用户名: 密码: 验证码:
玉米叶片中ABA诱导的p46MAPK的分离纯化、质谱鉴定及相关特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱落酸(abscisic acid,ABA)是一种重要的植物激素,在植物生长、发育以及对环境的适应中起着重要的信号分子作用。促分裂原活化蛋白激酶(Mitogen-Activated Protein Kinase,MAPK)是真核细胞中普遍存在的信号组分,由逆境胁迫、细胞因子、植物激素、生长因子等诱导,并在植物信号中发挥重要的作用。已知许多蛋白激酶参与了ABA信号途径,MAPK也能够作为ABA信号的下游组分,发挥调节作用。因此,鉴定ABA信号途径中相关的MAPK,对于揭示ABA信号的细胞和分子机理具有重要意义。
     本实验室在研究ABA和H2O2活化玉米(Zea mays)叶片的MAPK时,已经发现了一种分子量为46 kDa的MAPK(p46MAPK)参与ABA诱导的抗氧化防护,但是我们不知道它是一个什么类型的MAPK,与其它植物MAPK的同源性怎么样。澄清它的性质对于进一步的分子生物学研究至关重要。因此,我们首先对p46MAPK进行分离纯化,其次进行质谱分析并确定类型,最后进行相关特性研究。结果如下:
     1.p46MAPK纯化:髓鞘碱性蛋白(myelin basic protein, MBP)是MAPK的最适底物。我们以MBP为底物,采用溶液激酶分析和凝胶激酶分析(in-gel kinase assay)相结合的方法对纯化过程中的目的蛋白进行跟踪鉴定,并在4℃条件下完成所有纯化步骤。叶片提取上清液先经30%饱和度硫酸铵沉淀,100,000g超速离心,上清经80 mlHiPrep 26/10 (Sephdex G-25F)脱盐柱脱盐后,依次进行40 ml Q sepharose FF阴离子柱、15 ml Pheny sepharose FF疏水柱、6 ml Resource Q阴离子柱、1 ml Mono Q阴离子柱、3.5 ml poly-L-lysine-agarose亲和柱和120 ml Hiload 16/60Superdex 75pg凝胶过滤柱和超滤管浓缩.经过上述步骤,最终经SDS-PAGE电泳,银染检测45 kDa maker处有单一条带,凝胶激酶实验显示能够磷酸化MBP底物。对照与ABA处理的样品同时经Mono Q纯化,进一步证明部分纯化的蛋白为ABA诱导的p46MAPK。部分纯化蛋白的纯化倍数大于10000,回收率为1.1%,激酶活性为20,420pmol min-1mg-1。
     2. p46MAPK鉴定:质谱已成为鉴定蛋白质的最重要技术平台之一。将目的蛋白胶切下,送北京军事医学科学院国家生物医学分析中心进行基质辅助激光解析电离串联飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry, MALDI-TOF-TOF-MS)鉴定。利用BioTools3.0分析软件在http: //www.matrixscience. com的NCBI绿色植物数据库中进行分析。结果显示,p46MAPK与玉米中已知序列的ZmMPK5 (gi|4239889)序列覆盖达32%,匹配得分207,匹配显著(得分大于69为显著,P<0.05)。选取肽段(m/z 1779.841)进行MS/MS鉴定,序列为TTSETDFMTEYWTR,对应于ZmMPK5的218-232处肽段。为进一步证明该结果,ZmMPK5的多克隆抗体被制备。免疫共沉淀凝胶激酶的结果显示ZmMPK5为ABA诱导的p46MAPK。因此,p46MAPK即为ZmMPK5。
     3.ZmMPK5生物信息学分析:利用生物信息学分析ZmMPK5的分子量、等电点、细胞定位等。利用NCBI中BLAST软件,与植物中其他MAPK进行了比对,并构建了基因进化树。结果发现,ZmMPK5分子量为44.9,等电点为5.39,在线软件程序SubLoc v1.0 (http://www.bioinfo.tsinghua.edu.cn/SubLoc/)将其定位在细胞核中,属于MAPK家族的A族,与小麦TaMAPK、水稻OsSIPK和OsMPK6亲缘关系最近,与苜蓿MMK1、拟南AtMPK6、欧芹PcMPK6、番茄LeMPK2、马铃薯StMPK1和烟草SIPK亲缘关系其次,而与玉米中已知的其他MAPK蛋白亲缘关系相对较远。
     4.ZmMPK5相关特性分析:ZmMPK5的凝胶层析分子量为45.74 kDa。在温度(20-50℃)、MgCl2浓度(2.5-15 mM)和pH(5.0-9.0)情况下,该激酶都具有活性。理想反应条件为30℃、pH 8.0和10mMMgCl2.MBP和ATP的Km值分别为0.13μgμL-1和23μM。与histone和casein相比,MBP是ZmMPK5的首选底物。将磷酸化的MBP水解进行薄层层析,其磷酸化位点发生在苏氨酸上,而丝氨酸和酪氨酸未见磷酸化.在ZmMPK5:YFP表达的玉米叶片原生质体中,ZmMPK5存在于细胞质和细胞核中,主要定位在细胞核中。不同的环境胁迫因子如低温、干旱、NaCl、CdCl2、伤害、UV和激素(SA, ETH)均能够诱导ZmMPK5转录和ZmMPK5激酶活性,而ZmMPK5蛋白水平上未见明显的变化。
Abscisic acid (ABA), one of the most important phytohormones, plays an important role as a signaling molecule in plant growth, development and adaptation to the environment. Mitogen-activated protein kinase (MAPK) signaling is prevalent among eukaryotic cells, which is induced by stresses, cytokines, plant hormones, growth factors and so on, playing a vital role in plant stress signal. Many studies have shown that ABA signal transduction is associated with the MAPK cascade pathway. MAPK is one of crucial downstream components in the signal transduction pathway of ABA. Therefore, it is important to identify MAPKs in ABA signal transduction and networks to reveal the cellular and molecular mechanism of ABA signal
