用户名: 密码: 验证码:
软骨细胞特异组成型激活BMPR1a对FGFR3功能增强型点突变所致软骨发育不全的影响及机制的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软骨发育不全(Achondroplasia, ACH)是人类侏儒最常见的类型,主要影响四肢骨、椎骨等长骨的软骨内成骨过程,尤其是软骨形成过程,包括间充质细胞集聚并分化为软骨细胞,以及随后软骨细胞的增生、肥大和凋亡,但其机制目前尚不明确。成纤维细胞生长因子受体(Fibroblast growth factor receptors, FGFRs)在骨骼发育和疾病发生中发挥重要作用。FGFR属于受体酪氨酸蛋白激酶家族,目前已经发现有4种FGFR(FGFR1-4),它们在氨基酸水平有55%-72%的同源性。其中FGFR3的十多种功能增强型点突变可引起多种人类软骨发育障碍性侏儒包括软骨发育不全(ACH)、季肋发育不全(Hypochondroplasia, HCH)、致死性发育不全(Thanatophoric dysplasia, TD)等。
     FGFR3在长骨生长板的静息期、增殖期及前肥大软骨细胞中表达。目前利用基因敲入及转基因技术已建立了多种模拟人软骨发育不全的FGFR3功能增强型点突变小鼠(ACH小鼠)。这些小鼠个体明显短小,头颅短圆,长骨生长板组织形态结构异常。利用ACH病人及相关小鼠模型等材料对FGFR3调控软骨发育的机制进行的系列研究发现,FGFR3可通过上调细胞周期抑制基因(p21、p16、p18和p19)、转录活化蛋白(signal transducer and activator of transcription, Stat)1、5a和5b等分子的表达来抑制软骨细胞增殖,可经细胞外信号调节蛋白激酶(extracellular signal-regulated kinase , ERK)1/2通路抑制软骨细胞肥大分化。体内软骨形成过程是在多种信号分子的密切调控下完成的, FGFs/FGFR信号除经激活其下游信号途径调控软骨发育外,还可与调控软骨发育过程的另一重要信号通路骨形成蛋白(Bone morphogenetic protein, BMPs)信号相互作用来调节软骨发育。
     BMPs属于TGF-β超家族成员,现已发现并鉴定的分子有BMP1-BMP15。BMPs通过BMP受体(BMP receptor, BMPR)发挥生物学功能。BMP受体(BMPR)包括I型(BMPRI)和II型受体(BMPRII)。而BMPRI又包括Activin受体样蛋白激酶2 (Activin receptor-like kinase2, ALK2)、ALK3(BMPR1a)和ALK6(BMPR1b)等亚型,其中BMPR1a在长骨的前肥大及肥大软骨细胞中高表达。与BMPs结合后,BMPR II磷酸化BMPR I的甘氨酸-丝氨酸富集结构域,并进一步将信号传递给受体调节的Sma和Mad同系物(receptor-regu lated Sma and Mad homologue proteins, RSMAD),使之磷酸化,磷酸化的RSMAD从膜受体上脱离,结合Smad4进入细胞核,调节靶基因的转录。另外,BMPs还可激活TGFβ活化激酶1(TGFβ-activated kinase 1, TAK1)或者激活ERK1/2信号。近年来研究发现软骨形成过程中FGFR3可抑制BMP4的表达;BMP2可缓解体外培养的ACH小鼠胚胎肢体异常表型;BMPR1a可抑制FGFR1信号通路调节软骨发育;在神经系统中的研究发现,促分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)活化后可磷酸化SMAD1的连接区导致SMAD1胞质内滞留或降解,从而抑制BMP信号。这些结果提示软骨发育及ACH发生过程中FGFR3信号与BMP信号间可能有相互作用,具体作用和机制如何目前还不清楚。
     据此,本研究拟通过分析软骨细胞特异组成型激活BMPR1a的FGFR3功能增强型点突变小鼠(caBMPR1acol2acre-ACH)的骨骼发育情况,并结合体外原代软骨细胞实验分别从整体动物水平、细胞水平和分子水平对FGFR3与BMPR1a信号相互作用调节软骨发育的机制进行了初步探讨。
     主要实验方法
     第一部分:软骨细胞特异组成型激活BMPR1a的FGFR3功能增强型点突变小鼠软骨发育分析及相关机制研究
     1.利用基于Cre/LoxP系统,建立了软骨细胞特异组成型激活BMPR1a基因的FGFR3功能增强型点突变小鼠模型(caBMPR1acol2acre-ACH);
     2.观测小鼠生长过程中体重、体长、躯干长、尾长、胫骨和股骨的变化,并采用X线摄影、全骨架染色和头颅局部摄影,观察小鼠大体形态及颅底软骨连接的变化情况;
     3.用阿利新蓝及藏红固绿染色等观察出生前后(E16.5、P5)不同基因型小鼠的生长板形态;
     4.通过BrdU掺入后免疫组化检测,观察生长板软骨细胞增殖情况;
     5.采用定量PCR检测软骨分化相关基因Collagen II、Collagen X和MMP13的表达情况;钙化结节染色观察生长板软骨细胞终末分化情况;
     6.用免疫组织化学检测胫骨生长板SMAD1/5/8磷酸化水平(phosphorylated SMAD1/5/8,pSMAD1/5/8)、p21及pERK1/2的表达;
     7.用激光共聚焦显微术检测软骨组织中SMAD1蛋白连接区磷酸化水平(phosphorylate SMAD1 linker region, pSMAD1L)并进行定位观察。
     第二部分:组成型激活BMPR1a对FGFR3功能增强型点突变小鼠软骨细胞分化的影响及相关机制的体外研究
     1.培养小鼠原代软骨细胞,并对培养的原代软骨细胞进行软骨分化诱导;
     2.定量PCR检测诱导0d、7d软骨细胞分化相关基因的表达;
     3.采用Western Blot检测原代软骨细胞中pERK1/2及pSMAD1L。
     主要实验结果
     一、软骨细胞特异组成型激活BMPR1a的FGFR3功能增强型点突变小鼠(caBMPR1acol2acre-ACH小鼠)的获得
     利用FGFR3功能增强型点突变小鼠(Fgfr3G369C/+小鼠,即ACH小鼠),带有Cre可诱导表达的组成型激活BMPR1a元件的转基因小鼠(caBMPR1a小鼠)以及软骨细胞中特异表达Cre重组酶的转基因小鼠(Col2αCre小鼠)设计交配策略,获得了基因型为caBMPR1acol2acre-ACH的小鼠。该小鼠为软骨细胞特异组成型激活BMPR1a的FGFR3功能增强型点突变小鼠。
     二、软骨细胞特异组成型激活BMPR1a对FGFR3功能增强型点突变小鼠一般生长情况的影响
     在观测期0.5至4个月内,caBMPR1acol2acre-ACH小鼠体重较ACH小鼠明显减轻;1月龄的caBMPR1acol2acre-ACH小鼠体长、尾长明显短于ACH小鼠,但是两者胫骨、股骨长度差异不显著;caBMPR1acol2acre-ACH小鼠的颅底软骨连接闭合时间较ACH小鼠提前。
     三、软骨细胞特异组成型激活BMPR1a基因对FGFR3功能增强型点突变小鼠软骨内成骨的影响
     1.BrdU掺入实验显示,出生5d的caBMPR1acol2acre-ACH小鼠软骨细胞增殖指数较同窝ACH小鼠低,提示caBMPR1acol2acre-ACH小鼠软骨细胞增殖活性较ACH小鼠降低;
     2.用直接提取的不同基因型小鼠骺软骨组织RNA进行的定量PCR结果显示:出生后5d时,caBMPR1acol2acre-ACH小鼠生长板软骨中Collagen II mRNA比ACH小鼠高,Collagen X mRNA表达较ACH小鼠低,MMP13 mRNA表达较ACH小鼠高;钙化结节染色发现caBMPR1acol2acre-ACH小鼠生长板软骨细胞的染色程度较ACH小鼠加深;体外未诱导的caBMPR1acol2acre-ACH、ACH小鼠原代培养软骨细胞中Collagen X mRNA及MMP13 mRNA表达变化与在体结果一致;软骨分化诱导7d , caBMPR1acol2acre-ACH小鼠原代软骨细胞中Collagen X mRNA表达仍然较ACH小鼠低。以上结果提示与ACH小鼠相比,caBMPR1acol2acre-ACH小鼠软骨细胞肥大分化受抑制,终末分化被促进。
     3.caBMPR1acol2acre-ACH小鼠软骨生长板中p21表达显著高于ACH小鼠,提示软骨内BMPR1a基因特异组成型激活可能通过促进p21的表达从而抑制ACH小鼠软骨细胞增殖;caBMPR1acol2acre-ACH小鼠胫骨生长板中pERK1/2水平显著高于ACH小鼠,进一步体外研究发现,caBMPR1acol2acre-ACH小鼠原代软骨细胞中pERK1/2水平及胞质pSMAD1L水平均显著高于ACH小鼠,提示软骨细胞特异组成型激活BMPR1a可能通过激活ERK1/2抑制ACH小鼠软骨细胞的肥大分化,此过程中活化的ERK1/2可能通过上调SMAD1蛋白连接区磷酸化抑制BMPR1a/SMAD1通路,从而参与对软骨细胞肥大分化的抑制调节。
