Ti6A14V.Density of cutting teeth are important factors of cutter structure, the lower of the density of the teeth, the higher of the natural frequency and the larger spindle speed range for safe and stable cutting within the recommended teeth range.
     According to structural characteristics of the face-milling cutter, the principle and method of experimental modal analysis are determined. Modal experiments adopt single input and output method of frequency domain identification. Exciter adopts electronic impact hammer to induce repeatability and adjustability impact force. Supporting methods adopt two ways including free modal and work modal. For the FRF of the tool tip, component analysis is adopted to identify the parameters. The modal parameters get from experimental modal analysis are compared with FEM analysis results to validation the FEM model.
     According to composite structure system design method and two-component response coupling substructure analysis, based on the FEM modal analysis and experimental modal analysis, the joint surface parameters between spindle/shank and face milling cutter are get (linear stiffness Kx, linear damping Gx, rotation stiffness Kg and rotation damping Ge). The contact surface parameters are then valid by experiments. When using work modal to get the FRF of tool tip, by using the contact surface parameters, the modal parameters of face-milling cutter can be get indirectly. The joint surface parameters and the equivalent FEM model can be used to analyze the dynamic characteristic of the face milling cutter fixed on the specific machine tools.
     The stability of the face-milling process is important to estimate and evaluate the cutting performance of the face-milling cutter. By analyzing the effect of face-milling cutting angle on milling process, based on mechanism of renewable flutter, the model of radial instantaneous chip thickness and dynamic face-milling cutting force are established. The matrix of dynamic milling force coefficient reflects the features of milling force:intermittent, time-varying and periodicity.
     According to the FRF negative real part of face-milling system, the critical axial depth-of-cut is calculated. The diagrams which reflect the relationship between axial depth-of-cut and spindle speed have also been drawn in this paper. The stability limit lobes of face-milling process can forecast and control the phenomenon of chatter.
     In order to verify the validity and reliability of the stability limit lobes, face-milling experimental system and parameters are designed. Cutting force in three directions are tested, work hardening capacity are also measured and calculated, the two and three dimensional picture reflecting workpiece surface integrity are get. By comparing different stability limit lobes, it is found that with the decrease of natural frequency and modal damping, the stable cutting region decreases; with the increase of density of cutter teeth, the stability of the face-milling process decreases within the recommended teeth range.
     The workpiece surface quality can reflect the cutting performance of face-milling cutter and be evaluated by the the surface roughness of workpiece. By studying the influencing factors'effect on surface roughness during face-milling process, including radial and axial runout of the teeth in the form of flat blade, feed per tooth, cutting edge length, nose radius, cutting lead angle, axial depth-of-cut, axial displacement between cutting tooth and workpiece caused by forced vibration, the surface roughness prediction models are established in the direction of the maximum value of surface roughness.
     According to the measured radial and axial runout of the teeth in the form of flat blade, the trajectory of cutting teeth is calculated based on the static surface roughness model. By combining experimental and modal analysis results, the vibration differential equations are solved and the axial relative displacement between cutting teeth and workpiece are get. By integrating the prediction results of static and dynamic models, the surface roughness and contours are predicted. The predicted results can be used for estimation and evaluation of surface quality. The prediction surface roughness model is verified by experiments. At the same time, it is found that the surface roughness increases and the workpiece surface quality deteriorates with the increase of density of cutter teeth under the same cutting conditions within the recommended teeth range.
     The project is supported by Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment (2011ZX04016-031).
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [2]张柏霖.高速切削技术及应用[M].北京:机械工业出版社,2002.
    [3]刘战强.高速切削技术的研究与应用[D].山东大学博士后研究工作报告,2001.
    [4]师润平.现代高效刀具发展特点和产业化途径[J].航空制造技术.2011(5):36-39.
    [5]Grema Mamadou Mbo.可转位铣刀体结构的分析与研究[D].湖南大学硕士学位论文,2008.
    [6]刘献礼,姬生园.铣削加工与数控面铣刀[J].金属加工.2011(7):60-62.
