用户名: 密码: 验证码:
Cr-V体系自润滑硬质涂层之研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“绿色加工技术”具有高效、节能、低碳、环保的特点,是未来的发展方向;但对加工工具及其涂层材料提出了苛刻的要求。过渡金属氮化物涂层,如:TiN, TiAIN和CrN,摩擦系数较高;传统的固体润滑剂涂层,如:类金刚石涂层,MoS2和h-BN,在湿润或高温等条件下易于氧化失效,均难以满足绿色加工技术的需要。针对现有涂层材料在绿色加工的高速摩擦、高温、无润滑剂条件下易于氧化、磨损而失效的问题,提出在硬质涂层中加入自润滑成分,降低涂层的摩擦系数,减小摩擦磨损,提高其使用寿命。通过纳米微结构设计,将Cr基耐磨层和V基自润滑层复合制备成摩擦学硬质涂层,系统研究涂层的微观结构与力学性能、氧化行为和自润滑等性能之间的关系,探索纳米结构自润滑摩擦学涂层的润滑机理。
     本论文采用磁控溅射技术制备了VN涂层,CrN/VN、CrAlN/VN多层膜结构涂层和CrAlSiVN纳米复合膜结构涂层,采用场发式电子探针(FE-EPMA)、掠入射X射线衍射分析仪(GIXRD)、场发式扫描电镜(FE-SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)和X射线光电子能谱仪(XPS)表征涂层的微观结构和化学组成;利用纳米压痕仪表征涂层的纳米硬度和弹性模量;利用Ball-on-disc磨耗实验仪表征涂层的摩擦性能。
     论文的主要研究结论如下:
     采用磁控溅射制备VN涂层,研究氮气分压和偏压对涂层性能影响,结果表明:在无偏压条件下,随着氮气分压从0.007Pa增加到0.29Pa,VN涂层晶化完全,结构变得更加致密,硬度也随之增加,最高达22.9GPa。在氮气分压为0.18Pa条件下,随着直流偏压从OV增加到-150V,VN涂层内的残余压应力增加到-1.69GPa,与此同时,涂层变得更加致密;当偏压进一步增加到-200V时,涂层晶粒长大,内部的残余应力略有减小。VN涂层的硬度随着偏压的增加而增大,最大到24.5GPa。
     采用磁控溅射技术,通过多层膜结构设计将CrN和VN结合在一起,制备了调制周期厚度(Λ)在7nm到27nm范围内的CrN/VN涂层。和CrN单层涂层相比,涂层的硬度从16.7GPa提高到25.2GPa,而与WC硬质合金的摩擦系数从0.40降低到0.21。CrN/VN涂层硬度的提高归因于CrN与VN之间的模量差以及热膨胀系数的差异。V在摩擦磨损过程中能够被氧化形成具有润滑作用的钒氧化物从而能降低涂层体系的摩擦系数。调制周期厚度7~27nm对CrN/VN涂层的硬度未见显著影响。由于多层膜结构的存在,CrN/VN涂层的磨耗率比单层膜结构涂层有所增加。将Al加入CrN层后,CrAIN层和VN层存在1%晶格错配度;常温下,由于形成了钒氧化物润滑层,CrAlN/VN涂层同样具有较低的摩擦系数,与WC的摩擦系数随着VN含量的增加而降低,最低达0.26。和CrN/VN涂层相比,CrAlN/VN涂层的硬度有了显著提高。固定CrAIN/VN的调制比为1:2时,调制周期在3nm到30nm范围内变化,当调制周期为20nm, CrAlN/VN涂层具有最高的硬度为32.4GPa以及弹性模量为375GPa,与WC合金的磨耗率最低为1.1×10-7mm3/Nm。当固定CrAlN/VN周期厚度为20nm时,随着CrAlN/VN调制比增大或减小,伴随着CrAIN或VN子层厚度的减薄,涂层的硬度有增强的趋势;当CrAlN/VN调制比为1:2时,涂层具有最高的硬度32.4GPa。CrAlN/VN涂层的高温氧化及摩擦学行为研究结果表明,CrAlN/VN涂层(CrAlN/VN=1:2(at.%), A=20nm)的硬度随着温度升高而下降,当温度升到700℃时,涂层的硬度仅为1.3GPa,基本失去硬质涂层的功效。随着温度升高CrAlN/VN涂层与氧化铝的摩擦系数上升,到400℃时最高达0.72;随着温度进一步升高到550℃,涂层表面形成V2O5,涂层的摩擦系数降低到0.56;当温度升高到700℃时,由于氧化物熔化,体系摩擦系数降低到了0.42。CrAlN/VN涂层仅适用于常温条件下的机械加工,不能在高温条件下应用。
     在CrAlVN涂层中加入Si能够显著提高涂层的力学性能,当Si含量为5.4at.%时,涂层具有最高的硬度为38.7GPa,弹性模量347.2GPa,及抗塑性形变系数0.8GPa。CrAlSiVN涂层和WC合金的摩擦系数在0.48-0.60之间,Si的含量变化对其没有显著影响;CrAlSiVN涂层的磨耗率随着涂层抗塑性形变性的提升而降低。钒在CrAlSiN涂层中能够起到晶粒细化的作用;CrAlSiN涂层的机械强度随着钒的加入而降低,当涂层中钒的含量由0增加到25.8at.%,涂层的硬度由34.8GPa降低到29.4GPa。当CrAlSiN涂层中加入少量钒时,未能起到润滑作用,由于涂层强度降低,摩擦系数反而增大,磨耗率也增大;当钒的含量达到25.8at.%时,起到润滑作用,涂层的摩擦系数降低到0.39,磨耗率也呈现下降趋势。CrAlSiVN涂层的高温氧化行为研究结果表明,CrAlSiVN涂层的硬度随着温度升高而下降;但是和CrAlN/VN涂层相比,CrAlSiVN涂层的抗氧化性得到了显著提高,当温度升到800℃时,涂层的硬度降低到约11.0GPa,仍然具有硬质涂层的效果。CrAlSiVN涂层能够抵抗800℃的热处理,可以应用于800℃左右的绿色机械加工条件。
     通过纳米多层膜结构和纳米复合膜结构将Cr、V氮化物进行复合,可以获得既硬又润滑的CrN/VN, CrAIN/VN和CrAlSiVN摩擦学硬质涂层。由于在摩擦磨损过程中被氧化形成了VOx化合物,Cr-V系列涂层表现出优良的摩擦学性能,能够满足绿色加工条件的需求。
"Green machining technology" is environmentally friendly, cost effective, efficiency, and becomes more and more popular. But it also brings strict requirements for cutting tool's coatings. Transition metal nitride coatings like TiN, TiAIN and CrN perform poorly due to high coefficient of friction; conventional solid lubricating coatings like diamond like carbon, MoS2, and h-BN fail due to oxidization under extreme conditions like ambient moisture and elevated temperatures; thus they are not suitable for green machining. Combining lubricant with hard coatings is an effective way out which can decrease the coefficient of friction of coatings as well as the wear and improve the life.
     Vanadium based coatings are easily oxidized to form Magneli-phase vanadium oxides and becomes 'lubricious'. Chromium based coating is hard, thus, the combination of Chromium and Vanadium based hard coatings render both hardness and lubricious properties attractive in green machining.