     主要结论
     1.软骨细胞特异组成型激活BMPR1a加重了FGFR3功能增强型点突变所引起的侏儒表型。
     2.软骨细胞特异组成型激活BMPR1a可能通过促进FGFR3功能增强型点突变小鼠软骨细胞中p21表达上调,加重了FGFR3功能增强所致的软骨细胞增殖抑制。
     3.软骨细胞特异组成型激活BMPR1a可能通过促进FGFR3功能增强型点突变小鼠软骨细胞中ERK1/2磷酸化水平上调,加重了FGFR3功能增强所致的软骨细胞肥大分化抑制。
     4. ERK1/2 MAPK通路可能通过上调SMAD1蛋白连接区的抑制磷酸化来抑制BMPR1a/SMAD1通路,参与软骨细胞特异组成型激活BMPR1a对FGFR3功能增强型小鼠软骨细胞肥大分化的抑制。
Achondroplasia (ACH) is the most common type of human dwarfism, mainly affecting endochondral ossification of limb and vertebrae, especially the cartilage formation which includes the condensation and differentiation of mesenchymal cells into progenitor chondrocytes, and subsequent chondrocyte proliferation, hypertrophy and apoptosis, but little is known about its pathogenic mechanism.
     Fibroblast growth factor receptors (FGFRs) play important roles in skeletal development and diseases. FGFRs belong to the tyrosine kinase receptor family. Four FGFRs (FGFR1-4) have been found with the amino acid level between 55% -72% homology. A dozen or more activated mutations in FGFR3 can cause a variety of human dwarfism with developmental disorders, such as Achondroplasia (ACH), Hypochondroplasia (HCH), Thanatophoric dysplasia (TD) and so on.
     FGFR3 is expressed in reserve, proliferating and prehypertrophic chondrocytes. Currently knock-in and transgenic technologies are used to obtain multiple kinds of mice with activated mutations in FGFR3. These mice mimicing achondroplasia are significantly short with short round heads and abnormal morphologic structure of the growth plate of the long bone. A series of studies on the role of FGFR3 during chondrogenesis using ACH patients and mouse models have observed that FGFR3 can inhibit chondrocyte proliferation by increasing the expression of cell cycle suppressor genes (p21, p16, p18 and p19), Stats (Stat1, Stat5a and Stat5b) and inhibit chondrocyte hypertrophic differentiation via MAPK pathway. A variety of signaling molecules control the process of chondrogenesis. The FGF/FGFR signaling activates its downstream signaling pathway to play important rols in endochondral ossification, moreover, it has crosstalk with the Bone Morphogenetic Protein (BMP) singnaling to co-regulate cartilage development.
     BMPs belong to TGF-βsuperfamily, and BMP1-BMP15 have been identified. BMPs transduce signals through heteromeric complexes of type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). BMPRI includes several subtypes such as ALK2, ALK3 (BMPR1a), ALK6 (BMPR1b) and so on, and BMPR1a is highly expressed in the prehypertrophic and hypertrophic chondrocytes. Upon BMP binding, type II receptors phosphorylate serine/threonine residues in type I receptors. The receptor complex phosphorylates receptor-regulated Smad proteins (R-Smads), including Smad1, 5 and 8. Subsequently, activated R-Smads recruit and bind the common partner Smad, Smad4. This Smad complex enters the nucleus, where it directly binds defined elements on the DNA and regulates target gene expression together with numerous other factors. BMPs can also signal by activating TGFβ-activated kinase 1 (TAK1) or ERK1/2 pathway. Recent studies have showed that FGFR3 can inhibit BMP4 expression in the growth plate of the long bone. In vitro BMP2 can rescue abnormal phenotype of the cultured embryonic limb of the ACH mouse, and BMP signals can inhibit the FGFR1 signaling pathway during chondrogenesis, but the interaction between FGFR3 and BMPR1a signalings during chondrogenesis is still unknown. During neurogenesis the ERK1/2 pathway is known to phosphorylate the linker region of Smad1, subsequently inhibiting BMP signaling.Whether this level of regulation exist in the interaction between BMP and FGFR3 signalings in chondrocytes remains to be examined.