    [7]李鹏南,胡忠举,张厚安.超高速铣削应用的关键技术[J].机床与液压.2008(5):268-271.
    [8]赵炳桢.刀具动平衡技术的发展现状[J].工具技术.2002,36(2):3-7.
    [9]李哲.高速面铣刀安全性的研究[D].哈尔滨理工大学硕士学位论文,2006.
    [10]姜彬.高速面铣刀切削稳定性及其结构化设计方法研究[D].哈尔滨理工大学博士学位论文,2008.
    [11]席俊杰,徐颖.高速切削技术的发展及应用[J].制造业自动化.2005,12:5-9.
    [12]Longbottom J M, Lanham J D. A Review of Research Related to Salomon's Hypothesis on Cutting Speeds and Temperatures [J]. International Journal of Machine Tools & Manufacture.2006,46:1740-1747.
    [13]邢义.高速切削加工中的刀具发展[J].金属加工.2010,12:28-30.
    [14]刘战强.先进刀具设计技术:结构、刀具材料与涂层技术[J].航空制造技术.2006,7:38-42.
    [15]刘战强,万熠,周军.高速切削刀具材料及其应用[J].机械工程材料.2006,5:1-4.
    [16]张力,林建龙,相辉宇.模态分析与实验[M].北京:清华大学出版社,2011:1-40.
    [17]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [18]傅志方,华宏星.模态分析理论及应用[M].上海:上海交通大学出版社,2001.
    [19]Liu X,Cheng K,Webb D. Improved Dynamic Cutting Force Model in Peripheral Milling-Part 2:Experimental Verification and Prediction[J]. International Journal of Advanced Manufacturing Technology.2004,24:794-805.
    [20]Liu X, Cheng K, Longstaff A P. Improved Dynamic Cutting Force Model in Ball End Milling-Part 1:Theoretical mModelling and Experimental Calibration[J]. International Journal of Advanced Manufacturing Technology.2005,26:457-465.
    [21]周传荣.结构动态设计[J].振动、测试与诊断.2001,21(1):1-7.
    [22]曹树谦.振动结构模态分析理论、实验与应用[M].天津:天津大学出版社,2001.
    [23]Lee W Y, Kim K W, Sin H C. Design and Analysis of a Milling Cutter with the Improved Dynamic Characteristics[J]. International Journal of Machine Tools & Manufacture.2002,42:961-967.
    [24]李小雷,童永光.高速切削刀具系统固有特性和动态响应分析[J].工程设计学报.2004,5:268-272.
    [25]唐委校,艾兴,吴化勇.高速切削系统动态特性实验及其方法研究[J].振动、测试与诊断.2004,24:162-165.
    [26]唐委校.高速切削稳定性及其动态优化研究[D].山东大学博士学位论文,2005.
    [27]黄玉娟,姜彬,郑敏利.基于系统动态设计技术的高速面铣刀研究[J].现代制造工程.2008,7:55-56.
    [28]郑敏利,周军,张为.高速面铣加工的动态铣削力和刀具振动研究[J].机械设计.2010,27(9):15-16.
    [29]PUPAZA C,TANASE I,MARDARI V. Modal Analysis of a Turning Tool System[C]. Proceedings of the 1st WSEAS International Conference on Visualization, Imaging and Simulation.2008,1:161-166.
    [30]杨肃,唐恒龄,廖伯瑜.机床动力学[M].北京:机械工业出版社,1983.
    [31]丁文静.白激振动[M].北京:清华大学出版社,2009.
    [32]Arnold RN. The Mechanism of Tool Vibration in the Cutting of Steel[J]. Proceedings:Institution of Mechanical Engineers.1946,1:154.
    [33]Tlusty J,Polacek M. The Stability of Machine Tools against Self Excited Vibrations in Machining[J]. International Research in Production Engineering, ASME. 1963:465-474.
    [34]Koenigsberger F,Tlusty J.Machine Tools Structures-Vol.Ⅰ Stability against Chatter[M]. London:Pergamon Press,1967:202-203.