     This study focuses on preparation and properties of Cr and V based tribological coatings. The effects of nano-strucutre on the coating's mechanical and tribological properties will be studied, and the lubricant mechanism of self-adaptive Cr-V series coatings will be explored, either. VN, CrN/VN, CrAlN/VN multilayer coatings, and CrAlSiVN nano-composite coatings are deposited through pulsed magnetron sputtering in this study. X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electron probe micro-analyzer are employed to characterize the microstructures and chemistry. Nanoindentation and ball-on-disc wear test are used in mechanical and tribological studies.
     The main results of this study are as follows:
     In reactive magnetron sputtering of VN coatings, increasing of the nitrogen partial pressure (from0.007Pa to0.29Pa) brings about fine crystalized denser coatings with higher hardness (22.9GPa). At nitrogen partial pressure of0.18Pa, increasing of substrate bias voltage generates more residual stress in the coating (-1.69GPa at-150V), and further increasing the bias voltage to-200V slightly releases the residual stress and at the same time further enhances the density of the coating and the hardness to24.5GPa.
     CrN and VN are combined together through multilayer structure and prepared by magnetron sputtering. The period thickness of CrN/VN varies from7nm to27nm. Compared with CrN coating, multilayering with VN gives a hardness improvement from16.7GPa to25.2GPa, and the coefficient of friction (COF) with tungsten carbide alloy decreases from0.40to0.21. The hardness enhancement of CrN/VN coatings contributes to the difference of elastic modulus and thermal expansion coefficient between CrN and VN. The decrease of COF is attributed to the formation of vanadium oxides in the tribo process. There is no significant relationship between hardness and the CrN/VN bilayer thickness (from7to27nm). After doping aluminum into CrN generates about1%lattice mismatch in between the CrAIN and VN sublayers for magnetron sputtered CrAlN/VN multilayer coatings. The multilayer coatings are found self-lubricating with a coefficient of friction of0.26at room temperature because of formation of VOx. At period thickness of20nm, the coating exhibit nanoindentaiton hardness of32.4GPa, elastic modulus of375GPa and low wear rate of1.1×10-7mm3/Nm against cemented tungsten carbide. When period thickness is set as20nm, the multilayer coating with higher or lower CrAlN/VN layer thickness ratio, as well as lower sublayer thickness, has higher hardness. The coefficient of friction (COF) of the multilayer coating decreases with VN content increasing. And at CrAlN/VN layer thickness ratio of1:2, the multilayer coating obtains the best hardness of32.4GPa and the lowest COF of0.26with WC alloy. Because of oxidization, the hardness of CrAlN/VN coating (CrAlN/VN=1:2(at.%), A=20nm) decreases greatly after annealing. After annealed at700℃for2h, the hardness is only1.3GPa, and it can not act as hard coating anymore. The COF of the coating with alumina increases with test temperature increasing. It is0.72for400℃. When test temperature is550℃, V2O5forms on the surface of the coating, and the COF drops to0.56, and when test temperature further increasing to700℃, because the melting of vanadium oxides, COF further drops to0.42. So, CrAlN/VN is only suit for green machining at room temperature.
