用户名: 密码: 验证码:
大型不规则薄壁零件测量—加工一体化制造方法与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国航空航天、运载、国防等重大工程领域中,出现了一批必须满足其高性能要求的大型不规则薄壁零件,如火箭发动机喷管、火箭推进剂共底构件、火箭燃料贮箱壁板等。这类零部件具有几何尺寸大、形状复杂、结构刚度低、材料难加工等制造特点,易在半精加工阶段产生较大的结构变形。若仅按照原始设计尺寸或模型进行常规数控加工,无法加工出满足几何精度和性能要求的零件。本文以我国大型/重载液体火箭发动机的研制为工程背景,依托国家自然科学基金重点基金(No.50835001)、装备预研基金重点基金(No.9140x×××××××××x0902)和航天科技集团委托项目,针对大型不规则薄壁零件加工精度难以保证的问题,开展高效、精密数字化加工方法与关键技术的研究。
     针对大型不规则薄壁零件尺寸误差或结构变形导致实际加工曲面与设计模型不一致的加工难题,提出一种基准关联约束的精加工目标曲面生成方法。基于E.Cartan活动标架和曲面相伴理论,利用在机实测的几何参数数据,在分析被测面、基准面及加工目标曲面的空间位姿关系基础上,研究精加工目标曲面建模技术及曲面生成算法,再设计出精加工目标曲面。
     为提高大型复杂几何廓形的测量速度与精度,提出一种基于截面线法的点激光快速、精密扫描测量方法。研究复杂曲面几何信息提取技术、激光三角法曲面测量误差预测技术。针对等步长测量方案易丢失关键几何信息的问题,研究基于曲面局部曲率特征的测量控制步长优化控制技术,进而实现测点在被测曲面上的自适应分布。对于模型已知曲面,利用设计模型规划出传感器的采样控制点;对于模型未知曲面,在已测坐标的基础上利用混合预估法和二次形函数优化计算进给步长和测量行距。根据激光传感器位移测量误差与曲面几何特征的强关联性,量化分析了入射角度对测量精度的影响规律。
     针对不锈钢材料加工效率低、易切削振动等问题,研究其铣削过程的动力学建模与稳定性性预测。建立考虑刀具偏心的三维稳态切削力力学模型和“主轴-刀具-零件”自由度加工动力学模型;基于材料本构关系和斜切机理,构建一种面向参数化铣刀的通用三维稳态切削力预报模型;利用高次谐波影响的多频法对盘铣刀铣槽加工进行切削稳定性预测,并根据稳定性叶瓣图优化切削参数。
     针对液体火箭发动机喷管直槽冷却通道原有的卧式仿形加工方式存在的零件胀形大、自动化程度差、产品合格率低等问题,发明了喷管直槽冷却通道的立式对称加工方法。设计了喷管直槽冷却通道数字化铣槽加工方案,研制出喷管立式装夹高刚度工装卡具,开发出在零件一次装夹下实现其几何参数在机测量、铣槽加工等多工位自动化操作的加工控制系统,研制出双主轴、双立柱结构的铣槽加工专用装备。
     所研究的测量-加工一体化制造方法和高效率、高可靠性的专用加工装备成功应用于新一代液体火箭发动机喷管铣槽加工,为我国航天事业的发展做出了积极贡献。
There are a number of large irregular thin-walled parts with high-performance machining requirements in national major projects, including aerospace, carrying and defense. Rocket nozzles, rocket propellant isolation layer structure and rocket fuel tank panel are three typical parts, which share some common manufacturing features, such as large size, complex shape, low structural stiffness, difficult-to-machine materials, etc. As a result, the structural deformation error is easily caused at semi-finishing stage, which is much larger than the tolerance. If the codes in accordance with the original design model are directly adopted in NC machining, the machined parts can not satisfy the accuracy and performance requirements. Therefore, it is very difficult to machine those parts. The dissertation is carried out according to the large/heavy liquid rocket engine development project from China Aerospace Science and Technology Corporation. The subject has also been funded by Natural Science Foundation of China (key program grant No.50835001) and Advanced Research Foundation (key program grant No.9140××××××××××××0902).In this dissertation, the machining problems of large irregular thin-walled parts are analyzed. An efficient and precision digital machining theory and some key technologies are researched.