    [35]Tobias S A, Fishwick W. A Theory of regenerative machinetool chatter[J]. The Engineer,1958,205(7):199-203.
    [36]Merritt H E. Theory of Self-excited Machine Tool Chatter[J]. ASME Journal of Engineering for Industriy.1965:447-454.
    [37]Opitz,Herwart. Chatter Behavior of Heavy Machine Tools[C]. Final scientific rept. 1 Jan 1966-31 Mar 1968, London:The Engineer London,1968:157.
    [38]Sridhar R, Hohn R E,Long G W. A General Formulation of the Milling Process Equation.Contribution to Machine Tool Chatter Research-5[J]. ASME Journal of Engineering for Industriy.1968(90):317-324.
    [39]Opitz H,Bernardi F. Investigation and Calculation of the Chatter Behavior of Lathes and Milling Machines[J]. Annals of the CIRP.1970,18:335-343.
    [40]Smith S,Tlusty J. An Overview of Modeling and Simulation of the Milling Process[J]. ASME Journal of Engineering for Industriy.1991,113:169-175.
    [41]DeVor R E,Kline W A,Zdeblick W J. A Mechanistic Model for the Force System in End Milling with Application to Machining Airframe Structures[C]. Proceedings of the 8th NAMRC.1980:297-303.
    [42]Altintas Y,Spence A. End Milling Force Algorithms for CAD Systems[J]. Transactions of NAMRI/SME.1991,40:31-34.
    [43]Shin Y C,Waters A J. Face Milling Process Modeling with Structural Nonlinearity[J]. Transactions of NAMRI/SME.1994,22:157-164.
    [44]Sridhar R, Hohn R E and Long G W. A general formulation of the milling process equation Contribution to machine tool chatter research-5[J]. ASME Journal of Engineering for Industriy.1968,90:317-324.
    [45]Sridhar R,Hohn R E,Long G W. A Stability Algorithm for a Special Case of the Milling Process Contribution to Machine Tool Chatter Research-6[J]. ASME Journal of Engineering for Industriy.1968,90:325-329.
    [46]Sridhar R,Hohn R E,Long G W. A Stability Algorithm for the General Milling Process Contribution to Machine Tool Chatter Research-7[J].ASME Journal of Engineering for Industriy.1968,90:330-334.
    [47]Minis I,Yanushevsky R,Tembo R,etc. Analysis of Linear and Nonlinear Chatter in Milling[J]. Annals of The CIRP.1990,39:459-462.
    [48]Minis I,Yanushevsky R. A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling[J]. ASME Journal of Engineering for Industriy. 1993,115:1-8.
    [49]Minis I,Tembo A. Experimental Verification of a Stability Theory for Periodic Cutting Operations[J]. ASME Journal of Engineering for Industriy.1993,115:9-14.
    [50]Budak E,Altintas Y. Analytical Prediction of Chatter Stability in Milling:Part I general formulation[J]. Proceedings of The ASME Dynamic Systems and Control Division.1995,57:545-556.
    [51]Budak E,Altintas Y. Analytical Prediction of Chatter Stability in Milling:Part II Aplication of the General Formulation to Common Milling Systems[J]. Proceedings of The ASME Dynamic Systems and Control Division. 1995,57:557-565.
    [52]Fofana M S. Effect of Regenerative Process on the Sample Stability of a Multiple Delay Differential Equation[J]. Chaos,Solitons and Fractals.2002,14:301-309.
    [53]Vincent T,Lionel A,Gilles D. Integration of Dynamic Behaviour Variations in the Stability Lobes Method[J]. International Journal of Advanced Manufacture Technology.2006,27:638-644.
    [54]Bravo U,Altuzarra O,Lopez de Lacalle L N. Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine[J]. International Journal of Machine Tools&Manufacture.2005,45:1669-1680.
    [55]Tony L S,Timothy J B,John C Z. Tool Length-dependent Stability Surfaces[J]. Machining Science and Technology.2004,8(3):1-21.