     In previous studies, our lab reported that a 46 kDa MAPK (p46MAPK) was involved in ABA-induced antioxidant defense in leaves of maize (Zea mays) plants (Zhang et al.,2006 Plant physiology; 2007 New phytologist). However, the identity of the p46MAPK in maize is not clear, and the alignment to other MAPKs is not known. It is important to reveal the identity and characterization for further research at molecular level. Firstly, we isolated and purified p46MAPK. Secondly, the identity of p46MAPK was identified by MS and bioinformatics assay. Lastly, the characterization of p46MAPK was studied.
     1. Purification of p46MAPK. In this study, partial purification of p46 MAPK was performed by monitoring its activity with an in-gel kinase assay and in-solution kinase assay using myelin basic protein (MBP), which is the best fit substrate for MAPKs. All the steps were carried out at 4℃unless stated otherwise. All chromatographic runs were carried out on an AKTA Purifier 100 system (GE Healthcare) and AKTA Prime System (GE Healthcare). The p46MAPK induced by ABA was partially purified by the 30%(NH4)2SO4 precipitation followed by 100,000g ultracentrifugation and chromatography on 40 ml Q-Sepharose FF,15 ml Phenyl-Sepharose FF,6 ml Resource Q,1 ml Mono QTM 5/50 GL, 3.5 ml Poly-L-lysine-agarose, and 120 ml Superdex 75 prep grade columns. After SDS-PAGE analysis and sliver staining, the enzymes from Superdex 75 prep grade column showed Only 45.4 kDa protein band is near to molecular weight of p46MAPK. And only one band of kinase activity was detected by in-gel kinase assays with MBP as a substrate. These results suggest that this polypeptide was the 46 kDa ABA-activated MAPK. We also purified the kinase from the ABA-treated maize leaves and water treated maize leaves at the same time, which further determined the purified kinase was the ABA-induced p46MAPK. Taking the activity at the first purification step as 100%, the kinase was purified more than 10,000 fold, with an overall yield of 1.1. The specific activity of the kinase was 20,420 pmol min mg-1.
     2. Identification of p46MAPK. Development in mass spectrometry (MS) technology has dramatically accelerated the application of proteomics in recent years. Biological mass spectrometry has become one of the most important technology platforms for protein identification. It is an important part of continuing study on isolated and purified protein. The partial purified protein was excised and sent to the National Center of Biomedical Analysis, Academy of Military Medical Sciences (Beijing, China) for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF-MS) analyses. Proteins were identified using MS/MS ion search of Mascot search engine (http://www.matrixscience.com, Matrix Science, London, England) and Viridiplantae (Green Plants) protein database (NCBI,20071116). It was identified that the p46MAPK was ZmMPK5 (gi|4239889) in maize. The search yielded a top score of 207 (protein scores greater than 69 are significant; P<0.05). Furthermore, the selected tryptic peptide (m/z 1779.841) sequenced by MS/MS revealed an amino acid sequence of TTSETDFMTEYVVTR, corresponding to residues 218-232 of ZmMPK5. In order to further confirm the result, the polyclonal antibody that recognizes the C-terminal region of ZmMPK5 was raised in rabbits, and the immunoprecipitation kinase assay confirmed the results. These results clearly indicate that the ABA-activated p46MAPK is ZmMPK5.