     A troublesome problem arises for the large irregular thin-walled parts. It is the actual target surface which is inconsistent with the design model. To obtain the finishing target surface, a novel surface generation method is developed taking dimension error or structure deformation into consideration. It can satisfy the digital machining method which integrates measurement, surface redesign and machining. The spatial pose of measurable reference surface, datum surface and target surface are initially analyzed. A modeling technique for target surface redesign is developed based on E.Cartan moving frame theory and surface accompanied theory. And a computing method for surface redesign is then researched utilizing the measured data of geometrical parameters. On the base of the analysis mentioned above, the finishing target surface can be redesigned in accordance with performance constrains.
     In order to imrpove the coordinate extracting speed and accuracy of large complex geometric profile, a fast and precision non-contact laser scanning method is developed based on iso-planar principle. Both the geometric information extraction technology for irregular surface with four sides and the measuring error prediction of laser triangulation method are researched. To avoid losing key geometric information as equal step strategy, the calculation of measuring control step is expanded from2D space to3D space. Further, coordinate points are adaptively distributed according to curvature characteristics. Sampling control points are planned using design model of model-known surface. But for the model-unknown surface, besides the measured information, a hybrid extrapolation method and a quadratic function are essential for optimizing feeding step and side interval. In the following, the impact of incident angle on measurement accuracy is quantitatively analyzed, which is on the base of strong correlation of displacement detection error and surface geometric features.
     The milling dynamics process is modeled and the stablility is predicted against low machining efficincy and chatter of stainless steel material. A mechanics model to predict three-dimensional cutting forces with runout effect is developed, as well as a two-degree-of-freedom milling dynamics model of'spindle-cutter-workpiece'system is also established. The present cutting force models mainly focus on some special end mills. Based on oblique mechanism and material constitutive relations, a general3D steady-state cutting forces model for parameterized mills is formulated. Then, the stability is predicted using multi-frequency method which takes high harmonics effect into account. As a result, cutting parameters can be optimized according to stability lobe.
     To solve the problems of the existing copying horizontal milling method for liquid rocket engine nozzle, such as bulging uneven, process dispersion, low machining efficiency and etc, a vertical machining method for straight cooling channel of rocket nozzle is invented in this dissertation. The digital slot milling strategy is designed for rocket nozzle. A high stiffness fixture is developed for vertical clamping of nozzle. Further, a multi-stage machining system is developed. Geometry parameters measurement and slot milling can be automatically accomplished under the condition of one-time setup. Finaly, a special machine with dual-spindle and double-column structure for slot milling is manufactured.
     The proposed measurement-machining integrated manufacturing method and the special digital machining equipment with high efficiency and high reliability has been successfully applied to the new generation of liquid rocket engine nozzle, which has made a positive contribution to the development of China's aerospace industry.
引文
[1]路甬祥.团结奋斗·开拓创新·建设制造强国[J].机械工程学报,2003,39(1):2-9.
    [2]陆燕荪.中国制造任重道远·装备中国责无旁贷—中国装备制造业现状与发展战略[J].机械工程学报,2007,43(1):2-6.
    [3]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[M].北京:中国法制出版社,2006.
    [4]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010.
    [5]郭东明.高性能零件的性能与几何参数一体化精密加工方法与技术[J].中国工程科学,2011,13(10):47-57.
    [6]Sutton G P. History of liquid-propellant rocket engines in Russia, formerly the Soviet Union [J]. Journal of Propulsion and Power,2003,19(6):1008-1037.
    [7]CALVO J B, HANNEMANN K. Numerical simulation of liquid rocket engine cooling channels[C].//AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 10-13, 2009, Denver, Colorado. Reston:AIAA,2009:1-18.