     In this study,we expressd a constitutively active form of BMPR1a in chondrocytes of mice harboring activated mutation in FGFR3(caBMPR1acol2acre-ACH), and then analyzed the bone development in these mice. We also studied the differentiation phenotype of the primary chondrocytes from caBMPR1acol2acre-ACH mice and their littermate controls, and finally we preliminarily approached the crosstalk between FGFR3 and BMPR1a signalings in the pathogenesis of ACH.
     METHODS
     Part I: Analysis of the skeletal phenotype and related mechanism of mice harboring activated mutation of FGFR3 with chondrocyte-specific constitutively activated BMPR1a
     1. Based on Cre/LoxP strategy, mice harboring activated mutation in FGFR3 with chondrocyte-specific constitutively activated BMPR1a (caBMPR1acol2acre-ACH) were generated, and genotyped by PCR.
     2. The body weight as well as length of truck, tail, body, tibia and femur were measured. X-ray radiography, whole skeleton staining and skull photography were performed. The overall shape and the cranial synchondrosis of mice were observed.
     3. Histological sections of mice with different genotypes at different ages (E16.5, P5) were prepared to investigate the growth plate morphologically by alcian blue staining and safranine-fast green staining.
     4. Chondrocyte proliferation in the growth plate were investigated by BrdU incorporation assay.
     5. Marker genes during chondrocyte differentiation including typeⅡcollagen, type X collagen and matrix metalloproteinase 13 mRNA expression were detected by quantitative PCR. Terminal differentiation of chondrocytes in the growth plate was determined by von kossa staining.
     6. The levels of phosphorylated SMAD1/5/8 (pSMAD1/5/8), p21 and pERK1/2 in the growth plate were detected by immunohistochemistry.
     7. The phosphorylated SMAD1 linker region (pSMAD1L) level and its location pattern in the growth plate was investigated by confocal laser scanning microscopy.
     Part II: In vitro study of the effect of constitutively activated BMPR1a on the proliferation and differentiation of chondrocytes in ACH mice and related mechanism
     1. Chondrocytes were obtained from the epiphyseal cartilage. Primary culture of chondrocytes was conducted, and then chondrogenic differentiation was induced.
     2. The mRNA levels of typeⅡcollagen, type X collagen and matrix metalloproteinase 13 were examined by quantitative PCR to examine the chondrogenic differentiation.
     3. The levels of pErk1/2 and cytoplasmtic pSMAD1L in primary chondrocytes were detected by Western Blot.
     RESULTS
     1. Generation of mice harboring activated mutation of FGFR3 with chondrocyte-specific constitutively activated BMPR1a
     To activate BMPR1a constitutively in chondrocytes of mice harboring activated mutation in FGFR3, constitutively activated BMPR1a mice (caBMPR1a mice) and transgenic mice with chondrocyte specific expression of Cre recombinase (Col2aCre mice) were first intercrossed to generate caBMPR1acol2acre mice , and then caBMPR1acol2acre mice crossed with mice harboring activated mutation in FGFR3 (Fgfr3G369C/+ mice, ACH mice)to generate caBMPR1acol2acre-ACH mice.
     2. The effects of chondrocyte-specific activation of BMPR1a on the growth of ACH mice
     There was a significant decrease of the body weight of caBMPR1acol2acre-ACH mice compared with that of ACH mice. The body and tail length of caBMPR1acol2acre-ACH mice at 1 month were significantly shorter than that of ACH mice, but the length of femur, tibia had no significant difference between ACH and caBMPR1acol2acre-ACH mice. The cranial synchondrosis of caBMPR1acol2acre-ACH mice at P5 was fused earlier than that in ACH mice.
     3. The effects of constitutively activated BMPR1a in chondrocytes on endochondral ossification of ACH mice
     The chondrocyte proliferative index measured by using BrdU incorporation assay in caBMPR1acol2acre-ACH mice at P5 was significantly lower than that in ACH mice.
     Quantitative PCR using mRNA directly extracted from the epiphyseal cartilage showed that the levels of typeⅡcollagen mRNA expression and matrix metalloproteinase 13 (MMP13)mRNA in the growth plate of caBMPR1acol2acre-ACH mice at P5 were upregulated,while the expression of type X collagen mRNA was downregulated compared to that in ACH mice. Deeper von kossa staining was found in the growth plate of caBMPR1acol2acre-ACH mice with comparison to that in ACH mice, indicating that the extent of chondrocytes terminal differentiation in caBMPR1acol2acre-ACH mice was higher than ACH mice. In vitro the expression of type X collagen and MMP13 mRNA in primary chondrocytes without induction of chondrogenic differentation also had the same patterns as that found in vivo. At 7d after chondrogenic differentiation induction, the level of type X collagen in the primary chondrocytes of caBMPR1acol2acre-ACH mice were downregulated when compared with that in ACH mice. Taken together, there were significantly inhibited hypertrophic differentiation and promoted terminal differentiation in the growth plate of caBMPR1acol2acre-ACH mice than these in ACH mice.
     To explore the possible mechanisms for the effects of chondrocyte-specific constitutively activated BMPR1a on the chondrogenesis of ACH mice, we checked and found that the levels of p21 and pERK1/2 in the growth plate were significantly higher than that in ACH mice. In vitro studies further found that the levels of pERK1/2 and cytoplasmtic pSMAD1L in primary chondrocytes of caBMPR1acol2acre-ACH mice were significantly higher than that in ACH mice. These results suggested that the effects of chondrocyte-specific activation of BMPR1a on chondrocyte proliferation and differentiation of ACH mice may be caused by the change of p21 and pERK1/2 levels, and the pERK1/2 level may regulate the activation status of the BMPR1a/SMAD1 pathway during chondrocyte differentiation.
     CONCLUSIONS
     1. Constitutive activation of BMPR1a in chondrocytes causes more severe achondroplasia in ACH mice;
     2. Chondrocyte-specific constitutively activated BMPR1a enhanced the p21 expression in the chondrocytes of ACH mice, which further enhanced the inhibitory effect of activated mutation in FGFR3 on chondrocyte proliferation;
     3. Chondrocyte-specific constitutively activated BMPR1a enhanced the pERK1/2 level in the chondrocytes of ACH mice, leading to augmented inhibitory effect on chondrocyte hypertrophic differentiation caused by activated mutation in FGFR3;
     4. ERK1/2 MAPK pathway activated in chondrocytes of caBMPR1acol2acre-ACH mice may inhibit BMPR1a/SMAD1 pathway by upregulating the phosphorylation level of the linker region of SMAD1, which may be involved in more inhibited hypertrophic differentiation.
引文
1. Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007; 370(9582): 162-172.
    2. Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest. 1999; 104(11): 1517-1525.
    3. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002; 16(12): 1446-1465.
