用户名: 密码: 验证码:
IL-6在炎症性肠病大鼠脑、结肠组织中表达及信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炎症性肠病(IBD)是一种在我国及欧美等诸多国家极为普遍的并且病因未明的慢性胃肠道疾病,与遗传、免疫、环境及黏膜屏障等影响因素密切相关,其中IL-6被认定是与IBD密切相关的核心细胞因子之一。本实验从神经-内分泌-免疫网络的角度出发,运用三硝基苯磺酸(TNBS)化学诱导,按每只大鼠0.2 mL/100 g的剂量进行直肠灌注,建立了IBD大鼠动物模型,并于建模后第0、3、7、14、21、28天取脑、结肠组织和血液。采用免疫组织化学和实时荧光定量方法检测IL-6在结肠和脑组织中的表达变化;采用实时荧光定量的方法检测IL-6受体及其相关信号转导因子(如stat3, jak3, gp130, socs3)在结肠和脑中的变化规律;采用ELISA方法检测血清中IL-6在不同时期的浓度变化。实验结果表明,结肠、脑组织中IL-6、IL-6受体及其相关信号转导因子的表达水平随着炎症性肠病的加重而增加,随着炎症性肠病的恢复而逐渐减少,最后趋向于正常大鼠水平;ELISA实验的结果表明,血清中IL-6的浓度也具有相同的变化趋势。上述结果表明IL-6及其信号转导相关因子与IBD的发生发展存在必然的联系,IL-6及其信号转导相关因子可作为治疗IBD的靶点。本研究的结果为进一步深入研究IBD的发病机制提供了实验依据。同时还为从神经-内分泌-免疫调节网络的角度研究IBD的发病机制奠定了基础。
Nervous-endocrine-immune form a complex network-neuroendocrine-immune regulation network, which controls the body's various life activities, maintain homeostasis of the body. When the homeostasis is disrupted, certain parts in the network will respond and do some change in the function, meanwhile, related link in the network show some change, leading to Certain diseases and the emergence of pathological process. Neuroendocrine and immune disorders are a common feature of all diseases. All the clinical diseases have a nerve-endocrine-immune disorder. The disease process is actually a kind of disorder of nerve-endocrine-immune network homeostasis adjustment. however, among the nerve, endocrine and immune disorders, immune disorder is principal.
     Inflammatory bowel disease (IBD) is a universal chronic inflammatory disease, including chronic nonspecific ulcerative colitis (UC) and Crohn's disease (CD), The disease's distribution of is world-wide, and it seriously endangers the health of our people, and the incidence rate is increasing recently. and especially serious in Chinese, Europe and America. The key features of IBD were inflammation of intestinal tract and mucous membrane lesions. The etiology and pathogenesis of IBD are not very clear yet. The majority of researches suggest that IBD is a kind of autoimmune disease caused by the interaction of many factors including heredity, immune, environment and mucosal barrier. Among all of these, immunity plays a vital role in the occurrence and development of IBD. Many research data show that IL-6 is key factor referring to a variety of cytokines during IBD progress.
     In view of the above, IBD rats model was constructed by chemical induction of trinitro-benzene-sulfonic acid (TNBS). Briefly,5%TNBS and dehydrated alcohol was mixed referring to 2:1 ratio. The rats were then rectum perfused with the mixture. The rat model was sacrificed on day 3,7,14,21 and 28, and the brain and the colon tissues were stripped. The expression of IL-6 in the brain and the colon tissues was determined by immunohistochemistry and real time PCR. The regulation mechanism of the acceptor and the signal transduction factors, such as stat3, jak3, gp130, socs3, of IL-6 was identified by real time PCR. The concentration diversity of IL-6 in the serum during the treatment period was measured by ELISA. The results showed that the amount of IL-6 and its acceptors and related signal transduction factors in the intestinal change in the pathogenesis of IBD. With the development of IBD, there is a higher expression level of IL-6 and its acceptors and related signal transduction factors. When rats recovered, the expression of IL-6 and its acceptors and related signal transduction factors decreased gradually, and finally reach the normal level. The results of brain tissues were similar to the results of gut. The ELISA experiments indicated that serum IL-6 concentration heightened when have IBD, on the contrary, the serum IL-6 concentration degraded gradually accompany with disease recovery and return to the normal concentration eventually.