    [8]胡力耘.大型火箭喷管数控仿形数字化加工系统的理论技术研究与设计[D]:(博士学位论文).大连:大连理工大学,2002.
    [9]王春.大型配对型面数字化制造技术的研究[D]:[博士学位论文).大连:大连理工大学,2002.
    [10]孙家广.计算机辅助设计技术基础[M].北京:清华大学出版社,2000.
    [11]柯映林.反求工程CAD建模理论、方法和系统[M].北京:机械工业出版社,2005.
    [12]WU S X, WANG C Y, CHEN Z C. Generate triangulated surfaces from massive unorganized points[J]. Chinese Journal of Mechanical Engineering,2006,19(1):93-95.
    [13]柯映林,程耀东.显式Bezier三角曲面的C1构造[J].浙江大学学报,1995,29(1):44-51.
    [14]GMDING R H, MEYLING J. Smooth interpolation to scattered data by bivariate polynomials of odd degree[J]. Computer Aided Geometric Design,1990,7:439-458.
    [15]孙殿柱,李心成,李延瑞等.G1连续三角Bezier曲面模型快速生成算法[J].机械工程学报,2010,46(15):125-129.
    [16]BRECHER C, LANGE S, MERZ M, et al. NURBS based ultra-precision free-form machining[J]. CIRP Annal-Manufacturing Technology,2006,55(1):547-550.
    [17]SUN Y W, WANG Y C, LIU W J. Free-form surface reconstruction based on NURBS to serial cross-sections[J]. Chinese Journal of Mechanical Engineering,2003,16(4):420-423.
    [18]柯映林,刘云峰,范树迁等.基于特征的反求工程建模系统RE-SOFT[J].计算机辅助设计与图形学学报,2004,16(6):799-811.
    [19]柯映林,王青,范树迁等.RE-SOFT系统构架及关键技术[J].浙江大学学报,2006,40(8):1327-1332.
    [20]罗晨,朱利民,丁汉.基于距离函数运动生成曲面的识别和重构方法[J].机械工程学报,2009,45(10):151-158.
    [21]LAI J Y, UENG W D. Reconstruction of surfaces of revolution from measured points[J]. Computers in Industry,2000,41:147-161.
    [22]LIU Y, POTTMANN H, WANG W. Constrained 3D shape reconstruction using a combination of surface fitting and registration[J]. Computer-Aided Design,2006,38:572-583.
    [23]HUANG J B, MENG C H. Identification and characterization of regular surfaces from unorganized points by normal sensitivity analysis[J]. Transaction of ASME, Journal of Computing and Information Science in Engineering,2002(2):115-123.
    [24]JIA Z Y, JI T, GUO D M, et al. A precision grinding technique for radome inner surfaces[J]. Key Engineering Material,2004,257-258:177-182.
    [25]卢杰持,王春,钱名海.航天大型蜂窝复合材料构件的配合型面加工技术[J].机械工程学报,1999,35(1):65-67.
    [26]张国雄.三坐标测量机[M].天津:天津大学出版社,1999.
    [27]RAJA V, FERN ANDES K J. Reverse engineering:an industrial perspective[M]. London: Springer,2008.
    [28]JIA Z Y, LU X II, WANG W, et al. Data sampling and processing for contact free-form surface scan-tracking measurement[J]. The International Journal of Advanced Manufacturing Technology,2010,46:237-251.
    [29]庸朝伟,梁锡吕.三维曲面激光精密测量技术[J].计量学报,1994,15(2):99.
    [30]CARBONE V, CAROCCI M, SAVIO E, et al. Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces[J]. The International Journal of Advanced Manufacturing Technology,2001,17(4):263-271.
    [31]REJC J, CINKELJ J, MUNIH M. Dimensional measurements of gray-iron object using a robot and a laser displacement sensor[J]. Robotics and Computer-Integrated Manufacturing,2009,25: 155-167.
    [32]JEZERSEK M, MOZLNA J. High-speed measurement of foot shape based on multiple-laser-plane triangulation[J]. Optical Engineering,2009,48(11):113604.1-113604.8.