    4. Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev. 1998; 77(1): 19-30.
    5. Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet. 2001; 10(5): 457-465.
    6. Iwata T, Chen L, Li C, et al. A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet. 2000; 9(11): 1603-1613.
    7. Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet. 1999; 8(1): 35-44.
    8. Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development. 1998; 125(24): 4977-4988.
    9. Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999; 13(11): 1361-1366.
    10. Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, de Crombrugghe B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 2004; 18(3): 290-305.
    11. Dailey L, Laplantine E, Priore R, Basilico C. A network of transcriptional andsignaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. J Cell Biol. 2003; 161(6): 1053-1066.
    12. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002; 3(3): 439-449.
    13. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005; 118(Pt 16): 3573-3584.
    14. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem. 2004; 93(1): 93-103.
    15. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425(6958): 577-584.
    16. Zou H, Wieser R, Massague J, Niswander L. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 1997; 11(17): 2191-2203.
    17. Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A. 2005; 102(50): 18023-18027.
    18. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A. 2005; 102(14): 5062-5067.
    19. Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development. 2009; 136(7): 1093-1104.
    20. Yoon BS, Pogue R, Ovchinnikov DA, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006; 133(23): 4667-4678.
    21. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005; 19(23): 2783-2810.
    22. Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006; 580(12): 2811-2820.
    23. Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF, FGF, and anti-BMPsignals via Smad1 phosphorylation in neural induction. Genes Dev. 2003; 17(24): 3023-3028.
    24. Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell. 2007; 25(3): 441-454.
    25. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003; 423(6937): 332-336.
    26. Fukuda T, Scott G, Komatsu Y, et al. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2. Genesis. 2006; 44(4): 159-167.
    27. Hao ZM, Yang X, Cheng X, Zhou J, Huang CF. Generation and characterization of chondrocyte specific Cre transgenic mice. Yi Chuan Xue Bao. 2002; 29(5): 424-429.
    28.杨晓,黄培堂,黄翠芬.基因打靶技术.科学出版社. 2002.
    29. Neumann K, Dehne T, Endres M, et al. Chondrogenic differentiation capacity of human mesenchymal progenitor cells derived from subchondral cortico-spongious bone. J Orthop Res. 2008; 26(11): 1449-1456.
    30.蔡文琴.现代实用细胞与分子生物学实验技术.人民军医出版社. 2002.
    31. Matsushita T, Wilcox WR, Chan YY, et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet. 2009; 18(2): 227-240.
    32. Hecht JT, Horton WA, Reid CS, Pyeritz RE, Chakraborty R. Growth of the foramen magnum in achondroplasia. Am J Med Genet. 1989; 32(4): 528-535.
    33. Yang G, Sun Q, Teng Y, Li F, Weng T, Yang X. PTEN deficiency causes dyschondroplasia in mice by enhanced hypoxia-inducible factor 1alpha signaling and endoplasmic reticulum stress. Development. 2008; 135(21): 3587-3597.
    34. Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone. 2004; 34(1): 26-36.
    35. Enomoto-Iwamoto M, Nakamura T, Aikawa T, et al. Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J Bone Miner Res. 2000; 15(9): 1659-1668.
    36. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996; 273(5275): 613-622.
    37. Colnot C. Cellular and molecular interactions regulating skeletogenesis. J Cell Biochem. 2005; 95(4): 688-697.
    38. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002; 2(4): 389-406.
    39. Su WC, Kitagawa M, Xue N, et al. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature. 1997; 386(6622): 288-292.
    40. Carlberg AL, Pucci B, Rallapalli R, Tuan RS, Hall DJ. Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of BMP-2. Differentiation. 2001; 67(4-5): 128-138.
    41. van der Eerden BC, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocr Rev. 2003; 24(6): 782-801.
    42. Karsenty G. The complexities of skeletal biology. Nature. 2003; 423(6937): 316-318.
    43. Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004; 14(2): 86-93.
    44. Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004; 269(1): 55-69.
    45. Brouwers JE, van Donkelaar CC, Sengers BG, Huiskes R. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech. 2006; 39(15): 2774-2782.
    46. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006; 97(1): 33-44.
    47. Zelzer E, Olsen BR. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol. 2005; 65: 169-187.
    48. Krejci P, Salazar L, Goodridge HS, et al. STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes. J Cell Sci. 2008; 121(3): 272-281.
    49. Raucci A, Laplantine E, Mansukhani A, Basilico C. Activation of the ERK1/2 and p38Mitogen-activated Protein Kinase Pathways Mediates Fibroblast Growth Factor-induced Growth Arrest of Chondrocytes. J. Biol. Chem. 2004; 279(3): 1747-1756.
    50. Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE. 2004; 2004(228): pe17.
    51. Verheyen EM. Opposing effects of Wnt and MAPK on BMP/Smad signal duration. Dev Cell. 2007; 13(6): 755-756.
    52. Fuentealba LC, Eivers E, Ikeda A, et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell. 2007; 131(5): 980-993.
    53. Salvat C, Pigenet A, Humbert L, Berenbaum F, Thirion S. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthritis Cartilage. 2005; 13(3): 243-249.
    54. Stewart MC, Fosang AJ, Bai Y, Osborn B, Plaas A, Sandy JD. ADAMTS5-mediated aggrecanolysis in murine epiphyseal chondrocyte cultures. Osteoarthritis Cartilage. 2006; 14(4): 392-402.
    55. Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc. 2008; 3(8): 1253-1260.
    56. Terry DE, Rees-Milton K, Smith P, et al. N-acylation of glucosamine modulates chondrocyte growth, proteoglycan synthesis, and gene expression. J Rheumatol. 2005; 32(9): 1775-1786.
    57. Shinomura T, Ito K, Kimura JH, Hook M. Screening for genes preferentially expressed in the early phase of chondrogenesis. Biochem Biophys Res Commun. 2006; 341(1): 167-174.
    58. Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y. Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol. 1996; 133(2): 457-468.
    59. Pullig O KB, Weseloh G, et al. Metabolic activation of chondrocytes in human osteroarthritis:Expression of type II collagen. Z Orthop Ihre Grenzgeb. 1999; 137(1): 67.
    60. Struglics A, Larsson S, Pratta MA, Kumar S, Lark MW, Lohmander LS. Humanosteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthritis Cartilage. 2006; 14(2): 101-113.
    61. Nakaoka R, Hsiong SX, Mooney DJ. Regulation of chondrocyte differentiation level via co-culture with osteoblasts. Tissue Eng. 2006; 12(9): 2425-2433.
    62. Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage. 2006; 14(2): 179-189.
    63. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007; 18(3): 241-268.
    64. Chen FH, Rousche KT, Tuan RS. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol. 2006; 2(7): 373-382.
    65. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev. 2006; 58(2): 300-322.