     In summary, IL-6 was the key factor in chronic phase of colonitis and its acceptors and related signals transduction factors were all involved in the development of IBD, which proved the important role of signal transduction pathway of IL-6 in the morbidity progress of IBD. The study provided the basic theory of pathogenesis research of IBD. The results also prompted that network-neuroendocrine-immune regulation network participated in the progress of IBD, which supplied the relationship research of IBD and network-neuroendocrine-immune regulation network with experimental data.
引文
[1]Hirano T, Taga T, Nakano N, et al.Purification to homogeneity and characterization of human B-cell differentiation factor(BCDF or BSFp-2) [J]. Proc Natl Acad Sci USA,1985,82:5490-94.
    [2]Content J, De Wit L, Poupart P, et al.Induction of a 26-kuaproteinmRNA in human cells treated with an interleukin-l-related,leukocyte-derived factor [J].Eur J Biochem,1985,152:253-257.
    [3]Hirano T, Akira S, Taga T, et al. Biological And Clinical Aspects of Interleukin-6.Immunol Today,1990,11:443.
    [4]Poupart P,Vandenabeele P,Cayphas S,et al.B cell growth modulating and differentiating activity of recombinant human 26-ku protein(BSF-2,HuIFN-beta 2,HPGF) [J].The EMBO Journal,1987 (6):1219-1224.
    [5]Mule JJ,Mcintosh JK,Jabon DM,et al.Antitumor activity of recombinant anti-interleukin 6 in mice [J]. J Exp Med,1990,171(3):629-636.
    [6]Kishimoto,T,T.Hirano,H.Kikutani,et al.Regulation of growth and differentiation of human B cells [J].Human T cell Clone,1985:349-359.
    [7]ZlotiniKA,Yoshie O.Chemokines:A new classification system and their role in immunity [J]. Immunity,2000,12(1):121-127.
    [8]周光炎.免疫学原理[M].上海:上海科学技术文献出版社,2001:82-99.
    [9]李元,陈松森,王渭池.基因工程药物[M].北京:化学工业出版社,2003:127-132.
    [10]Haya L G,David F,Vrjay C,et al.Cytotoxic activity of an interleukin-2-pseudomonas exotoxin chimeric protein produced in Escherichia coli [J].Proc Natl Acad Sci USA,1998,85:1922-1932.
    [11]Bowcock AM,Kidd JR,Lathrop GM,et al.The human interferon-b2/hepatocyte stimulating factor/interleukin-6 gene:DNA polymorphism studies and localization to chromosome 7p21 [J].Genomics,1988,3:8-16.
    [12]Santhanam U,Ray A,Sehgal PB.Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product [J].Proc Natl Acad Sci USA,1991,88:7605. [13]Teranishi T,Hirano T,Arima N,Onoue K.Human helper T cell factor(s)(ThF).Ⅱ.Induction of IgG production in B lymphoblastoid cell lines and identification of T cell-replacing factor-(TRF)like factor(s) [J].J Immunol,1982,128:1903-1908.
    [14]Tonouchi N,Oouchi N,Kashima N,Kawai M,Nagase K,Okano A,Matsui H,Yamada K,Hirano T, KishimotoT.High-level expression of human BSF-2/IL-6 cDNA in Escherichia coli using a new type of expression-preparation system [J].J Biochem(Tokyo),1988,104:30.
    [15]Ehlers M,Gr otzinger J,de Hon FD et al.Identification of two novel regions of human IL-6 responsible for receptor binding and signal transduction [J].J Immunol,1994,94:1744.
    [16]杨春瑛,沈德诚.细胞因子生物学活性最新资料[J].免疫学杂志,1991,7(1):66-67.
    [17]Jones SA, Richards PJ, Scheller J, Rose-John S. IL-6 transsignaling:the in vivo consequences. [J] Interferon Cytokine Res.2005;25:241-253.