     3. Bioinformatics assay of ZmMPK5. The related characterizations of ZmMPK5 is analyzed by bioinformatics assay, including molecular weight, isoelectric point, protein subcellular localization, alignment and phylogenetic trees analysis of the ZmMPK5 with other homologous MAPKs. The nominal mass of the kinase and isoelectric point are 44.9 kD and 5.39, respectively. ZmMPK5 is localized in the nucleus by SubLoc v1.0 database. Based on the sequence alignment a phylogenetic tree was constructed, which indicates that ZmMPK5 can be grouped into subgroup A, and ZmMPK5 is most homologous to OsMPK6, AtMPK6, NtSIPK and StMPK1. Furthermore, the similarity with the function of the protein known before is analyzed, and its function is also speculated.
     4. Characterization of ZmMPK5. Using of biochemistry, pharmacology, cell biology and other experimental methods, we studied the related characterization of p46MAPK (ZmMPK5). The results show that the molecular mass of the kinase is found to be 45.74 kDa by gel-filtration. The kinase showes activity in the range of 20 to 50℃in temperature, 2.5 to 15 mM MgCl2, and broad pH 5.0 to 9.0, with optimal activity at pH 8.0,35℃, and 10 mM MgCl2. For this kinase, the Km for myelin basic protein (MBP) substrate and ATP are 0.13μgμL-1 and 23μM, respectively. MBP is the preferred substrate, of which the threonine residue is phosphorylated. Immunoprecipitation gel kinase analysis further confirm that ABA-and H2O2-induced 46 kD MAPK is ZmMPK5.100μM SA,100μM ETH,10% PEG, 250 mM NaCl,500μM CdCl2, low temperature, wounding and UV are able to mediate the expression of ZmMPK5 and activation of ZmMPK5.In ZmMPK5:YFP-expressing Zea mays protoplasts, it was localized predominantly in the nucleus. Successful identification and related analysis of the nature of p46MAPK enable us to further define the function of the ZmMPK5 in ABA signal.
引文
[1]胡学博,宋凤鸣,郑重.(2005).高等植物中蛋白磷酸酶2C的结构与功能.细胞生物学杂志,27:29-34.
    [2]贾韦韬.(2006).生物质谱新技术与新方法及其在蛋白质组学中的应用研究.复旦大学,博士论文:139-141.
    [3]石武良,贾文锁,刘新.(2004b).酪氨酸蛋白磷酸酶参与保卫细胞中ABA诱导产生H2O2的信号传递.科学通报,49(16):1617-1622.
    [4]石武良,张蜀秋.(2004a).高等植物体内酪氨酸蛋白磷酸酶及其功能.植物生理学通讯,40(4):495-499.
    [5]吴世容,李志良,李根容.(2000).生物质谱的研究及其应用。重庆大学学报,27(1):123
    [6]吴耀荣,谢旗.(2006).ABA与植物胁迫抗性.植物学通报,23(5):511-518.
    [7]肖强,郑海雷.(2004).一氧化氮与植物胁迫响应.植物生理学通讯,40:379-384.
    [8]阳文龙,刘敬梅,刘强,公衍道,赵南明.(2006).高羊茅MAPK基因的克隆与表达分析.西北植物学报,26(5):871-877.
    [9]Aebersold R, Mann M. (2003). Mass spectrometrybased proteomics. Nature,422:198-207.
    [10]Agrawal GK, Rakwal R, Iwahashib H. (2002). Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophy Res Commun,294:1009-1016.
    [11]Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, and Rakwal R. Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R. (2003b). Novel rice MAPK kinase OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun,300:775-783.
    [12]Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R. (2003). Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMKl) by diverse biotic and abiotic stresses. Plant Physiol Biochem,41:355-361.
    [13]Ahlfors R, Macioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J. (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J,40:512-522.
    [14]Allen GJ, Schroeder JI. (1998). Cyclic ADP-ribose and ABA signal transduction. Trends Plant Sci, 3:123-125.
    [15]Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI. (2001). A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature,411:1053-1057.
    [16]Asai S, Ohta K, Yoshioka H. (2008). MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana. Plant Cell,20:1390-1406.
    [17]Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,415: 977-983.
    [18]Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S. (2006). Ancient signals:comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci,11:192-198.
    [19]Berberich T, Sano H, Kusano T. (1999). Involvement of a MAP kinase, ZmMAPK5, in senescence and recovery from low-temperature stress in maize. Mol Genet Genetics,262:534-542.
    [20]Blanco FA, Zanetti ME, Casalongue CA, Daleo GR. (2006), Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol Biochem,44:315-322.
    [21]Boudsocq M and Lauriere C. (2005). Osmotic Signaling in Plants. Multiple Pathways Mediated by Emerging Kinase Families. Plant Physiol,138:1185-1194.