    [33]HOU B, WU Z Y, TOCNAYE J B, et al. Charge-coupled devices combined with centroid algorithm for laser beam deviation measurements compared to a position-sensitive device[J]. Optical Engineering,2011,50(3):033603.1-033603.11.
    [34]AMANN M C, BOSCH T, LESCURE M, et al. Laser ranging:a critical review of usual techniques for distance measurement[J]. Optical Engineering,2001,40(1):10-19.
    [35]SMITH K B, ZHENG Y F. Accuracy Analysis of point laser triangulation probes using simulation. Transaction of ASME, Journal of manufacturing science and engineering,1998, 120:736-745.
    [36]VUKASINOVIC N, BRACUN D, MOZINA J, et al. The influence of incident angle, object color and distance on CNC laser scanning[J]. The International Journal of Advanced Manufacturing Technology,2010,50:265-274.
    [37]SMITH K B, ZHENG Y F. Multi-laser displacement sensor used in accurate digitizing technique[J]. Transaction of ASME, Journal of Engineering for Industry,1994,22(5):482-490.
    [38]AOYAMA H, YAMAZAKI K, SAW ABE M. Optical sensor for detecting a position and an inclination[J]. Transaction of ASME, Journal of manufacturing science and engineering,1996, 118:400-405.
    [39]SHIOU F J, LIU M X. Development of a novel scattered triangulation laser probe with six linear charge-couple devices (CCDs)[J]. Optics and Lasers in Engineering,2009,47:7-18.
    [40]ZHANG G X, XU Y C, XIE Z X, et al. A system for measuring high-reflective sculptured surfaces using optical non-contact p robes[J]. CIRP Annal-Manufacturing Technology,2001, 50(1):369-372.
    [41]FAN K C. A non-contact automatic measurement for free-form surface profiles[J]. Computer Integrated Manufaturing System,1997,10(4):277-285.
    [42]XI F, LIU Y, FENG H Y. Error compensation for three-dimensional line laser scanning data[J]. The International Journal of Advanced Manufacturing Technology,2001,18:211-216.
    [43]Li D Y, Gu P H. Free-form surface inspection techniques state of the art review[J]. Computer-Aided Design,2004,36:1395-1417.
    [44]MENQ C H, YAU H T, LAI G Y. Automated precision measurement of surface profile in CAD-directed inspection [J]. IEEE Robotics and Automation,1992,8(2):268-278.
    [45]PAHK H J, JUNG M Y, HWANG S W, et al. Integrated precision inspection system for manufacturing of moulds having CAD defined features [J]. The International Journal of Advanced Manufacturing Technology,1995,10(3):198-207.
    [46]LI S Z. Adaptive sampling and mesh generation [J]. Computer-Aided Design,1995,27:235-240.
    [47]EDGEWORTH R, WILHELM R. Adaptive sampling for coordinate metrology[J]. Precision Engineering,1999,23:144-154.
    [48]ELKOTT D F, VELDHIUS S C. CAD-based sampling for CMM inspection of models with sculptured features[J]. Engineering with Computers,2007,23:187-206.
    [49]LU J C, DUFFLE N A, BOLLINGER J G. Two dimensional tracing and measurement using touch trigger probes [J]. CIRP Annal-Manufacturing Technology,1982,31(1):415-419.
    [50]WOO T C, LIANG R, HSIEH C C, et al. Efficient sampling for surface measurements [J]. Journal of Manufacturing Systems,1995,14(5):345-354.
    [51]SONG C K, KIM S W. Reverse engineering:autonomous digitization of free formed surfaces on a CNC coordinate measuring machine[J]. International Journal of Machine Tools and Manufacture,1997,37(7):1041-1051.
    [52]LU K Q, WANG W, CHEN ZC. Adaptive sampling of digitizing for the unknown free-form surface based on front path detecting[J]. Chinese Journal of Mechanical Engineering,2010, 46(9):143-149.
    [53]来新民,黄田,陈关龙等.自由曲面数字化的自适应规划[J].上海交通大学学报,1999,33(7):837-841.