    [56]Mane I,Gagnol V,Bouzgarrou B C. Stability-based Spindle Speed Control During Flexible Workpiece High-speed Milling[J]. International Journal of Machine Tools &Manufacture.2008,48:184-194.
    [57]张智海.铣削工艺系统瞬态力学模型和非线性动力学特性的研究[D].清华大学博士学位论文,2002.
    [58]宋清华,艾兴,于水清.高速铣削稳定性与表面加工精度研究[J].制造技术与机床.2004:40-43.
    [59]宋清华.高速铣削稳定性及加工精度研究[D].山东大学博士学位论文,2009.
    [60]汤爱君.薄壁件高速铣削三维稳定性及加工变形研究[D].山东大学博士学位论文,2009.
    [61]Jensen S A,Shin Y C. Stability Analysis in Face Milling Operations,Part l:Theory of Stability Lobe Prediction [J]. Transactions of the ASME.1999,121:445-461.
    [62]Andersson C,Andersson M. Experimental Studies of Cutting Force Variation in Face Milling[J]. International Journal of Machine Tools & Manufacture. 2011,51:67-76.
    [63]李沪曾,:Spur G,郭大津.机床振动学的研究的历史回顾与展望[J].同济大学学报.1994,22(3):378-383.
    [64]李沪曾,Spur G平面端铣非线性切削过程模型[J].同济大学学报.1995,23(2):186-191.
    [65]李沪曾,Spur G.机床切削振动仿真计算的结构动力学模型[J].同济大学学报.1995,23(5):541-546.
    [66]李沪曾,:Spur G.平面端铣切削振动的实验观察与计算机仿真[J].同济大学学报.1997,25(2):224-229.
    [67]李沪曾,Spur Q郭大津.机床动态切削建模中的相位关系[J].同济大学学报.1999,27(1):58-62.
    [68]李沪曾,张国红,魏衡.多齿端铣切削振动的计算机仿真[J].同济大学学报.2000,28(1):55-59.
    [69]Abele E,Ho lscher R,Hohenstein J. Methodology Forevaluation of Centrifugal Force Resistance of HSC-tools by Analyzing Tool Body Deformation and Cutting Edge Offset[J]. CIRP Annals-Manufacturing Technology.2008,57:117-120.
    [70]吉春辉.高速面铣刀气动噪声产生机理的研究[D].山东大学博士学位论文,2013.
    [71]王素玉,赵军,艾兴.高速切削表面粗糙度理论研究综述[J].机械工程师.2004,10:3-5.
    [72]Myers R H,Montgomery D C. Response Surface Methodology,Process and Product Optimization Using Designed Experiments[M]. New York:Wiley,1995.
    [73]Benardos P G,Vosniakos G C. Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi's Design of Experiments[J]. Robotics and Computer-Integrated Manufacturing.2002,18:343.
    [74]Maciej G,Andres B. The Evolutionary Development of Roughness Prediction Models[J]. Applied Soft Computing.2013,13:2913-2922.
    [75]Bernardos P G,Vosniakos G C. Predicting Surface Roughness in Machining:a Review[J]. International Journal of Machine Tools & Manufacture. 2003,43:833-844.
    [76]Sa W B,Salah N B,Lebrun J L. Influence of Machining by Finishing Milling on Surface Characteristics[J]. International Journal of Machine Tools and Manufacture.2001,41(3):443-450.
    [77]Altintas Y,Engin S. Generalized Modeling of Mechanics and Dynamics of Milling Cutters[J]. Annals of the CIRP.2001,50(l):25-30.
    [78]Ghani A K,Choudhury I A,Husni. Study of Tool Life,Surface Roughness and Vibration in Machining Nodular Cast Iron with Ceramic Tool[J]. Journal of Materials Processing Technology.2002,127(1):17-22.
    [79]Dweiri F,Al-Jarrah M,Al-Wedyan H. Surface Roughness Modeling of CNC Down Milling of Alumic-79[J]. Journal of Materials Processing Technology. 2003,133(3):266-275.