    [22]Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,72:248-254.
    [23]Breton G, Harmon A. (2004). Decoding Ca2+signals through plant protein kinases. Annu Rev Plant Biol 55,263-288.
    [24]Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J,45:113-122.
    [25]Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu M, Inze D. (1998). Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY 2 cell cultures. Plant Sci,138:27-34.
    [26]Burnett EC, Desikan R, Moser RC, Neill SJ. (2000). ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot,51:197-205.
    [27]Burnette RN, Gunesekera BM, Gillaspy GE. (2003). An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol,132:1011-1019.
    [28]Calderini O, Glab N, Bergornioux C, Heberle-Bors E, Wilson C. (2001). A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEKl,activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem,276:18139-18145.
    [29]Cao Z, Xuan W, Liu Z, Li X, Zhao N, Xu P, Wang Z, Guan R, Shen W. (2007). Carbon monoxide promotes lateral root forma-lion in rapeseed. J Integr Plant Biol,49:1070-1079
    [30]Cardinale F, Meskine L, Ouaked F, Hirt H. (2002). Convergence and divergence of stress induced mitogen-activated protein kinase signaling pathway at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell,14:703-711.
    [31]Caro A, Puntarulo S. (1998). Nitric oxide decreases superoxide anion generation by 6 microsomes from soybean embryonic axes. Physiol Plantarum,104:357-364
    [32]Cazale AC, Droillard MJ, Wilson C, Heberle-Bors E, Barbier-Brygoo H, Lauriere C. (1999). MAP kinase activation by hypoosmotic stress of tobacco cell suspensions:towards the oxidative burst response? Plant J,19:297-307.
    [33]Chamrad D. (2004). Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics,4:619-628.
    [34]Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J. Global. (2003). transcriptional responses of fission yeast to environmental stress. Mol Biol Cell,14: 214-29.
    [35]Chen HH, Li PH, Brenner ML. (1983). Involvement of abscisic acid in potato cold acclimation. Plant Physiol,71:362-365.
    [36]Chenk P, Snaar-Jagalska BE. (1999). Signal peroeprion and transductionahe role of protein kinases. Bioch Bioph Acta,1449:1-24.
    [37]Chernys JT, Zeevaart JAD. (2000). Charaterization of the 9-cis-epoxy-carotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol,124:343-354.
    [38]Choi HI, Park JH, Park S, Kim MY, Im HH, Seo YW, Kim IH. (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol.139,1750-1761.
    [39]Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C. (2002). Spatiotemporal patterning of reactive oxygen production and Ca2+wave propagation in Fucus rhizoid cells. Plant Cell,14:2369-2381.
    [40]Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gomez M, del Rio LA. (2004). Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol,136: 2722-2733.
    [41]Cornah JE, Terry MJ, Smith AG (2003). Green or red:what stops the traffic in the tetrapyrrole pathway. Trends Plant Sci,8:224-230.
    [42]Del PO, Pedldy KF, Martin GB. (2004). MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J,23:3072-3082.
    [43]Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ. (2004). ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot,55:205-212.
    [44]Desikan R, Griffiths R, Hancock JT, Neill S. (2002). A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci, USA,99:16314-16318.
    [45]Desikan R, Clarke A, Hancock JT, Neill SJ. (1999). H2O2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures. J Exp Bot,50:1863-1866.
    [46]Desikan R, Ichimura K, Shinozaki K, Neill SJ. (2001). Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol,126:1579-1587.
    [47]Desikan R, Mackerness SAH, Hancock JT, Neill SJ. (2001). Regulation of the Arabidopsis transcriptosome by oxidative stress. Plant Physiol,127:159-172.
    [48]Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W. (2000). Extracellular b-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot,51: 937-944.
    [49]Doczi, R, Brader, G, Pettko-Szandtner, A, Rajh, I, Djamei, A, Pitzschke, A, Teige, M, Drollard MJ, Thibivilliers S, Cazale AC, Barbier-Brygoo H, Lauriere C. (2000). Protein kinases induced by osmotic stress and elicitor molecules in tobacco cell suspensions:two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Letters,474:217-222.
    [50]Dsouza JS, Johri MM. (2002). ABA and NaCl activate myelin basic protein kinase in the chloronema cells of the moss Funaria hygrometrica. Plant Physiol Biochem,40:17-24.
    [51]Duckham SC, Linforth RST and Taylor IB. (1991). Abscisic acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ,14: 601-606.
    [52]Duclos B, Marcandier S, Cozzone A. (1991). Meth Enzy.201:10-21.
    [53]Durner J, HIessig DF. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem,271:28492-28502.