    [18]Kallen KJ. The role of transsignaling via the agonistic soluble IL-6 receptor in human diseases. Biochim Biophys Acta.2002; 1592:323-343.
    [19]P.C. Heinrich, I. Behrmann, G. Muller-Newen, F. Schaper and L. Graeve, Interleukin-6-type cytokine signalling through the gpl30/Jak/STAT pathway. Biochem J 334 (1998), pp.297-314. View Record in Scopus| Cited By in Scopus (722).
    [20]Rose-John, Stefan,Waetzig, et al. The IL-6/sIL-6R comp lex as a novel target for therapeutic app roaches [J]. Expert Op in Ther Targets,2007,11 (5):613~624.
    [21]IL-6及其受体与炎症性疾病关系的新进展:林丽艳,张慧云,何韶衡中国热带医学2008年第8卷第4期文章编号:1009-9727(2008)4-680-03.
    [22]Imazeki, I., Saito, H., Hasegawa, M., Shinkura, H., Kishimoto, T., Ohsugi, Y., 1998. IL-6 functions in cynomolgus monkeys blocked by a humanized antibody to human IL-6 receptor. Int. J. Immunopharmacol.20,345-357.
    [23]Kallen, K.J.,2002. The role of transsignalling via the agonistic soluble IL-6 receptor in human disease. Biochem. Biophys. Acta 1592,323-343.
    [24]Mihara, M., Nishimoto, N., Ohsugi, Y.,2005a. The therapy of autoimmune diseases by anti-interleukin-6 receptor antibody. Expert Opin. Biol. Ther.5,683-690.
    [25]Nishimoto, N., Kishimoto, T.,2004. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr. Opin. Pharmacol.4,386-391.
    [26]Kallen, K.J.,2002. The role of transsignalling via the agonistic soluble IL-6 receptorin human disease. Biochem. Biophys. Acta 1592,323-343.
    [27]Taga T et al. Annu Rev Immunol,1997;15:797.
    [28]Is IL-6 Both a Cytokine and a Neurotrophic Factor?By John A.Wagner From the Department of Neurology & Neuroscience and Department of Cell Biology &Anatomy,Cornell University Medical College, New York 10021 J. Exp. Med.9 The Rockefeller University Press 9 0022-1007/96/06/2417/03 Volume 183 June 1996 2417-2419.
    [29]Yasukawa, K., T. Hirano, Y. Watanabe, K. Muratani, T.Matsuda, S. Nakai, and T. Kishimoto.1987. Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene. EMBO (Eur. Mol. Biol. Organ.)J.6:2939-2945.
    [30]Oh, Y., and K. O'Malley.1994. IL-6 increases choline acetyltransfer-rase but not neuropeptide transcripts in sympathetic neurons. Neuroreport (Engl.).5:937-940.
    [31]Murphy P G, Borthwick, Altares L A M, et al. Reciprocal actions of interleukin26 and brain-derived neurotrophicfactor on rat and mouse primary sensory neurons[J]. Eur J Neurosci,2000,12 (6):1891-1899.
    [32]L.M. Bolin, A.N. Verity, J.E. Silver, E.M. Shoot, J.S. Abrams,Interleukin-6 production by Schwann cells and induction in sciatic. nerve injury, J. Neurochem.641995 850-858.
    [33]P.G. Murphy, J. Grondin, M. Altares, P.M. Richardson, Induction of interleukin-6 in axotomized sensory neurons, J. Neurosci.15 19955130-5138.
    [34]J.A. DeLeo, R.W. Colburn, M. Nichols, A. Malhotra, Interleukin-6-mediated hyperalgesiarallodynia and increased spinal IL-6 expres-sion in a rat mononeuropathy model, J. Interferon Cytokine Res.16.1996 695-700.
    [35]Dunn AJ.Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res,2006,6:52-68.
    [36]Becker, C., M. C. Fantini, C. Schramm, H. A. Lehr, S. Wirtz, A. Nikolaev, J. Burg, S. Strand, R. Kiesslich, S. Huber, et al.2004. TGF-(?) suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491-501.