    [80]Mansour A,Abdalla H. Surface Roughness Model for End Milling:A Semi-free Cutting Carbon Casehardening Steel (EN32) in Dry Condition[J]. Journal of Materials Processing Technology.2002,124 (1-2):183-191.
    [81]Wang M Y,Chang H Y. Experimental Study of Surface Roughness in Slot End Milling AL2014-T6[J]. International Journal of Machine Tools and Manufacture. 2004,44 (1):51-57.
    [82]Tsai Y H,Chen J C,Lou S J. An In-process Surface Recognition System Based on Neural Networks in End Milling Cutting Operations[J]. International Journal of Machine Tools and Manufacture.1999,39 (4):583-605.
    [83]Lee K Y. Simulation of Surface Roughness and Profile in High-speed End Milling[J]. Journal of Materials Processing Technology.2001,113(1-3):410-415.
    [84]Mizugaki Y,Hao M,Kikkawa K. Geometric Generating Mechanism of Machined Surface by Ball-nosed End Milling[J]. CIRP Annals-Manufacturing Technology. 2001,50(l):69-72.
    [85]Kim B H,Chu C N. Texture Prediction of Milled Surfaces Using Texture Superposition Method[J]. Computer-Aided Design.1999,31(8):485-494.
    [86]Baid J,Fan X J. Integrated Design System for Dynamic Thermal Protection System Sizing [J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering.2007,5(221):883-885.
    [87]Franco P,Estrems M,Faura F. Influence of Radial andAxial Runouts on Surface Roughness in Face Milling with Round Insert Cutting Tools[J]. International Journal of Machine Tools& Manufacture.2004,44:1555-1565.
    [88]Dae K B,Tae J K,Hee S K. A Dynamic Surface Roughness Model for Face Milling[J].Precision Engineering.1997,20:171-178.
    [89]Baek D K,Ko T J,Kim H S. Optimization of Feedrate in a Face Milling Operation Using a Surface Roughness Model [J]. International Journal of Machine Tools and Manufacture.2001,(41):451-462.
    [90]刘战强,万熠,艾兴.高速铣削过程中表面粗糙度变化规律的试验研究[J].现代制造工程.2002,3:8-10.
    [91]Liu Z Q,Wan Y,Liu J G The Impact of Tool Materials and Cutting Parameters Surface Roughness in High Speed Face Milling[J]. Key Engineering Materials. 2004:258-259.
    [92]张雷.高速铣削表面粗糙度的研究[J].组合机床与自动化加工技术.2002,12:31-34.
    [93]Bajic D,Lela B,Zivkovic D. Modeling of Machined Surface Roughness and Optimization of Cutting Parameters in Face Milling[J]. Metabk.2008,47:31-334.
    [94]Bruni C,Apolito L,Forcellese A,etc. Surface Roughness Modeling in Finish Face Milling under MQL and Dry Cutting Conditions[J]. International Journal of Material Form.2008,1:503-506.
    [95]Pawei T,Zsymon W,Michal W,etc. Surface Roughness Analysis of Hardened Steel after High-speed Milling[J]. Scanning.2011,33:386-395.
    [96]Szymon W. Machined Surface Roughness Including Cutter Displacements in Milling of Hardened Steel[J]. Metrology and Measurements System. 2011,3:429-440.
    [97]Uday A D,Joshi S S,Ramakrishnan N. Analysis of Surface Roughness and Chip Cross-sectional Area while Machining with Self-propelled Round Inserts Milling Cutter[D]. Ph. D. Thesis, Indian Institute of Technology,Mumbai,India,2012.
    [98]Farahnakian M,Razfar M R, Elhami-Joosheghan S. Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel[J]. International Journal of Mechanical and Aerospace Engineering.2012,6:227-231.
    [99]Pawadea R S, Suhas S, Joshia P K. Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-speed Turned Inconel 718[J]. International Journal of Machine Tools & Manufacture.2008,48:15-28.