    [54]Durner J, Wendehenne D, Klessig DF. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA,95:10328-10333.
    [55]Farooq A, Zhou MM. (2004). Structure and regulation of MAPK phosphatases. Cellular Signalling, 16:769-779
    [56]Feussner I, Nater M, Apel K. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell,15:2320-2332.
    [57]Finkelstein RR. (2006). Studies of abscisic acid perception finally flower. Plant Cell.18:786-791.
    [58]Finkelstein RR, Gampala SSL, Rock CD. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell (Suppl) 14:S15-S45.
    [59]Frye CA, Tang D, Innes RW. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA,98,373-378
    [60]Gao, Y, Zeng, Q, Guo, J, Cheng, J, Ellis, BE, and Chen, JG (2007). Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J.52,1001-1013.
    [61]Gazzarrini S and McCourt P. (2001). Genetic interactions between ABA, ethylene and sugar signaling pathways. Cur Opin Plant Biol,4:387-391.
    [62]Gomez-Gomez L, Boller T. (2002). Flagellin perception:a paradigm for innate immunity. Trends Plant Sci,7:251-256.
    [63]Gong M, Li YJ, Chen SZ. (1998). Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol,153:488-496.
    [64]Grant JJ, Loake GJ. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol,124:21-29.
    [65]Grant JJ, Yun B-W, Loake GJ. (2000). Oxidative burst and cognate redox signaling reported by luciferase imaging:identification of a signal network that functions independently of ethylene, SA and Me-JAbut is dependent on MAPKK activity. Plant J,24:569-582.
    [66]Gould KS, Lamotte 0, Klinguer A, Pugin A, Wendehenne D. (2003). Nitric oxide production in tobacco leaf cells:a generalized stress response? Plant Cell Environ,26:1851-1862.
    [67]Grill E, Himmedlbach A. (1998). ABA signal transduction. Curr Opi Plant Bio,1:412-418.
    [68]Guan L, Scandalios JG (1998). Itvo structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol,117: 217-224.
    [69]Guan L, Zhao J, Scandalios JG (2000). Cis-elements and traps-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress:H2O2 is the likely intermediary signalling molecule for the response. Plant J,22:87-95.
    [70]Guillen G, Valdes-Lopez V, Noguez R, Olivares J, Rodriguez-Zapata LC, Perez H, Vidali L, Villanueva MA, Sanchez F. (1999). Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. Plant J,19:97-508.
    [71]Guo, J, Zeng, Q, Emami, M, Ellis, BE, and Chen, JG (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE.3, e2982.10.1371/journal.pone.0002982.
    [72]Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Henderson IR, Dean C. (2004). Control of Arabidopsis flowering:the chill before the bloom. Development,131: 3829-3838.
    [73]Henderson IR, Dean C. (2004). Control of Arabidopsis flowering:before the bloom. Development, 131:3829-3838.
    [74]Heimovaara-Dijkstra S, Testerink C, Wang M. (2000). Mitogen-activated protein kinase and abscisic acid signal transduction. Results Probl. Cell Differ,27:131-144.
    [75]Himmelbach A, Yang Y. (2003). Grill E. Relay and control of abscisic acid signaling. Curr Opi Plant Bio,2003,6:470-479.
    [76]Hirayama T, Shinozaki K. (2007). Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA. Trends Plant Sci.12:343-351.
    [77]Hirt, H. (2007). The arabidopsis mitogen-activated protein kinase MKK3 is upstream of group c mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell,19:3266-3279.
    [78]Hortin GL. (2006). The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem,52:1223-1237.
    [79]Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH. (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abil-1 mutant. J Cell Sci,115:4891-4900.
    [80]Hoyos ME, Zhang S. (2000). Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol,122:1355-1363.
    [81]Hu X, Jiang M, Zhang A, Lu J. (2005). Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta, 223:57-68.
    [82]Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M. (2007). Calcium/calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize plants. New Phytol,173:27-38.
    [83]Hung KT, Kao CH. (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J Plant Physiol,161,1347-1357.
    [84]Hwa CM, Yang XC. (2008). The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis. Acta Physiol Plantarum,30(3):1861-1664.
    [85]Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J,24:655-665.
    [86]Illingworth, CJ, Parkes, KE, Snell, CR, Mullineaux, PM, and Reynolds, CA. (2008). Criteria for confirming sequence periodicity identified by Fourier transform analysis:Application to GCR2, a candidate plant GPCR? Biophys. Chem.133:28-35.
    [87]Iuchi, S, Kobayashi, M, Taji, T, Naramoto, M, Seki, M, Kato, T, Tabata, S, Kakubari, Y, Yamaguchi-Shinozaki, K, Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 27:325-333.