    [54]HU J, LI Y, WANG Y, et al. Adaptive sampling method for laser measuring free-form surface[J]. The International Journal of Advanced Manufacturing Technology,2004,24:886-890.
    [55]SHAW M C. Metal cutting principles[M]. Oxford:Clarendon press,1984.
    [56]MERCHANT M E. Basic mechanics of metal cutting process[J]. Transactions of ASME, Journal of Applied Mechanics,1944,168-175.
    [57]JAY ARAM S, KAPOOR S G, DEVOR R E. Estimation of the specific cutting pressures for mechanistic cutting force models[J]. International Journal of Machine Tools and Manufacture, 2001,41:265-281.
    [58]SMITH S, TLUSTY J. An overview of modeling and simulation of the milling process[J]. Transactions of ASME, Journal of Engineering for Industry,1991,113:169-175.
    [59]ENDRES W J, DEVOR R E, KAPOOR S G. A dual-mechanism approach to the prediction of machining forces:Part Ⅰ— Model development J]. Transactions of ASME, Journal of engineering for industry,1995,117,526-541.
    [60]MERDOL S D, ALTINTAS Y. Mechanics and dynamics of serrated cylindrical and tapered end mills[J]. Transaction of ASME, Journal of manufacturing science and engineering,2004, 126:317-226.
    [61]GRADISEK J, KALVERAM M, WEINERT K. Mechanistic identification of specific force coefficients for a general end mill[J]. International Journal of Machine Tools and Manufacture, 2004,44:401-414.
    [62]BUDAK E, ALTINTAS Y. Peripheral milling conditions for improved dimensional accuracy[J]. International Journal of Machine Tools and Manufacturing,1994,34(7):907-918.
    [63]KLINE W A, DEVOR R E, LINBERG J R. The predication of cutting forces in end milling with application to cornering cut[J]. International Journal of Machine Tool Design and Research, 1982,22(1):7-22.
    [64]康永刚,王仲奇,吴建军等.立铣切削力分类研究及精确铣削力模型的建立[J].航空学报,2007,28(2):481-489.
    [65]BUDAK E, ALTINTAS Y, ARMAREGO E J A. Prediction of milling force coefficients from orthogonal cutting data[J]. Transaction of ASME, Journal of Engineering for Industry,1996, 118,216-224.
    [66]OXLEY P L B. Mechanics of machining:an analytical approach to assessing machinability[M]. Chichester:Ellis Horwood Ltd,1989.
    [67]KLINE W A, DEVOR R E. The effect of runout on cutting geometry and forces in end milling. Internal Journal of Machine Tool Design and Research,1983,23:123-140.
    [68]SEETHALER R J, YELLOWLY I. The identification of radial runout in milling operations[J]. Transaction of ASME, Journal of manufacturing science and engineering,1999,121:524-531.
    [69]WANG J J J, LIANG S T. Chip load kinematics in milling with radial cutter runout[J]. Transaction of ASME, Journal of Engineering for Industry,1996,118:111-116.
    [70]WANG J J J, ZHENG C M. Identification of cutter offset in end milling without a prior knowledge of cutting coefficients[J]. International Journal of Machine Tools and Manufacture, 2003,43:687-697.
    [71]WAN M, ZHANG W H, QIN G H, et al. Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills[J]. International Journal of Machine Tools and Manufacture,2007,47:1767-1776.
    [72]LI X P, LI H Z. Theoretical modelling of cutting forces in helical end milling with cutter runout[J]. International Journal of Mechanical Sciences,2004,46:1399-1414.
    [73]SUN Y W, GUO Q. Numerical simulation and prediction of cutting forces in five-axis milling processes with cutter run-out[J]. International Journal of Machine Tools and Manufacture,2008, 51(10-11):806-815.
    [74]BAYLY P V, HALLEY J E, MANN B P, et al. Stability of Interrupted cutting by temporal finite element analysis [C]. Proceedings of ASME Design Engineering Technical Conference, 2001,2361-2370.