     The mechanical properties of CrAlVN coatings can be significantly improved after doped with Si. Si content of about5.4at.%provides the best hardness of38.7GPa, the elastic modulus of347.2GPa, as well as plastic deformation resistance (H3/E*2) of0.8GPa. The COF of CrAlSiVN coatings with WC alloy is from0.48to0.60. There is no relationship between COF and the content of Si. The wear rate of CrAlSiVN coatings decreases with plastic deformation resistance (H3/E*2) increasing. The crystalline in CrAlSiN coatings can be refined after doped with vanadium. The mechanical properties of CrAlSiN coatings decrease after doped vanadium. When the content of vanadium increasing from0to25.8at.%, the hardness of the coatings decrease from34.8GPa to29.4GPa. Small addition of vanadium has no lubricant effects, on the contrary, the COF and the wear rate increases due to the low coating strength. When the vanadium content is about25.8at.%, the coating presents lubricant effect, the COF of the coating with WC alloy drops to0.39and the wear rate drops, either. The hardness of CrAlSiVN coatings decreases with test temperature increasing. But compared with CrAlN/VN multilayer coatings, the oxidation resistance of CrAlSiVN coatings increases greatly; after annealed at800℃for2h, the hardness of the coating remains11.0GPa, which can still act as hard coatings, which means CrAlSiVN coatings can be applied at800℃green machining.
     Chromium and vanadium nitrides are combined together through nano-multilayer and nano-composited structure to get CrN/VN, CrAlN/VN and CrAlSiVN coatings render both hardness and lubricious properties. The Cr-V series nitride coatings are found of good tribological properties attributing to the formation of vanadium oxides in the tribo process which can be applied to "Green machining".
引文
[1]于骏一,邹青,机械制造技术基础,机械工业出版社,2004,1-2。
    [2]沈壮行,我国高效切削加工技术的发展落后于机械工业需要的深层次原因及解决对策,工具技术,2006,(4):3-8。
    [3]Greenfield M S, Santhanam A T. The impact of cutting tool advances on machining productivity.工具技术,2006,(3):13-21。
    [4]曹同坤,邓建新,固体润滑剂在切削加工润滑中的应用,工具技术,2004,(9):110-113。
    [5]李玮,马涛,林广山,肖军敏,水基金属切削液的研究现状及发展趋势,工具技术,2010,44(6):6-9。
    [6]傅树琴,切削液的市场和技术现状,石油商技,2006,6:6-11。
    [7]杨海东,金刚石、氮化碳涂层刀具干切削性能的研究,安徽农业大学,硕士学位论文,2004。
    [8]Klocke F, Eisenblatter G. Dry Cutting. Annals of the ClRP,1997,46(2):519-526.
    [9]刘星,聂春光,中国工业经济发展与工业污染排放的变化,统计与决策,2007,4:65-67。
    [10]范彩霞,干切削刀具技术的研究与应用,焦作大学学报,2004,(2):80-81.
    [11]宋文龙,邓建新,张辉,干切削加工的润滑刀具技术研究,制造技术与机床,2009,(1):45-49。
    [12]汪劲松,段广洪,李方义,杨向东,张洪潮,基于产品生命周期的绿色制造技术研究现状与展望,计算机集成制造系统-CIMS,1999,5(4):1-8.
    [13]刘飞,曹华军,何乃军,绿色制造的研究现状与发展趋势,中国机械工程,2000,11(1-2):105-110.
    [14]MELNGK S A, SMITH R T. Green Manufacturing, Dearborn, USA:Society of Manufacturing Engineers,1996:2-5.
    [15]杨海东,张崇高,谢峰,金刚石薄膜涂层刀具干切削性能的试验研究,工具技术,2003,37(11):31=32。
    [16]连云崧,邓建新,吴泽,亓婷,崔海冰,自润滑刀具的研究现状和发展趋势,航空制造技术,2011,14,68-73。
    [17]ZHOU X, YIN X, FANG F, JIANG J, ZHU W. Influence of rare earths on eutectic carbides in AISI M2 high speed steel. Journal of Rare Earths,2012,30(10):1075-1078.