    66. Shahdadfar A, Loken S, Dahl JA, et al. Persistence of collagen type II synthesis and secretion in rapidly proliferating human articular chondrocytes in vitro. Tissue Eng Part A. 2008; 14(12): 1999-2007.
    67. Portner R, Goepfert C, Wiegandt K, et al. Technical strategies to improve tissue engineering of cartilage-carrier-constructs. Adv Biochem Eng Biotechnol. 2009; 112: 145-181.
    68. Gosset M, Berenbaum F, Salvat C, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum. 2008; 58(5): 1399-1409.
    69. Gabay O, Gosset M, Levy A, et al. Stress-induced signaling pathways in hyalin chondrocytes: inhibition by Avocado-Soybean Unsaponifiables (ASU). Osteoarthritis Cartilage. 2008; 16(3): 373-384.
    70. Chen L, Fink T, Zhang XY, Ebbesen P, Zachar V. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis. Differentiation. 2005; 73(7): 350-363.
    71. Altaf FM, Hering TM, Kazmi NH, Yoo JU, Johnstone B. Ascorbate-enhanced chondrogenesis of ATDC5 cells. Eur Cell Mater. 2006; 12: 64-69; discussion 69-70.
    72. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996; 12(4): 390-397.
    73. Horton WA. Fibroblast growth factor receptor 3 and the human chondrodysplasias. Curr Opin Pediatr. 1997; 9(4): 437-442.
    74. Dreyer SD, Zhou G, Lee B. The long and the short of it: developmental genetics of the skeletal dysplasias. Clin Genet. 1998; 54(6): 464-473.
    75. Yue J, Mulder KM. Activation of the mitogen-activated protein kinase pathway by transforming growth factor-beta. Methods Mol Biol. 2000; 142: 125-131.
    1. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002; 16(12): 1446-1465.
    2. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2(4): 389-406.
    3. Su N, Du X, Chen L. FGF signaling: its role in bone development and human skeleton diseases. Front Biosci 2008; 13: 2842-2865.
    4. Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays 2000; 22(2): 138-147.
    5. Tuan RS. Biology of developmental and regenerative skeletogenesis. Clin Orthop Relat Res 2004; (427 Suppl): S105-117.
    6. Linsenmayer TF, Chen QA, Gibney E, et al. Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development 1991; 111(1): 191-196.
    7. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13(16): 2072-2086.
    8. Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93(3): 411-422.
    9. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. Toward a molecular understanding of skeletal development. Cell 1995; 80(3): 371-378.
    10. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423(6937): 332-336.
    11. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol 2000; 16: 191-220.
    12. Wagner EF, Karsenty G. Genetic control of skeletal development. Curr Opin Genet Dev 2001; 11(5): 527-532.
    13. Iseki S, Wilkie AO, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 1999; 126(24): 5611-5620.
    14. Opperman LA. Cranial sutures as intramembranous bone growth sites. Dev Dyn 2000; 219(4): 472-485.
    15. Deckelbaum RA, Majithia A, Booker T, Henderson JE, Loomis CA. The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development 2006; 133(1): 63-74.
    16. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000; 7(3): 165-197.
    17. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001; 2(3): REVIEWS3005.
    18. Chen L, Deng CX. Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci 2005; 10: 1961-1976.
    19. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 1992; 12(1): 240-247.
    20. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993; 60: 1-41.
    21. Ornitz DM, Xu J, Colvin JS, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271(25): 15292-15297.
    22. Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252(5013): 1705-1708.
    23. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64(4): 841-848.
    24. Pawson T. Protein modules and signalling networks. Nature 1995; 373(6515): 573-580.
    25. Wang JK, Xu H, Li HC, Goldfarb M. Broadly expressed SNT-like proteins link FGF receptor stimulation to activators of Ras. Oncogene 1996; 13(4): 721-729.
    26. Kouhara H, Hadari YR, Spivak-Kroizman T, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89(5): 693-702.
    27. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16(2): 139-149.
    28. Tsang M, Friesel R, Kudoh T, Dawid IB. Identification of Sef, a novel modulator of FGF signalling. Nat Cell Biol 2002; 4(2): 165-169.
    29. Furthauer M, Lin W, Ang SL, Thisse B, Thisse C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 2002; 4(2): 170-174.
    30. Christofori G. Split personalities: the agonistic antagonist Sprouty. Nat Cell Biol 2003; 5(5): 377-379.
    31. Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002; 4(11):850-858.
    32. Bottcher RT, Pollet N, Delius H, Niehrs C. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat Cell Biol 2004; 6(1): 38-44.
    33. Hall BK, Miyake T. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl) 1992; 186(2): 107-124.
    34. Peters KG, Werner S, Chen G, Williams LT. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 1992; 114(1): 233-243.
    35. Dailey L, Laplantine E, Priore R, Basilico C. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. J Cell Biol 2003; 161(6): 1053-1066.
    36. Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, et al. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 1998; 77(1): 19-30.
    37. Orr-Urtreger A, Givol D, Yayon A, Yarden Y, Lonai P. Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 1991; 113(4): 1419-1434.
    38. Szebenyi G, Savage MP, Olwin BB, Fallon JF. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Dev Dyn 1995; 204(4): 446-456.
    39. Peters K, Ornitz D, Werner S, Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 1993; 155(2): 423-430.
    40. Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dyn 1999; 216(1): 72-88.
    41. deLapeyriere O, Ollendorff V, Planche J, et al. Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development 1993; 118(2): 601-611.
    42. Finch PW, Cunha GR, Rubin JS, Wong J, Ron D. Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse fetal developmentsuggests a role in mediating morphogenetic mesenchymal-epithelial interactions. Dev Dyn 1995; 203(2): 223-240.
    43. Haub O, Goldfarb M. Expression of the fibroblast growth factor-5 gene in the mouse embryo. Development 1991; 112(2): 397-406.
    44. Mason IJ, Fuller-Pace F, Smith R, Dickson C. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech Dev 1994; 45(1): 15-30.
    45. Savage MP, Fallon JF. FGF-2 mRNA and its antisense message are expressed in a developmentally specific manner in the chick limb bud and mesonephros. Dev Dyn 1995; 202(4): 343-353.
    46. Fiore F, Planche J, Gibier P, Sebille A, deLapeyriere O, Birnbaum D. Apparent normal phenotype of Fgf6-/- mice. Int J Dev Biol 1997; 41(4): 639-642.
    47. Hebert JM, Rosenquist T, Gotz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 1994; 78(6): 1017-1025.
    48. Sullivan R, Klagsbrun M. Purification of cartilage-derived growth factor by heparin affinity chromatography. J Biol Chem 1985; 260(4): 2399-2403.