    [37]Atreya, R., J. Mudter, S. Finotto, J. Mullberg, T. Jostock, S. Wirtz, M. Schu"tz,B. Bartsch, M. Holtmann, C. Becker, et al.2000. Blockade of interleukin-6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation:evidence in Crohn's disease and experimental colitis in vivo. Nat. Med.6:583-588.
    [38]Ing, Z., J. Gauldie, G. Cox, H. Baumann, M. Jordana, X.-F. Lei, and M. K. Achong.1998. IL-6 is an anti-inflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest.101:311-320.
    [39]Tilg. H., E. Trehu, M. B. Atkins, C. A. Dinarello, and J. W. Mier.1994. Interleukin-6(IL-6) as an anti-inflammatory cytokine:induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83:113-118.
    [40]Hurst, S. M., T. S. Wilkinson, R. M. McLoughlin, S. Jones, S. Horiuchi, N. Yamamoto, S. Rose-John, G. M. Fuller, N. Topley, and S. A. Jones.2001. Control of leukocyte infiltration during inflammation:IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment. Immunity 14:705-714.
    [41]Barton. B. E., and J. V. Jackson.1993. Protective role of interleukin-6 in the lipopolysaccharide galactosamine septic shock model. Infect. Immun.61:1496-1499.
    [42]Ulich. T. R., S. Yin. K. Guo. E. S. Yi. D. Remick, and J. del Castillo.1991. Intratracheal injection of endotoxin and cytokines:interleukin-6 and transforming growth factor inhibit acute inflammation. Am. J. Pathol.138:1097-1101.
    [43]Onogawa, T. Local delivery of soluble interleukin-6 receptors to improve the outcome of toxin producing Staphylococcus aureus infection in mice. Immunobiology 209: 651-660.
    [44]Dunn AJ.Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res,2006;6:52-68.
    [45]Heinrich, P. C., I. Behrmann, S. Haan, H. M. Hermanns, G. Mu'ller-Newen, and F. Schaper.2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation.Biochem. J.374:1-20.
    [46]Jones, S. A., and S. Rose-John.2002. The role of soluble receptors in cytokine biology:the agonistic properties of the sIL-6R/IL-6 complex. Biochim. Biophys. Acta 1592:251-263.
    [47]Jones, S. A., P. J. Richards, J. Scheller, and S. Rose-John.2005. IL-6 trans-signalling:the in vivo consequences. J. Interferon Cytokine Res.25:241-253.
    [48]Jones, S. A., S. Horiuchi, N. Topley, N. Yamamoto, and G. M. Fuller.2001. The soluble interleukin-6 receptor:mechanisms of production and implications in disease. FASEB J.15:43-58.
    [49]Nowell, M. A., R. J., Richards, S. Horiuchi, N. Yamamoto, S. Rose-John, N. Topley, A. S. Williams, and S. A. Jones.2003. Soluble IL-6 receptor governs IL-6 activity in the rheumatoid synovium:blockade of experimental arthritis by soluble gp130. J. Immunol.171:3202-3209.
    [50]Desgeorges, A., C. Gabay, P. Silacci, D. Novick, P. Roux-Lombard, G. Grau, J. M. Dayer, T. Vischer, and P. A. Guerne.1997. Concentrations and origins of soluble interleukin-6 receptor in serum and synovial fluid. J. Rheumatol.24:1510-1516.
    [51]Modur, V., Y. Li, G. A. Zimmerman, S. M. Prescott, and T. M. McIntyre.1997. Retrograde inflammatory signalling from neutrophils to endothelial cells by soluble interleukin-6 receptor. J. Clin. Invest.100:2752-2756.
    [52]McLoughlin, R. M., S. M. Hurst, M. A. Nowell, D. A. Harris, S. Horiuchi, L. W. Morgan, T. S. Wilkinson, N. Yamamoto, N. Topley, and S. A. Jones.2004. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. J. Immunol.172:5676-5683.
    [53]Romano, M., M. Sironi, C. Toniati, N. Polentarutti, P. Fruscella, P. Ghezzi, R. Faggioni, W. Luini, V. van Hinsbergh, S. Sozzani, et al.1997. Role of IL-6 and itssoluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315-325.