    [18]WANG M, LI Y, WANG Z, BAO E. Effect of rare earth elements on the thermal cracking resistance of high speed steel rolls. Journal of Rare Earths,2011,29(5): 489-493.
    [19]Egashira K, Hosono S, Takemoto S, Masao Y. Fabrication and cutting performance of cemented tungsten carbide micro-cutting tools. Precision Engineering,2011,35(4): 547-553.
    [20]Wang L, Lei X, Shen B, Sun F, Zhang Z. Tribological properties and cutting performance of boron and silicon doped diamond films on Co-cemented tungsten carbide inserts. Diamond and Related Materials,2013,33:54-62.
    [21]胡兴军,刀具表面涂层技术进展综述,精密制造与自动化,2005,(1):14-17
    [22]赵海波,高见,周彤,欧洲刀具涂层最新状况及发展模式,工具技术,2005,(4):3-9。
    [23]Klocke F, Krieg T. Coated tools for metal cutting-features and application. Annals of the CIRP,1999,48(2):515-525.
    [24]Yigit R, Celik E, Findik F, Koksal S. Tool life performance of multilayer hard coatings produced by HTCVD for machining of nodular cast iron. International Journal of Refractory Metals and Hard Materials,2008,26(6):514-524.
    [25]Cselle T, Barimani A. Today's applications and future developments of coatings for drills and rotating cutting tools. Surface and Coatings Technology,1995,76-77:712-718.
    [26]Vancoille E, Celis J P, Roos J R, Tribological and structural characterization of a physical vapour deposited TiC/Ti(C,N)/TiN multilayer. Tribology International,1993,26(2): 115-119.
    [27]Wang H L, He J L, Hon M H. Sliding wear resistance of TiCN coatings on tool steel made by plasma-enhanced chemical vapour deposition. Wear,1993,169(2):195-200.
    [28]Leyendecker T, Lemmer O, Esser S, Ebberink J. The development of the PVD coating TiAIN as a commercial coating for cutting tools. Surface and Coatings Technology,1991, 48,(2):175-178.
    [29]Barshilia H C, Rajam K S. Structure and properties of reactive DC magnetron sputtered TiN/NbN hard superlattices. Surface and Coatings Technology,2004,183 (2-3): 174-183.
    [30]Vyas A, Li K Y, Shen Y G. Influence of deposition conditions on mechanical and tribological properties of nanostructured TiN/CNx multilayer films. Surface and Coatings Technology,2009,203 (8):967-975.
    [31]邓建新,葛培琪,艾兴,切削加工润滑技术研究现状及展望,摩擦学学报,2003,26(6):546-550。
    [32]Milossev I, Stehblow H H, Navinsek B, Metikos-Hukovic M, Electrochemical and thermal oxidation of TiN coatings studied by XPS, Surface Interface Analysis (UK), 1995,23(7-8):529-539.
    [33]Hsieh J H, Tan A L K, Zeng X T. Oxidation and wear behaviors of Ti-based thin films. Surface and Coatings Technology,2006,201(7),4094-4098.
    [34]Man B Y, Guzmana L, Miotelloa A, Adamia M. Microstructure, oxidation and H2-permeation resistance of TiAIN films deposited by DC magnetron sputtering technique. Surface and Coatings Technology,2004(180-181):9-14.
    [35]Peter P, Navinsek B, Cekada M, Zalar A. Oxidation behaviour of TiAIN coatings sputtered at low temperature. Vacuum,1999,53:127-131.
    [36]Liu G T, Duh J G, Chung K H, Wang J H. Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys. Surface and Coatings Technology,2005, 200 (7),2100-2105.
    [37]宋贵宏,杜昊,贺春林,硬质与超硬涂层,化学工业出版社,2007。
    [38]Mayrhofer P H, Mitterer C, Hultman L, Clemens H. Microstructural design of hard coatings. Progress in Materials Science,2006,51:1032-1114.
    [39]张祥林,章小峰,王爱华,高温固体润滑涂层的最新研究进展,材料导报,2007,21(6):4-8
    [40]邓建新,丁泽良,赵军,王景海,艾兴,高温自润滑陶瓷刀具材料及其切削性能的研究,机械工程学报,2003,39(8):106-109.
    [41]Erdemir A. In:Bhushan B, editor. Modern tribology handbook, vol. Ⅱ. Boca Raton:CRC; 2001.
    [42]Grill A. Diamond-like carbon:state of the art. Diamond and Related Materials,1999,8: 428-434.
    [43]Erdemir A, Donnet C. In:Bhushan B, editor. Modern tribology handbook, vol.Ⅱ. Boca Raton:CRC; 2001.
    [44]Tallant D R, Parmeter J R, Siegal M P, Simpson R L. The thermal stability of diamond-like carbon. Diamond Relat Mater 1995,4:191-199.