    49. Hurley MM, Abreu C, Gronowicz G, Kawaguchi H, Lorenzo J. Expression and regulation of basic fibroblast growth factor mRNA levels in mouse osteoblastic MC3T3-E1 cells. J Biol Chem 1994; 269(12): 9392-9396.
    50. Sabbieti MG, Marchetti L, Abreu C, et al. Prostaglandins regulate the expression of fibroblast growth factor-2 in bone. Endocrinology 1999; 140(1): 434-444.
    51. Hurley MM, Tetradis S, Huang YF, et al. Parathyroid hormone regulates the expression of fibroblast growth factor-2 mRNA and fibroblast growth factor receptor mRNA in osteoblastic cells. J Bone Miner Res 1999; 14(5): 776-783.
    52. Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 2000; 105(8): 1085-1093.
    53. Okada Y, Montero A, Zhang X, et al. Impaired osteoclast formation in bone marrow cultures of Fgf2 null mice in response to parathyroid hormone. J Biol Chem 2003;278(23): 21258-21266.
    54. Garofalo S, Kliger-Spatz M, Cooke JL, et al. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. J Bone Miner Res 1999; 14(11): 1909-1915.
    55. Xu J, Lawshe A, MacArthur CA, Ornitz DM. Genomic structure, mapping, activity and expression of fibroblast growth factor 17. Mech Dev 1999; 83(1-2): 165-178.
    56. Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 2002; 16(7): 859-869.
    57. Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 2002; 16(7): 870-879.
    58. Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 1998; 18(2): 136-141.
    59. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 2000; 127(9): 1833-1843.
    60. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005; 16(2): 205-213.
    61. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor
    3 is a negative regulator of bone growth. Cell 1996; 84(6): 911-921.
    62. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12(4): 390-397.
    63. Yu K, Xu J, Liu Z, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 2003; 130(13): 3063-3074.
    64. Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol 2006; 296(2): 315-328.
    65. Xiao L, Naganawa T, Obugunde E, et al. Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem 2004;279(26): 27743-27752.
    66. Kim HJ, Rice DP, Kettunen PJ, Thesleff I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 1998; 125(7): 1241-1251.
    67. Mehrara BJ, Mackool RJ, McCarthy JG, Gittes GK, Longaker MT. Immunolocalization of basic fibroblast growth factor and fibroblast growth factor receptor-1 and receptor-2 in rat cranial sutures. Plast Reconstr Surg 1998; 102(6): 1805-1817; discussion 1818-1820.
    68. Rice DP, Aberg T, Chan Y, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127(9): 1845-1855.
    69. Hajihosseini MK, Heath JK. Expression patterns of fibroblast growth factors-18 and -20 in mouse embryos is suggestive of novel roles in calvarial and limb development. Mech Dev 2002; 113(1): 79-83.
    70. Hughes SE. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem 1997; 45(7): 1005-1019.
    71. Britto JA, Chan JC, Evans RD, Hayward RD, Thorogood P, Jones BM. Fibroblast growth factor receptors are expressed in craniosynostotic sutures. Plast Reconstr Surg 1998; 101(2): 540-543.
    72. Matsushita T, Wilcox WR, Chan YY, et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet 2009; 18(2): 227-240.
    73. Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999; 104(11): 1517-1525.
    74. Iwata T, Chen L, Li C, et al. A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 2000; 9(11): 1603-1613.
    75. Iwata T, Li CL, Deng CX, Francomano CA. Highly activated Fgfr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum Mol Genet 2001; 10(12): 1255-1264.
    76. Naski MC, Ornitz DM. FGF signaling in skeletal development. Front Biosci 1998; 3: d781-794.
    77. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002; 3(3): 439-449.
    78. Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002; 129(16): 3783-3793.
    79. Valverde-Franco G, Liu H, Davidson D, et al. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Hum Mol Genet 2004; 13(3): 271-284.
    80. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425(6958): 577-584.
    81. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem 2004; 93(1): 93-103.
    82. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci 2005; 118(Pt 16): 3573-3584.
    83. Yoon BS, Pogue R, Ovchinnikov DA, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 2006; 133(23): 4667-4678.
    84. Verheyden JM, Sun X. An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 2008; 454(7204): 638-641.
    85. Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 2009; 136(7): 1093-1104.
    86. Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 2007; 25(3): 441-454.
    87. Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 2003; 17(24): 3023-3028.
    88. Kawamura C, Kizaki M, Yamato K, et al. Bone morphogenetic protein-2 inducesapoptosis in human myeloma cells with modulation of STAT3. Blood 2000; 96(6): 2005-2011.
    89. Kubota K, Iseki S, Kuroda S, et al. Synergistic effect of fibroblast growth factor-4 in ectopic bone formation induced by bone morphogenetic protein-2. Bone 2002; 31(4): 465-471.
    90. Nakamura Y, Tensho K, Nakaya H, Nawata M, Okabe T, Wakitani S. Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice. Bone 2005; 36(3): 399-407.
    91. Tanaka E, Ishino Y, Sasaki A, et al. Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-induced osteoinductive activity. Ann Biomed Eng 2006; 34(5): 717-725.
    92. Choi KY, Kim HJ, Lee MH, et al. Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn 2005; 233(1): 115-121.
    93. Naganawa T, Xiao L, Coffin JD, et al. Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem 2008; 103(6): 1975-1988.
    94. Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003; 422(6932): 625-629.
    95. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 1994; 79(6): 993-1003.
    96. Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 2003; 34(3): 303-307.
    97. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995; 172(1): 126-138.
    98. Iwasaki M, Le AX, Helms JA. Expression of indian hedgehog, bone morphogenetic protein 6 and gli during skeletal morphogenesis. Mech Dev 1997; 69(1-2): 197-202.
    99. Lee K, Deeds JD, Segre GV. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats.Endocrinology 1995; 136(2): 453-463.
    100. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996; 273(5275): 613-622.
    101. Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996; 273(5275): 663-666.
    102. Enomoto-Iwamoto M, Nakamura T, Aikawa T, et al. Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J Bone Miner Res 2000; 15(9): 1659-1668.
    103. Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001; 10(5): 457-465.
    104. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
    105. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296(5573): 1655-1657.
    106. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 2005; 5(12): 921-929.
    107. Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell 2008; 133(3): 403-414.
    108. Oh CD, Chun JS. Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J Biol Chem 2003; 278(38): 36563-36571.
    109. Starkman BG, Cravero JD, Delcarlo M, Loeser RF. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem J 2005; 389(Pt 3): 723-729.
    110. Priore R, Dailey L, Basilico C. Downregulation of Akt activity contributes to the growth arrest induced by FGF in chondrocytes. J Cell Physiol 2006; 207(3): 800-808.
    111. Qureshi HY, Ahmad R, Sylvester J, Zafarullah M. Requirement of phosphatidylinositol 3-kinase/Akt signaling pathway for regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in human chondrocytes. Cell Signal 2007; 19(8): 1643-1651.