    [88]Jang, YH, Lee, JH, and Kim, JK. (2008). Abscisic acid does not disrupt either the Arabidopsis FCA-FY interaction or its rice counterpart in vitro. Plant Cell Physiol,49:1898-1901.
    [89]Jiang M, Zhang J. (2002a). Involvement of plasma membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215:1022-1030.
    [90]Jiang M, Zhang J. (2002b). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401-2410.
    [91]Jiang M, Zhang J. (2003). Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant, Cell Environ,26:929-939.
    [92]Jiang M, Zhang J. (2004). Abscisic acid and antioxidant defense in plant cells. Acta Bot Sin 46: 1-9.
    [93]Jin H, Axtell MJ, Dahlbeck D, Ekwenna O, Zhang S, Staskawicz B, Baker B. (2002). NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell,3:291297
    [94]Jin H, Liu Y, Yang KY, Kim CY, Baker B, Zhang S. (2003). Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J,33:719-731.
    [95]Jing J, An G, Wang P, Wang PT, Han JF, Jin YB, Song CP. (2003). MAP kinase specifically mediates the ABA-induced H2O2 generation in guard cells of Vicia faba L. Chin Sci Bul,48 (18): 1919-1926.
    [96]Johnston, CA., Temple, BR, Chen, JG, Gao, Y, Moriyama, EN, Jones, AM, Siderovski, DP, Willard, FS. (2007b). Comment on "A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid." Science,318:914.
    [97]Jonak C, Okresz L, Bogre L, Hirt H. (2002). Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol,5:415-424.
    [98]Jones JDG, Schroeder JI. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO J,22:2623-2633.
    [99]Katou S, Yoshioka H, Kawakita K, Rowland O, Jones JDQ Mori H, Doke N. (2005). Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol,139:1914-1926.
    [100]Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinase. Cell,72:427-441.
    [101]Kiegerl S, Till S, Bogre L, Hirt H, Meskiene I. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12, 2247-2258
    [102]Kim CY, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J,2004,38:142-151.
    [103]Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI. (2002). Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol,130:2152-2163.
    [104]Koelle MR. (2006). Heterotrimeric G protein signaling:getting inside the cell. Cell,126:2527
    [105]Komatsu S, Xia BS. (1997). Protein phosphorylation during heading time in rice. Biosci Biotech Biochem,61 (8):1312-1316
    [106]Kovtun Y. Chiu WL, Tena G, Sheen J. (2000). Functional analysis of oxidative stress activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci, USA.97:2940-2945.
    [107]Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Tomes MA, Dangl JL, Bloom RE, Bodde S, Jonak C, Okresz L, Bogre L, Hirt H. (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol.5:415-424.
    [108]Knetsch MLW, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S. (1996). Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8: 1061-1067.
    [109]Lee J, Rudd JJ, Macioszek VK, Scheel D. (2004). Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J Biol Chem,279:22440-22448.
    [110]Lee MO, Cho K, Kim SH, Jeong SH, Kim JA, Jung YH, Shim J, Shibato J, Rakwal R. Tamogami S, et al. (2008). Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta,227:981-990.
    [111]Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W. (2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell,126:1109-1120.
    [112]Li J, Wang XQ, Watson MB, Assmann, SM. (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science,287:300-303.
    [113]Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, et al. (2007a). Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sariva. Plant Sci,172:544-555.
    [114]Liu PF, Chang WC, Wang YK, Chang HY, Pan RL. (2008). Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid. Bioch Bioph Acta,1779: 164-174.
    [115]Liu X, Yue Y, Li B, Nie Y, Li W, Wu W, Ma L. (2007b). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science,315:1712-1716.
    [116]Liu Y, Jin H, Yang KY, Kim CY, Baker B, Zhang S. (2003). Interaction between two mitogen-activated protein kinases during tobacco defense sienaline. Plant J,34:149-160.
    [117]Liu Y, Zhang S. (2004). Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stressresponsive mitogen-activated protein kinase,induces ethylene biosynthesis in Arabidopsis. Plant Cell,16:386-399.
    [118]Lopez-Molina, L, Mongrand, S, Chua, NH. (2001). A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci, USA,98:4782-4787.
    [119]Lu C, Han MH, Guevara-Garcia A, Fedoroff NV. (2002). Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA,99: 15812-15817.
    [120]Lukowitz W, Roeder A, Parmenter D, Somerville C. (2004). A MAPKK kinase gene regulates extraembryonic cell fate in Arabidopsis. Cell,116:109-119
    [121]Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A and Marion-Poll A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus ofArabidopsis thaliana. The EMBO Journal,15:2331-2342.
    [122]Meinhard M, Grill E. (2001). Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Letters,508:443-X46.