    [45]Donnet C. Recent progress on the tribology of doped diamond-like and carbon alloy coatings:a review. Surface Coating and Technology,1998,100-101:180-186.
    [46]Liu Y, Erdemir A, Meletis E I. An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surface Coating and Technology, 1996,86-87:564-568.
    [47]Holmberg K, Matthews A. Coatings tribology-properties, techniques and applications in surface engineering. Elsevier tribology series, vol.28. Amsterdam:Elsevier; 1994.
    [48]Kim D S, Fischer T E, Gallois B. The effects of oxygen and humidity on friction and wear of diamond-like carbon films. Surface and Coatings Technology,1991; 49: 537-542.
    [49]Erdemir A, Eryilmaz O L, Fenske G. Synthesis of diamondlike carbon films with superlow friction and wear properties. Journal of Vacuum Science and Technology A, 2000; 18:1987-1992.
    [50]Erdemir A, Eryilmaz O L, Nilufer I B, Fenske G. Effect of source gas chemistry on tribological performance of diamond-like carbon films. Diamond and Related Materials, 2000; 9:632-637.
    [51]Gangopadhyay A K, Willermet P A, Tamor M A, Vassell W C. Amorphous hydrogenated carbon films for tribological applications I. Development of moisture insensitive films having reduced compressive stress. Tribology International,1997,30:9-18.
    [52]Donnet C, Martin J M, Mogne Th L, Belin M. Super-low friction of MoS2 coatings in various environments. Tribology International,1996; 29:123-128.
    [53]Hirvonen J P, Koskinen J, Jervis J R, Nastasi M. Present progress in the development of low friction coatings. Surface and Coatings Technology,1996; 80:139-150.
    [54]Singer I L. In:Singer I L, Pollock H M, editors. Fundamentals of friction:macroscopic and microscopic processes. Dordrecht:Kluwer,1992:237-245.
    [55]Hirvonen J P, Koskinen J, Jervis J R, Nastasi M. Present progress in the development of low friction coatings. Surface and Coatings Technology,1996,80:139-150.
    [56]Rundquist P, Hultman L, Sjolen J, Horling A, Ljungcrantz H. In:Rundquist P, editor. Diploma thesis LiTH-IFM-EX-932, Linkoping University,2000:56-57.
    [57]Teer D G, New solid lubricant coatings, Wear,2001,251:1068-1074.
    [58]Renevier N M, Lobiondo N, Fox V C, Witts J, Teer D G. Performance of MoS2/metal composite coatings used for dry machining and other industrial applications. Surface and Coatings Technology,2000; 123:84-91.
    [59]Renevier N M, Hampshire J, Fox V C, Witts J, Allen T, Teer D G. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings. Surface and Coatings Technology,2001,142-144:67-77.
    [60]Gilmore R, Baker M A, Gibson P N, Gissler W, Stoiber M, Losbichler P, Mitterer C. Low-friction TiN-MoS2 coatings produced by dc magnetron co-deposition, Surface and Coatings Technology,1998,108-109:345-351.
    [61]Voevodin A A, Zabinski J S. Supertough wear-resistant coatings with'chameleon' surface adaptation. Thin Solid Films,2000,370:223-231.
    [62]Voevodin A A, Zabinski J S. Nanocomposite and nanostructured tribological materials for space applications. Composites Science and Technology,2005,65:741-748.
    [63]Gilmore R, Hauert R. Control of the tribological moisture sensitivity of diamond-like carbon films by alloying with F, Ti or Si. Thin Solid Films,2001,398:199-204.
    [64]Donnet C. Recent progress on the tribology of doped diamond-like and carbon alloy coatings:a review. Surface and Coatings Technology,1998,101:180-186.
    [65]Carrapichano J M, Gomes J R, Silva R F. Tribological behaviour of Si3N4-BN ceramic materials for dry sliding applications. Wear,2002,253:1070-1076.
    [66]Navinsek B, Panjan P, Cekada M, Quinto D T. Interface characterization of combination hard/solid lubricant coatings by specific methods. Surface and Coatings Technology, 2002; 154:194-203.
    [67]Erdemir A, Erck R A, Robles J. Relationship of Hertzian contact pressure to friction behavior of selflubricating boric acid films. Surface and Coatings Technology,1991,49: 435-438.
    [68]Singer I L, Dvorak S D, Wahl K J, Scharf T W. Role of third bodies in friction and wear of protective coatings. Journal of Vacuum Science and Technology A,2003,21:232-240.
    [69]Mitterer C, Holler F, Ustel F, Heim D. Application of hard coatings in aluminium die casting-soldering, erosion and thermal fatigue behavior. Surface and Coatings Technology,2000; 125:233-239.
    [70]Stoiber M, Badisch E, Lugmair C, Mitterer C. Low-friction TiN coatings deposited by PACVD. Surface and Coatings Technology,2003; 163-164:451-456.