    112. Hidaka K, Kanematsu T, Takeuchi H, Nakata M, Kikkawa U, Hirata M. Involvement of the phosphoinositide 3-kinase/protein kinase B signaling pathway in insulin/IGF-I-induced chondrogenesis of the mouse embryonal carcinoma-derived cell line ATDC5. Int J Biochem Cell Biol 2001; 33(11): 1094-1103.
    113. Fujita T, Fukuyama R, Enomoto H, Komori T. Dexamethasone inhibits insulin-induced chondrogenesis of ATDC5 cells by preventing PI3K-Akt signaling and DNA binding of Runx2. J Cell Biochem 2004; 93(2): 374-383.
    114. Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 2003; 17(11): 1352-1365.
    115. Yang ZZ, Tschopp O, Di-Poi N, et al. Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 2005; 25(23): 10407-10418.
    116. Yang G, Sun Q, Teng Y, Li F, Weng T, Yang X. PTEN deficiency causes dyschondroplasia in mice by enhanced hypoxia-inducible factor 1alpha signaling and endoplasmic reticulum stress. Development 2008; 135(21): 3587-3597.
    117. Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R, Seino Y. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res 2003; 18(11): 2043-2051.
    118. Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 2008; 17(4): 725-736.
    119. Debiais F, Lefevre G, Lemonnier J, et al. Fibroblast growth factor-2 induces osteoblast survival through a phosphatidylinositol 3-kinase-dependent, -beta-catenin- independent signaling pathway. Exp Cell Res 2004; 297(1): 235-246.
    120. Henderson BR, Fagotto F. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 2002; 3(9): 834-839.
    121. Malbon CC. Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front Biosci 2004; 9: 1048-1058.
    122. Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin. Science 2002; 296(5573): 1644-1646.
    123. Niswander L. Pattern formation: old models out on a limb. Nat Rev Genet 2003; 4(2): 133-143.
    124. Tickle C, Munsterberg A. Vertebrate limb development--the early stages in chick and mouse. Curr Opin Genet Dev 2001; 11(4): 476-481.
    125. ten Berge D, Brugmann SA, Helms JA, Nusse R. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 2008; 135(19): 3247-3257.
    126. Grotewold L, Ruther U. Bmp, Fgf and Wnt signalling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1. Int J Dev Biol 2002; 46(7): 943-947.
    127. Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2 induction by FGF and FGFR2 activated mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 2005; 168(7): 1065-1076.
    128. Ambrosetti D, Holmes G, Mansukhani A, Basilico C. Fibroblast growth factor signaling uses multiple mechanisms to inhibit Wnt-induced transcription in osteoblasts. Mol Cell Biol 2008; 28(15): 4759-4771.
    1. Tuan RS. Biology of developmental and regenerative skeletogenesis. Clin Orthop Relat Res. 2004(427 Suppl):S105-117.
    2. Capdevila J, Izpisua Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol. 2001;17:87-132.
    3. DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 2000;8(5):309-334.
    4. Sandell LJ, Nalin AM, Reife RA. Alternative splice form of type II procollagen mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues during early mouse development. Dev Dyn. 1994;199(2):129-140.
    5. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191-220.
    6. Tickle C. Molecular basis of vertebrate limb patterning. Am J Med Genet. 2002;112(3):250-255.
    7. Niswander L. Pattern formation: old models out on a limb. Nat Rev Genet. 2003;4(2):133-143.
    8. Tickle C, Munsterberg A. Vertebrate limb development--the early stages in chick and mouse. Curr Opin Genet Dev. 2001;11(4):476-481.
    9. Kmita M, Tarchini B, Zakany J, Logan M, Tabin CJ, Duboule D. Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature. 2005;435(7045):1113-1116.
    10. Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000;22(2):138-147.
    11. Tickle C. Patterning systems--from one end of the limb to the other. Dev Cell. 2003;4(4):449-458.
    12. Barna M, Pandolfi PP, Niswander L. Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development. Nature. 2005;436(7048):277-281.
    13. Liu A, Wang B, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development. 2005;132(13):3103-3111.
    14. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem. 2004;93(1):93-103.
    15. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A. 2005;102(14):5062-5067.
    16. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002;3(3):439-449.
    17. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005;16(2):205-213.
    18. Beier F. Cell-cycle control and the cartilage growth plate. J Cell Physiol. 2005;202(1):1-8.
    19. Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13(11):1361-1366.
    20. Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002;16(7):859-869.
    21. Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujimori T, Itoh N, Takada S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 2002;16(7):870-879.
    22. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059-3087.
    23. Tyurina OV, Guner B, Popova E, Feng J, Schier AF, Kohtz JD, Karlstrom RO. Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol. 2005;277(2):537-556.
    24. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613-622.
    25. Kobayashi T, Soegiarto DW, Yang Y, Lanske B, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest. 2005;115(7):1734-1742.
    26. Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS, Koopman P. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 1997;183(1):108-121.
    27. Lefebvre V, Behringer RR, de Crombrugghe B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage. 2001;9 Suppl A:S69-75.
    28. Eames BF, de la Fuente L, Helms JA. Molecular ontogeny of the skeleton. Birth Defects Res C Embryo Today. 2003;69(2):93-101.
    29. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J. 1998;17(19):5718-5733.
    30. Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B, Lefebvre V. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell. 2001;1(2):277-290.
    31. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747-754.
    32. Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem. 2000;275(12):8695-8702.
    33. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765-771.
    34. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577-584.
    35. Wan M, Cao X. BMP signaling in skeletal development. Biochem Biophys Res Commun. 2005;328(3):651-657.
    36. Xu SC, Harris MA, Rubenstein JL, Mundy GR, Harris SE. Bone morphogenetic protein-2 (BMP-2) signaling to the Col2alpha1 gene in chondroblasts requires the homeobox gene Dlx-2. DNA Cell Biol. 2001;20(6):359-365.
    37. Li X, Cao X. BMP signaling and HOX transcription factors in limb development. Front Biosci. 2003;8:s805-812.
    38. Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res. 1999;250(2):351-363.
    39. Seghatoleslami MR, Roman-Blas JA, Rainville AM, Modaressi R, Danielson KG, Tuan RS. Progression of chondrogenesis in C3H10T1/2 cells is associated with prolonged and tight regulation of ERK1/2. J Cell Biochem. 2003;88(6):1129-1144.
    40. Ferguson CM, Miclau T, Hu D, Alpern E, Helms JA. Common molecular pathways in skeletal morphogenesis and repair. Ann N Y Acad Sci. 1998;857:33-42.
    41. Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005;328(3):658-665.
    42. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072-2086.