    [123]Meinhard M, Rodriguez PL, Grill E. (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta,214:775-782.
    [124]Menke FL, van Pelt JA, Pieterse CM, Klessig DF. (2004). Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell,16:897-907.
    [125]Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Obrowolska G (2000). Osmotic stress induces rapid activation of a alicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell,12:165-178.
    [126]Mizoguchi T, Gotoh Y, Nishida E, Yamaguchi-Shinozaki K, Hayashida N, Iwasaki T, Kamada H, Shinozaki K. (1994). Characterisation of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activation in cultured cells. Plant J,5:111-122.
    [127]Mizoguchi T, Ichimura K, Shinozaki K. (1997). Environmental stress response in plant:the role of mitogn-activated protein kinases. Trends in Biotech,15:15-19.
    [128]Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA,93:765-769.
    [129]Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,7: 405-410.
    [130]Nakagami H, Pitzschke A, Hirt H. (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci,10:339-346.
    [131]Neill S, Desikan R, Hancock J. (2002). Hydrogen peroxide signalling. Cur Opin Plant Biol,5: 388-395.
    [132]Neill SJ, Desikan R, Clarke A, Hurst RD. Hancock JT. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot,372:1237-1247.
    [133]Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y. (2001). The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev,15:352-363.
    [134]Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ. (2007). Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett,581:1834-1840.
    [135]Ortiz-Masia D, Perez-Amador MA, Carbonell P, Aniento F, Carbonell J, Marcote MJ. (2008). Characterization of PsMPK2, the Wrst C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 227:1333-1342.
    [136]Park SY, Ryu SH, Jang IC, Kwon SY, Kim JG, Kwak SS. (2004). Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweetpotato and its expression in response to stress. Mol Gen Geno,271:339-346.
    [137]Pandey S. Nelson D, Assmann SM. (2009). Two Novel GPCR-Type G Proteins are Abscisic Acid Receptors in Arabidopsis. Cell,136:136-148
    [138]Pedley KF, Martin GB. (2004). Identification of MAPKs and their possible MAPK kinase activators involved in the pto-mediated defense response of tomato. J Biol Chem,279 (47): 49229-49235.
    [139]Pei ZM, Murata Y, Benning C, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature,406:731-734.
    [140]Pnueli L, Liang H, Rozenberg M, Mittler R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apxl)-deficient Arabidopsis plants. Plant J,34:187-203.
    [141]Polle A. (2001). Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol,126:445-462.
    [142]Popping B, Gibbons T, Watson MD. (1996). The pisum sativum MAP kinase homologum(PsMAPK) rescues the Saccharomyces cerevisiae hogl deletion mutant under conditions of high osmotic stress. Plant Mol Biol,31:355-363.
    [143]Prasad TK, Anderson MD, Martin BA, Steward CR. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell,6:65-74.
    [144]Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ. (1994). Oxidative signals in tobacco increase cytosolic calcium. Plant Cell,6:1301-1310.
    [145]Putterill J, Laurie R, Macknight R. (2004). It's time to flower:the genetic control of flowering time. BioEssays,26:363-373.
    [146]Razem FA, EI-Kereamy A, Abrams SR, Hill RD. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature,439:290-294.
    [147]Razem FA, Luo M, Liu JH, Abrams SR, Hill RD. (2004). Purification and characterization of a barley aleurone abscisic acid-binding protein. J Biol Chem,279,9922-9929.
    [148]Ren D, Yang H, Zhang S. (2002). Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem,277:559-565.
    [149]Reyna NS, Yang Y. (2006). Molecular Analysis of the Rice MAP Kinase Gene Family in Relation to Magnaporthe grisea. Infection. Mol. Plant Microbe In,19 (5):530-540.
    [150]Reyzer ML, Caprioli RM. (2005). MALDI mass spectrometry for direct tissue analysis:a new tool for biomarker discovery. Journal Proteome Res,4:1138-1142.
    [151]Rizhsky L, Liang H, Mittler R. (2003). The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem,278:38921-38925.
    [152]Rock C. (2000). Pathways to abscisic acid-regulated gene expression. New Phytol,148:357-396.
    [153]Rock CD, Zeevaart JAD. (1991). The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA,88:7496-7499.
    [154]Roel GL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Gobel C, Romeis T, Piedras P, Zhang S, HIessig DF, Hirt H, Jones JDC. (1999). Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves:convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell,11:273-287.
    [155]Samuel MA, Ellis BE. (2002). Double jeopardy:both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell, 14:2059-2069.
    [156]Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. (2001). Guard cell signal transduction. Ann Rev Plant Physio Plant Molec Biol 52:627-658.