    [71]Badisch E, Mitterer C, Mayrhofer P H, Mori G, Bakker R, Stori H. Characterization of tribo-layers on selflubricating PACVD TiN coatings. Thin Solid Films,2004,460: 125-132.
    [72]Badisch E, Stoiber M, Fontalvo G A, Mitterer C. Low-friction PACVD TiN coatings: influence of Cl-content and testing conditions on the tribological behavior. Surface and Coatings Technology,2003,174-175:450-454.
    [73]Stoiber M, Mitterer C, Schoberl T, Badisch E, Fontalvo G, Kullmer R. Nanocomposite coatings within the system Ti-B-N deposited by plasma assisted chemical vapor deposition. Journal of Vacuum Science and Technology B,2003,21 (3):1084-1091.
    [74]Navinsek B, Panjan P, Cekada M, Quinto D T. Interface characterization of combination hard/solid lubricant coatings by specific methods. Surface and Coatings Technology, 2002,154:194-203.
    [75]Magneli A. Structures of the ReO3-type with recurrent dislocations of atoms-homologous series of molybdenum and tungsten oxides. Acta Crystallographica,1953, 6:495-500.
    [76]Woydt M, Skopp A, Dorfel I, Witke K. Wear engineering oxides/anti-wear oxides. Wear, 1998,218:84-95.
    [77]Lugscheider E, Barwulf S, Barimani C. Properties of tungsten and vanadium oxides deposited by MSIP-PVD process for self-lubricating applications. Surface and Coatings Technology,1999,120-121:458-464.
    [78]Greenwood N N, Earnshaw A, Chemistry of the Elements,2nd, Butterworth-Heinemann, Oxford,1997.
    [79]Fateh N, Fontalvo G A, Gassner G, Mitterer C. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear,2007,262: 1152-1158.
    [80]Gassner G, Mayrhofer P H, Kutschej K, Mitterer C, Kathrein M. A new low friction concept for high temperatures:lubricious oxide formation on sputtered VN coatings. Tribology Letters,2004,17 (4):751-756.
    [81]Mayrhofer P H, Hovsepian P Eh, Mitterer C, Munz W D. Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings. Surface and Coatings Technology,2004,177-178:341-347.
    [82]Constable C P, Yarwood J, Hovsepian P, Donohue L A, Lewis D B, Miinz W D. Structural determination of wear debris generated from sliding wear tests on ceramic coatings using Raman microscopy. Journal of Vacuum Science and Technology A,2000, 18(4):1681-1689.
    [83]Biksa A, Yamamoto K, Dosbaeva G, Veldhuis S C, Fox-Rabinovich G S, Elfizy A, Wagg T, Shuster L S. Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribology International,2010,43:1491-1499.
    [84]孔明,董云衫,戴嘉维,张慧娟,李戈扬,VN/(Ti, Al)N纳米多层膜的共格生长与超硬效应,上海交通大学学报,2006,40(10),1758-1762。
    [85]Kong M, Shao N, Dong Y, Yue J, Li G. Growth, microstructure and mechanical properties of (Ti, A1)N/VN nanomultilayers. Materials Letters,2006,60(7):874-877.
    [86]http://www.oerlikon.com/ecomaXL/index.php?site=BALZERS_EN_balinit_coatings
    [87]Bobzin K, Bagcivan N, Ewering M, Brugnara R H, Theiβ S. DC-MSIP/HPPMS (Cr,Al,V)N and (Cr,Al,W)N thin films for high-temperature friction reduction. Surface and Coating Technology,2011,205(8-9):2887-2892.
    [88]Veprek S, Reiprich S, Li S. Superhard nanocrystalline composite materials:The TiN/Si3N4 system. Applied Physics Letters,1995,66:2640-2648.
    [89]Veprek S, Jilek M. Super- and ultrahard nanacomposite coatings:generic concept for their preparation, properties and industrial applications. Vacuum,2002,67(3-4): 443-449.
    [90]Koehler J S. Attempt to Design a Stronge Solid. Physical Review B,1970,2:547-551.
    [91]Helmersson U, Todorova S, Barnett S A, Sundgren J E, Markert L C, Greene J E. Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness. Journal of Applied Physics,1987,62(2):481-484.
    [92]田民波,薄膜技术与薄膜材料,清华大学出版社,2006,8.
    [93]张玉娟,吴志国,张伟伟,阎鹏勋,刘维民,薛群基,多弧镀及磁过滤阴极弧沉积TiN薄膜的摩擦学性能对比,摩擦学学报,2004,24(6):498-502。
    [94]黄美东,林国强,董闯,孙超,蒋长荣,黄荣芳,闻立时,负偏压在电弧离子镀沉积TiN/TiCN多层薄膜涂层中的作用,金属热处理,2001,26(7):17-20。
    [95]白秀琴,李健,低温磁控溅射与普通多弧离子镀TiN薄膜涂层的摩擦学性能比较,中国表面工程,2006,19(1):12-15。
    [96]Canovic S, Ljungberg B, Bjormander C, Halvarsson M. CVD TiC/alumina and TiN/alumina multilayer coatings grown on sapphire single crystals. International Journal of Refractory Metals and Hard Materials,28(2),2010:163-173.