    43. Kim IS, Otto F, Zabel B, Mundlos S. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999;80(2):159-170.
    44. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001;15(4):467-481.
    45. Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004;269(1):55-69.
    46. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, Lopez-Otin C, Krane SM. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A. 2004;101(49):17192-17197.
    47. Jacenko O, Chan D, Franklin A, Ito S, Underhill CB, Bateman JF, Campbell MR. A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. Am J Pathol. 2001;159(6):2257-2269.
    48. Gress CJ, Jacenko O. Growth plate compressions and altered hematopoiesis in collagen X null mice. J Cell Biol. 2000;149(4):983-993.
    49. Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14(2):86-93.
    50. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623-628.
    51. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev. 2002;111(1-2):61-73.
    52. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998;93(3):411-422.
    53. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y,Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A. 2000;97(8):4052-4057.
    54. Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001;29(21): 4361-4372.
    55. D'Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem. 2002;277(1):816-822.
    56. Karreth F, Hoebertz A, Scheuch H, Eferl R, Wagner EF. The AP1 transcription factor Fra2 is required for efficient cartilage development. Development. 2004;131(22): 5717-5725.
    57. Jochum W, David JP, Elliott C, Wutz A, Plenk H, Jr., Matsuo K, Wagner EF. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med. 2000;6(9):980-984.
    58. MacLean HE, Kim JI, Glimcher MJ, Wang J, Kronenberg HM, Glimcher LH. Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol. 2003;262(1):51-63.
    1. Hall, B.K. and Miyake, T. (2000) All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22: 138-147.
    2. Tuan, R.S. (2004) Biology of developmental and regenerative skeletogenesis. Clin Orthop Relat Res S105-117.
    3. Karsenty, G. and Wagner, E.F. (2002) Reaching a genetic and molecular understanding of skeletal development. Developmental cell 2: 389-406.
    4. Linsenmayer, T.F., Chen, Q.A., Gibney, E., Gordon, M.K., Marchant, J.K., Mayne, R. and Schmid, T.M. (1991) Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development 111: 191-196.
    5. Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M. and Werb, Z. (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93: 411-422.
    6. Ornitz, D.M. and Marie, P.J. (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes & development 16: 1446-1465.
    7. Chen, L., Adar, R., Yang, X., Monsonego, E.O., Li, C., Hauschka, P.V., Yayon, A. and Deng, C.X. (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. The Journal of clinical investigation 104: 1517-1525.
    8. Iwata, T., Chen, L., Li, C., Ovchinnikov, D.A., Behringer, R.R., Francomano, C.A. and Deng, C.X. (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Human molecular genetics 9: 1603-1613.
    9. Iwata, T., Li, C.L., Deng, C.X. and Francomano, C.A. (2001) Highly activated Fgfr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum Mol Genet 10: 1255-1264.
    10. Naski, M.C. and Ornitz, D.M. (1998) FGF signaling in skeletal development. Front Biosci 3: d781-794.
    11. Li, C., Chen, L., Iwata, T., Kitagawa, M., Fu, X.Y. and Deng, C.X. (1999) A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Human molecular genetics 8: 35-44.
    12. Minina, E., Wenzel, H.M., Kreschel, C., Karp, S., Gaffield, W., McMahon, A.P. and Vortkamp, A. (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development (Cambridge, England) 128: 4523-4534.
    13. Enomoto-Iwamoto, M., Nakamura, T., Aikawa, T., Higuchi, Y., Yuasa, T., Yamaguchi, A., Nohno, T., Noji, S., Matsuya, T., Kurisu, K. et al. (2000) Hedgehog proteins stimulate chondrogenic cell differentiation and cartilage formation. J Bone Miner Res 15: 1659-1668.
    14.Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M. and Tabin, C.J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273: 613-622.
    15. Colnot, C. (2005) Cellular and molecular interactions regulating skeletogenesis. Journal of cellular biochemistry 95: 688-697.
    16. Peters, K., Ornitz, D., Werner, S. and Williams, L. (1993) Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 155: 423-430.
    17. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. and Ornitz, D.M. (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12: 390-397.
    18. Horton, W.A. (1997) Fibroblast growth factor receptor 3 and the human chondrodysplasias. Curr Opin Pediatr 9: 437-442.
    19. Su, W.C., Kitagawa, M., Xue, N., Xie, B., Garofalo, S., Cho, J., Deng, C., Horton, W.A. and Fu, X.Y. (1997) Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 386: 288-292.
    20. Chen, L., Li, C., Qiao, W., Xu, X. and Deng, C. (2001) A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 10: 457-465.
    21. Shinomura, T., Ito, K., Kimura, J.H. and Hook, M. (2006) Screening for genes preferentially expressed in the early phase of chondrogenesis. Biochem Biophys Res Commun 341: 167-174.
    22. Shukunami, C., Shigeno, C., Atsumi, T., Ishizeki, K., Suzuki, F. and Hiraki, Y. (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133: 457-468.
    23. Colnot, C., Lu, C., Hu, D. and Helms, J.A. (2004) Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol 269: 55-69.
    24. Brouwers, J.E., van Donkelaar, C.C., Sengers, B.G. and Huiskes, R. (2006) Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech 39: 2774-2782.
    25. Goldring, M.B., Tsuchimochi, K. and Ijiri, K. (2006) The control of chondrogenesis. J Cell Biochem 97: 33-44.
    26. Zelzer, E. and Olsen, B.R. (2005) Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol 65: 169-187.
    27. Lefebvre, V., Garofalo, S., Zhou, G., Metsaranta, M., Vuorio, E. and De Crombrugghe, B. (1994) Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol 14: 329-335.
    28. Hauselmann, H.J., Fernandes, R.J., Mok, S.S., Schmid, T.M., Block, J.A., Aydelotte, M.B., Kuettner, K.E. and Thonar, E.J. (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107 ( Pt 1): 17-27.
    29. Reginato, A.M., Iozzo, R.V. and Jimenez, S.A. (1994) Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis Rheum 37: 1338-1349.
    30. Miller, E.J. and Matukas, V.J. (1969) Chick cartilage collagen: a new type of alpha 1 chain not present in bone or skin of the species. Proc Natl Acad Sci U S A 64: 1264-1268.
    31. Argentin, G. and Cicchetti, R. (2000) In vitro proliferation of achondroplastic and normal mouse chondrocytes, before and after basic fibroblast growth factor stimulation. Cell Prolif 33: 397-405.
    32. Bonucci, E., Marco, A.D., Nicoletti, B., Petrinelli, P. and Pozzi, L. (1976) Histological and histochemical investigations of achondroplastic mice: a possible model of humanachondroplasia. Growth 40: 241-251.
    33. Dailey, L., Laplantine, E., Priore, R. and Basilico, C. (2003) A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. The Journal of cell biology 161: 1053-1066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700