    [75]MANN B P, BAYLY P V, DAVIES M A, et al. Limit cycles, bifurcations, and accuracy of the milling process [J]. Journal of Sound and Vibration,2004,277(1-2):31-48.
    [76]MANN B P, EDES B T, EASLEY S J, et al. Chatter vibration and surface location error prediction for helical end mills[J]. International Journal of Machine Tools and Manufacture, 2008,48(3-4):350-361.
    [77]张小明.五轴数控铣削加工几何-动力学建模与工艺参数优化[D]:(博士学位论文).上海:上海交通大学,2009.
    [78]INSPERGER T, STEP AN G. Semi-discretization method for delayed systems[J]. International Journal for Numerical Methods in Engineering,2002,55(5):503-518.
    [79]INSPERGER T, STEP AN G. Updated semi-discretization method for periodic delay-differential equations with discrete delay [J]. International Journal for Numerical Methods in Engineering,2004,61(1):117-141.
    [80]DING Y, ZHU L M, ZHANG X J, et al. A full-discretization method for prediction of milling stability. International Journal of Machine Tools and Manufacture,2010,50(5):502-509.
    [81]丁烨.铣削动力学-稳定性分析方法与应用[D]:(博士学位论文).上海:上海交通大学.2011.
    [82]ALTINTAS Y. Manufacturing automation:metal cutting mechanics, machine tool vibration, and CNC design[M]. Chambridge:Chambridge University Press,2000.
    [83]ALTINTAS Y, BUDAK E. Analytical prediction of stability lobes in milling. CIRP Annals-Manufacturing Technology,1995,44(1):357-362.
    [84]BUDAK E, ALTINTAS Y. Analytical prediction of chatter stability in milling-Part I:general formulation[J]. Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, 1998,120(1):22-30.
    [85]MERDOL S D, ALTINTAS Y. Multi Frequency Solution of Chatter Stability for Low Immersion Milling[J]. Transactions of ASME, Journal of Manufacturing Science and Engineering,2004,126(3):459-466.
    [86]OZTURK E, BUDAK E. Dynamics and stability of five-axis ball-end milling[J]. Transactions of ASME, Journal of Manufacturing Science and Engineering,2010,132(2):021003.1-021003.13.
    [87]胡力耘,杨金奎,穆连春.曲面的自动跟踪测量与密集数据采集[J].大连理工大学学报,1986,25(1):55-60.
    [88]王春,胡力耘,卢杰持.大型配对型面数控数字化测量加工系统[J].大连理工大学学报,1998,38(3):300-303.
    [89]王平江,陈吉红,周济等.激光数字化仿形测量与加工系统[J].中国机械工程,1998,9(5):45-48.
    [90]周凯,毛德柱,张伯鹏.自寻位数控机床的研究[J].机械工程学报,2001,37(5):48-51.
    [91]李荣彬,张志辉,杜雪等.自由曲面光学元件的设计、加工及面形测量集成制造技术[J].机械 工程学报,2010,46(11):137-148.
    [92]赵吉宾,刘伟军,孙玉文.一种基于机器人的曲面测量、建模和加工方法[J].仪器仪表学报,2008,29(2):365-371.
    [93]祝明,宗光华.大型频率选择表面数字化加工系统的加工方法研究[J].中国机械工程,2006,17(7):749-752.
    [94]季田,郭东明,康仁科等.天线罩内廓形数字化测量与数控磨削系统研究[J].大连理工大学学报,2004,44(6):830-834.
    [95]SATIO K, MIYOSHI T. Non-contact 3-D digitizing and machining system for free-form surface[J]. CIRP Annal-Manufacturing Technology,1989,40(l):483-486.
    [96]LIN P D, TSAII J. The machining and on-line measurement of spatial cams on four-axis machine tools[J]. International Journal of Machine Tools and Manufacture,1996,36(1):89-101.
    [97]BRADLEY C, VIEKERS G W. Automated rapid prototyping utilizing laser scanning and free-form machining[J]. CIRP Annal-Manufacturing Technology,1992,41(1):437-440.