    [97]Uhlmann E, Koenig J. CVD diamond coatings on geometrically complex cutting tools. CIRP Annals-Manufacturing Technology,58(1),2009:65-68.
    [98]杨于兴,漆王睿,X射线衍射分析(修订版),上海交通大学出版社,1994年
    [99]Zhang S, Li L, Kumar A, Materials Characterization Techniques,刘东平,王丽梅,牛金海,于乃森,译,科学出版社,2010,116。
    [100]Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica,1953,1(1):22-31.
    [101]Yashar P C, Sproul W D. Nanometer scale multilayered hard coatings, Vacuum,1999, 55 (3-4):179-190.
    [102]Oliver W C, Phall G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indetation experiment. Journal of Materials Research,1992,7:1564-1583.
    [103]Cselle T, Barimani A. Today's applications and future developments of coatings for drills and rotating cutting tools. Surface and Coatings Technology,1995,76-77(Part 2): 712-718.
    [104]Klocke F, Krieg T, Lugscheider E. Improved cutting processes with adapted coating systems. Annals of the CIRP,1998,47(1):65-68.
    [105]Podgornik B, Hogmark S, Sandberg O. Proper coating selection for improved galling performance of forming tool steel. Wear,2006,261 (1):15-21.
    [106]Hovsepian P Eh, Luo Q, Robinson G, Pittman M, Howarth M, Doerwald D, Tietema R, Sim W M, Deeming A, Zeus T. TiAlN/VN superlattice structured PVD coatings:A new alternative in machining of aluminium alloys for aerospace and automotive components. Surface and Coatings Technology,2006,201(1-2):265-272.
    [107]Lahres M, Muller-Hummel P, Doerfel O. Applicability of different hard coatings in dry milling aluminium alloys. Surface and Coatings Technology,1997,91 (1-2):116-121.
    [108]Nouari M, List G, Girot F, Coupard D. Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear,2003,255(7-12):1359-1368.
    [109]Kitagawa T, Kubo A, Maekawa K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti6A16V2Sn. Wear,1997,202 (2):142-148.
    [110]Ouyang J H, Murakami T, Sasaki S. High-temperature tribological properties of a cathodic arc ion-plated (V,Ti)N coating. Wear,2007,263 (7-12):1347-1353.
    [111]Uchida M, Nihira N, Mitsuo A, Toyoda K, Kubota K, Aizawa T. Friction and wear properties of CrAIN and CrVN films deposited by cathodic arc ion plating method. Surface and Coatings Technology,2004,177-178:627-630.
    [112]Franz R, Neidhardt J, Kaindl R, Sartory B, Tessadri R, Lechthaler M, Polcik P, Mitterer C. Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings. Surface and Coatings Technology,2009,203 (8):1101-1105.
    [113]Luo Q. Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN. Wear,2011,271 (9-10):2058-2066.
    [114]Farges G, Beauprez E, Degout D. Preparation and characterization of V-N coatings deposited by reactive triode magnetron sputtering. Surface and Coating Technology, 1992,54/55:115-120.
    [115]Elangovan T, Kuppusami P, Thirumurugesan R, Ganesan V, Mohandas E, Mangalaraj D. Nanostructured CrN thin films prepared by reactive pulsed DC magnetron sputtering. Materials Science and Engineering B,2010,167:17-25.
    [116]Wang S G, Tian E K, Lung C W. Surface energy of arbitrary crystal plane of bcc and fcc metals. Journal of Physics and Chemistry of Solids,2000,61:1295-1300.
    [117]Park J K, Baik Y J. Increase of hardness and oxidation resistance of VN coating by nanoscale multilayered structurization with AlN. Materials Letters,2008,62:2528-2530.
    [118]Devia D M, Restrepo-Parra E, Arango P J, Tschiptschin A P, Velez J M. TiAIN coatings deposited by triode magnetron sputtering varying the bias voltage. Applied Surface Science,2011,257:6181-6185.
    [119]Kong Q, Ji L, Li H, Liu X, Wang Y, Chen J, Zhou H. Influence of substrate bias voltage on the microstructure and residual stress of CrN coatings deposited by medium frequency magnetron sputtering. Materials Science and Engineering B,2011,176 (11): 850-854.
    [120]Lee J W, Tien S K, Kuo Y C. The effects of pulse frequency and substrate bias to the mechanical properties of CrN coatings deposited by pulsed DC magnetron sputtering. Thin Solid Films,2006,494:161-167.