    [157]Schroeder JI, Kwak JM, Allen GJ. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature,410:327-330.
    [158]Schweighofer A, Hirt H, Meskiene I. (2004). Plant PP2C phosphatases:emerging functions in stress signaling. Trends Plant Sci,9:236-243.
    [159]Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, et al. (2007). The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell,19:2213-2224.
    [160]Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. (2000). The molecular basis of vernalization:the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA,97: 3753-3758.
    [161]Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY. (2006). The Mg-chelatase H stibunit is an abscisic acid receptor. Nature,443:823-826.
    [162]Sherson S, Cobbett C, Dean C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell,89:737-745.
    [163]Shinozaki K, Yam aguchi-Shinozaki K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol,115,327-334.
    [164]Simpson GG. (2004). The autonomous pathway:epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol,7:570-574.
    [165]Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y. YNQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK mediated MAPK cascade and is required for plant cytokinesis. Genes Dev,2003,17:1055-1067.
    [166]Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. (2007). The Mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell,19 (5):805-818.
    [167]Tan BC, Schwartz SH, Zeevaart JAD, McCarty, DR. (1997). Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA,94:12235-12240.
    [168]Tena G, Asai T, Chiu WL, Sheen J. (2001). Plant mitogen-activated protein kinase signaling cascades. Curr opin plant boil,4:392-400.
    [169]Wan JR, Zhang SQ, Stacey G. (2004). Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol,5 (2):125-135.
    [170]Whitmarsh AJ, Davis RJ, Whitmarsh AJ, Davis RJ. (1998). Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci,23: 481-485.
    [171]Widmann C, Gibson S, Jarpe MB&Johnson GL. (1999). Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physi Rev,79:143-180.
    [172]Wilson C, Eller N, Gartner A, Vicente O, Heberle-Bors, E. (1993). Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol Biol,23:543-551.
    [173]Wu Y, Kuzma J, Maerchal E, Graeff R, Lee HC, Forster R, Chua NH. (1998). Abscisic acid signaling through cyclic ADP-riboseinplants. Science,278:2126-2130.
    [174]Xing Y, Jia W, Zhang J. (2008). AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J,54:440-451.
    [175]Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK. (2001a). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1,771-781.
    [176]Xiong L, Ishitani M, Lee H, Zhu JK. (2001b). The LOS5/ABA3 locus encodes a molybde-hum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression. Plant Cell 13,2063-2083.
    [177]Xiong L, Ishitani M, Zhu JK. (1999b). Interaction of osmotic stress, ABA and low temperature in the regulation of stress gene expression in Arabidopsis thaliana. Plant Physiol,119:205-211
    [178]Xiong L, Lee H, Ishitani M, Zhu JK. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABAI locus in Arabidopsis. J Biol Chem,277:8588-8569.
    [179]Xiong L, Yang Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell,15:745-759.
    [180]Xiong L, Zhu JK. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ,25:131-139.
    [181]Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I. (2002). Cloning and characterization of the abscisic acid specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol,129: 1285-1295.
    [182]Yam aguchi-Shinozaki, K, Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,57,781-803.
    [183]Yang KY, Liu Y, Zhang S. (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco, Proc Natl Acad Sci USA,98:741-746.
    [184]Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, Oldsen M, Yoda H, Yamaguchi Y, Sano H. (2005). Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol,139: 127-137.
    [185]Yeh CM, Chien PS, Huang HJ. (2007). Distinct signaling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659-671.
    [186]Yoshioka H, Numata N, Nakajirna K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N. (2003). Nicotiana benthamiana gp91POX homologs NbrbohA and NbrbohB participate in HzO2 accumulation and resistance to Phytophthora infestans. Plant Cell,15:706-718.
    [187]Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K. (2004). Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci,167:1335-1341.
    [188]Yu SW, Zhang LD, Zuo KJ, Tang DQ, Tang KX. (2005). Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Plant Sci,169 (2): 413-421
    [189]Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K. (2001). Oxidative stress activates AtMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol,42:1012-1016.
    [190]Zhang A, Jiang M, Zhang J, Tan M, Hu X. (2006). Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475-487.
    [191]Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol,175:36-50.
    [192]Zhang DP, Wu ZY, Li XY, Zhao ZX. (2002). Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol,128:714-725.
    [193]Zhang S, Klessig DF. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9,809-824.
    [194]Zhang S, Klessig DF. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci,6: 520-527.
    [195]Zhang TG, Liu YB, Xue LG, Xu Sj, Chen T, Yang TW, Zhang LJ, An LZ. (2006). Molecular cloning and characterizationof a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem,44,78-84.
    [196]Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. (2008). Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta,2009,485-495.
    [197]Zhu JK. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,53: 247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700