    [98]KONDO K, HASEGAWA K, KAWAMATA H, et al. On-machine non-contact dimension-measurement system with laser displacement sensor for vane-tip machining of RFQs[J]. Nuclear Instruments and Methods in Physics Research A,2012,667:5-10.
    [99]陈维桓.微分几何[M].北京:北京大学出版社,2008.
    [100]丁汉,朱利民.复杂曲面数字化制造的几何学理论和方法[M].北京:科学出版社,2011.
    [101]刘健,王晓明.鞍点规划与形位误差评定[M].大连:大连理工大学也版社,2008.
    [102]PIEGL L, TILLER W. The NURBS Book (2nd ed). Berlin:Springer,1997.
    [103]ELKOTT D, VELDHUIS S. Isoparametric line sampling for the inspection planning of sculptured surfaces[J]. Computer-Aided Design,2005,37:189-200.
    [104]WOLFF L B, NAYAR S, OREN M. Improved diffuse reflection models for computer vision[J]. International Journal of Computer Vision,1998,30(1):55-71.
    [105]CAMPBELL F C. Manufacturing technology for aerospace structural materials[M]. Amsterdam: Elsevier Science,2006.
    [106]王先逵.精密加工和纳米加工·高速切削·难加工材料的切削加工[M].北京:机械工业也版社,2008.
    [107]ENGIN S, ALTINTAS Y. Mechanics and dynamics of general milling cutters. Part Ⅰ:helical end mills[J]. International Journal of Machine Tools and Manufacture,2001,41:2195-2212,.
    [108]YUN W S, CHO D W. An improved method for the determination of 3D cutting force coefficients and runout parameters in end milling[J]. The International Journal of Advanced Manufacturing Technology,2000,16:851-858.
    [109]WAN M, ZHANG W H, TAN G, et al. An in-depth analysis of the synchronization between the measured and predicted cutting forces for developing instantaneous milling force model[J]. International Journal of Machine Tools and Manufacture,2007,47(12-13):2018-2030.
    [110]谭永华.中国重型火箭动力系统研究[J].火箭推进,2011,37(1):1-6.
    [111]SEIDEL A, WOLF D, PULKERT G, et al. Method of manufacturing regeneratively cooled rocket combustion chambers:US,861350[P].1979,5,29.
    [112]VANDERDRIESSCHE G. Method of manufacturing the wall of a combustion of chambers, in particular for a rocket engine, and a combustion chamber obtained by the method:US, 795833[P].1993,8,10.
    [113]HAGGANDER J, BOMAN A. Rocket engine member and method for manufacturing a rocket engine member:US,604329[P].2004,10,05.
    [114]MCANINCH M D, HOLBROOK R L, LACOUNT D F. Bulge formed cooling channels with a variable lead helix on a hollow body of revolution:US,764029[P].1993,06,22.
    [115]WEEKS J L. Advanced L-channel welded nozzle design:US,751850[P].2007,03,13.
    [116]HAGGANDER J, LUNDGREN J. Method for manufacturing outlet nozzles for rocket engines: US,604321[P].2004,12,14.
    [117]FINT J, KUCK F, SCIORELLI F. Development of channel wall nozzle for use on liquid propellant rocket engine[C].//AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 10-13,2005, Tucson, Arizona. Reston:AIAA,2005:1-19.
    [118]LUNDGREN J. Method for manufacturing outlet nozzles for rocket engines:US,370536[P]. 2005,06,21.
    [119]卢杰持,胡力耘,杨金奎等.火箭大喷管数控仿形铣槽控制系统[J].大连理工大学学报,1998,38(3):296-299.
    [120]WANG Y Q, LU J C, TONG Y. Technology of loxodrome coolant channel machining on liquid rocket engine[J]. Journal of Astronautics,2003,24(3):322-326.
    [121]FANUC LTD.. FANUC open CNC FOCAS 1/2 libraries (edition O3.6) [DB/CD]. Fujitsu: FANUC LTD.,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700