    [100]Tapoglou N, Maravelakis E and Antoniadis A.3D Simulation of Face Milling[J]. Robitics and Computer-Integrated Manufacturing.2013,18:343-354.
    [101]李鹏南,杨国庆,张厚安.基于ANSYS的高速机夹式铣刀强度设计与安全性分析[J].中国安全科学学报.2008(3):148-153.
    [102]葛慧,黄树涛.面向高速切削的端铣刀研究及应用现状[J].工具技术,2009(3):7-10.
    [103]葛慧,黄树涛.高速端铣刀刀体弹性极限转速的理论计算及其影响因素[J].现代制造工程.2006(2):78-80.
    [104]Byoung J K,Hak S K,Lee D GDesign of Hybrid Steel/Composite Circular Plate Cutting Tool Structures[J]. Composite Structures.2006,75:250-260.
    [105]杨晓.高速切削刀具的应用[J].工具技术,2009,38(9):43-47.
    [106]郭东明,刘战强,蔡光起等.中国先进加工制造工艺与装备技术中的关键科学问题[J].数字制造科学,2005,3(4):1-36.
    [107]张杨广.立铣刀几何参数对铣削系统动态特性影响规律的研究[D].山东大学硕士学位论文,2013:60-75.
    [108]Klosterman A L, Lemon J R. Dynamic Design Analysis via The Building Block Approach[J]. Sound and Vibration Bullettin.1972,42:1-20.
    [109]Flannelly W G. Research on Structural Dynamic Testing by Impedance Methods[J]. Subsystem AD.1975,4:392-401.
    [110]Schmitz T L, Timothy J B, John C Z. Tool Length-dependent Stability Surfaces[J]. Machining Science and Technology.2004,8(3):1-21.
    [111]Schmitz T L. Predicting High-speed Machining Dynamics by Substructure Analysis[J]. Annals of the CIRP.2000,49(1):303-308.
    [112]Schmitz T L, Davies M, Kennedy M D. Tool Point Frequency Response Prediction for High-speed Machining by RCSA[J]. Journal of Manufacturing Science and Engineering.2001,123(4):700-707.
    [113]Zhang J, Schmitz T, Zhao W, Lu B. Receptance Coupling for Tool Point Dynamics Prediction on Machine Tools[J]. Chinese Journal of Mechanical Engineering.2011,24:340-345.
    [114]李忠群.复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究 [D].北京航空航天大学博士学位论文,2008.
    [115]Kivanc E B, Budak E. Structural Modeling of End Mills for Form Error and Stability Analysis[J]. International Journal of Machine Tools & Manufacture. 2004,44:1151-1161.
    [116]Li Z Q,Liu Q. Impact of Modal Parameters on Milling Process Chatter Stability Lobes[J]. Journal of Wuhan University of Technology.2006,28(Suppl.1):190-195.
    [117]Arunachalam R M, Mannan M A, Spwwage A C. Surface Integrity When Machining Age Hardened Inconel 718 with Coated Carbide Cutting Tools[J]. International Journal of Machine Tools&Manufacture.2004,44(14):1481-1491.
    [118]杜劲.粉末高温合金FGH95高速切削加工表面完整性研究[D].山东大学博士学位论文,2012:85-105.
    [119]Eysion A,Liu Q Z. Machined Surface Error Aanlysis-A Face Milling Approach[J]. Journal of Advanced Manufacturing Systems.2011,10:293-307.
    [120]Maciej G, Andres B, Guillem Q. Improvement of Surface Roughness Models for Face Milling Operations through Dimensionality Reduction[J]. Integrated Computer-Aided Engineering.2012,19:179-197
    [121]Engin N,Halil D. The Influence of Number of Inserts and Cutting Parameters on Surface Roughness in Face Milling[J]. Technology.2010,13(1):1-7.
    [122]Dirk B,Markus H. Improvement of Workpiece Quality in Face Milling of Aluminum Alloys[J]. Journal of Materials Processing Technology. 2010,210:1968-1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700