    [121]Vetter J. Vacuum arc coatings for tools:potential and application. Surface and Coatings Technology,1995, (76-77):719-724.
    [122]ASM Handbook Volume 1:Properties and Selection:Irons, Steels, and High-Performance Alloys,10th Ed., ASM International,1990.
    [123]Kim S H, Baik Y J, Kwon D. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surface and Coatings Technology,2004, (187):47-53.
    [124]Cunha L, Andritschky M. Residual stress, Residual stress, surface defects and corrosion resistance of CrN hard coatings. Surface and Coatings Technology,1999,111:158-162.
    [125]Lazar P, Redinger J, Podloucky R. Density functional theory applied to VN/TiN multilayers. Physical Review B,2007,76:1-9.
    [126]Kao C M, Lee J W, Chen H W, Chan Y C, Duh J G, Chen S P. Micro structures and mechanical properties evaluation of TiAlN/CrSiN multilayered thin films with different bilayer periods. Surface and Coatings Technology,2010,205:1438-1443.
    [127]Xu J, Koichiro H, Yutaka S, Isao K. Microstructure and properties of CrN/Si3N4 nano-structured multilayer films. Thin Solid Films,2002,414:239-246.
    [128]Holleck H. Material selection for hard coatings. Journal of Vacuum Science & Technology A,1986,4(6):2661-2669.
    [129]Farges G, Beauprez E, Sainte Catherine M C. Crystallographic structure of sputtered cubic δ-VNx films:influence of basic deposition parameters. Surface and Coatings Technology,1993,61:238-244.
    [130]Yu L, Dong S, Xu J, Kojima I. Microstructure and hardening mechanisms in a-Si3N4/nc-TiN nanostructured multilayers. Thin Solid Films,2008,516:1864-1870.
    [131]Lu Y H, Shen Y G, Zhou Z F, Li K Y. Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti-B-N thin films. Wear,2007,262: 1372-1379.
    [132]Zhou Z, Rainforth W M, Rother B, Ehiasarian A P, Hovsepian P Eh, Munz W D. Elemental distributions and substrate rotation in industrial TiAlN/VN superlattice hard PVD coatings. Surface and Coatings Technology,2004,183:275-282.
    [133]Vetter J, Knawn R, Dwuletzki H, Schneider E, Vogler S.Hard coatings for lubrication reduction in metal forming. Surface and Coatings Technology,1996,86-87:739-747.
    [134]Gannon P E, Tripp C T, Knospe A K, Ramana C V, Deibert M, Smith R J, Gorokhovsky V I, Shutthanandan V, Gelles D. High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr-Al-N multilayer and/or superlattice coatings. Surface and Coatings Technology,2004,188-189:55-61.
    [135]Zhang J M, Xu K W, Ji V. Dependence of strain energy on the grain orientations in an FCC-polycrystalline film on rigid substrate. Applied Surface Science,2002,185:177-182.
    [136]Musil J, Kunc F, Zeman H, Polakova H. Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surface and Coatings Technology,2002,154:304-313.
    [137]Anderson P M, Li C. Hall-Petch relations for multilayered materials. Nanostructured materials,1995,5:349-362.
    [138]Crist B V, Handbook of Monochromatic XPS Spectra, Vol.1-The Elements and Native Oxides, XPS International Inc.,1999.
    [139]Binding energies for relevant bonds obtained from the XPS database of the National Institute of Standards and Technology, http://srdata.nist.gov/xps/,10/2012.
    [140]John A. Dean, Lange's Handbook of Chemistry,12th ed.; McGraw-Hill Book Company: New York, NY,9 (1979) 4-94.
    [141]Yashar P C, Sproul W D. Nanometer scale multilayered hard coatings. Vacuum,1999, 55(3-4):179-190.
    [142]Chu X, Barnett S A. Model of superlattice yield stress and hardness enhancements. Journal of Applied Physics,1995,77 (9):4403-4411.
    [143]Chen H W, Chan Y C, Lee J W, Duh J G. Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings. Surface and Coatings Technology,2010,205: 1189-1194.
    [144]Ding X, Zeng X T, Liu Y C. Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc. Thin Solid Films,2011,519: 1894-1900.
    [145]Ding X Z, Zeng X T, Liu Y C, Yang Q, Zhao L R. Structure and mechanical properties of Ti-Si-N films deposited by combined DC/RF reactive unbalanced magnetron sputtering. Journal of Vacuum Science and Technology A,2004,22:2351-2355.
    [146]Ardehali Barani A, Li F, Romano P, Ponge D, Raabe D. Design of high-strength steels by microalloying and thermomechanical treatment. Materials Science and Engineering A,2007,463:138-146
    [147]Zhang S, Sun D, Fu Y, Du H. Recent advances of superhard nanocomposite coatings:a review. Surface and Coatings Technology,2003,167:113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700