    [54]Atreya, R., J. Mudter, S. Finotto, J. Mu'llberg, T. Jostock, S. Wirtz, M. Schu"tz, B. Bartsch, M. Holtmann, C. Becker, et al.2000. Blockade of interleukin-6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation:evidence in Crohn's disease and experimental colitis in vivo. Nat. Med.6:583-588.
    [55]Yokota, S., T. Miyamae, T. Imagawa, N. Iwata, S. Katahura, M. Mori, P. Woo, N. Nishimoto, K. Yoshizaki, and T. Kishimoto.2005. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemiconset juvenile idiopathic arthritis. Arthritis Rheum.52:818-825.
    [56]Doganci, A., T. Eigenbrod, N. Krug, G. T. De Sanctis, M. Hausding, V. J. Erpenbeck, E.-B.. Haddad, E. Schmitt, T. Bopp, K.-J. Kallen, et al.2005. The IL-6R chain controls lung CD4 CD25 Treg development and function during allergic airway inflammation in vivo. J. Clin. Invest.115:313-325.
    [57]Chen, Q., W.-C. Wang, R. Bruce, H. Li, D. M. Scleider, M. J. Mulbery, M. D. Bain, P. K. Wallace, H. Baumann, and S. S. Evans.2004. Central role of IL-6 receptor signal-transducing chain gp130 in activation of L-selectin adhesion by fever-range thermal stress. Immunity 20:59-70.
    [58]Klouche, M., S. Rose-John, W. Schmiedt, and S. Bhakdi.2000. Enzymatically degraded, nonoxidized LDL induces human vascular smooth muscle cell activation, foam cell transformation and proliferation. Circulation 101:1799-1805.
    [59]Matsumiya, T., T. Imaizumi, K. Fujimoto, X. F. Cui, T. Shibata, W. Tamo, M. Kumagai, K. Tanji, H. Yoshida, H. Kimura, and K. Satoh.2001. Soluble interleukin-6 receptor inhibits the cytokine-induced fractalkine/CX3CL1 expression in human vascular endothelial cells in culture. Exp. Cell Res.269:35-41.
    [60]Oh, J. W.,N. J. Van Wagoner, S. Rose-John, and E. N. Benveniste.1998. Role of IL-6 and the soluble IL-6 receptor in inhibition of VCAM-1 gene expression. J. Immunol. 161:4992-4999.
    [61]Marin, V., F. A. Montero-Julian, S. Gres, V. Boulay, P. Bongrand, C. Farnarier, and G. Kaplanski.2001. The IL-6-soluble IL-6R autocrine loop of endothelial activationas an intermediate between acute and chronic inflammation:an experimental model involving thrombin. J. Immunol.167:3435-3542.
    [62]Hoebe, K., E. Janssen, and B. Beutler.2004. The interface between innate and acquired immunity. Nat. Immunol.10:971-974.
    [63]Kishimoto. T., S. Akira, M. Narazaki., and T. Taga.1995. Interleukin-6 family of cytokines and gp130. Blood 86:1243-1254.
    [64]Kallen, K.-J.2002. The role of trans-signalling via the agonistic IL-6 receptor in human diseases. Biochim. Biophys. Acta 1592:323-343.
    [65]Wendling, D., A. Racadote, and J. Wijdenes.1993. Treatment of severe rheumatoid arthritis by an anti-interleukin 6 monoclonal antibody. J. Rheumatol.20: 259-262.
    [66]Curnow, S. J., D. Scheel-Toellner, W. Jenkinson, K. Raza, O.M. Durrani, J. M. Faint, S. Rauz, K. Wloka, D. Pilling, S. Rose-John, et al.2004. Inhibition of T cell apoptosis in the aqueous humor of patients with uveitis by IL-6/soluble IL-6 receptor trans-signaling. J. Immunol.173:5290-5297.
    [67]Marin, V., F. A. Montero-Julian, S. Gres, P. Bongrand, C. Farnarier, and G. Kaplanski.2002. Chemotactic agents induce IL-6R shedding from polymorphonuclear cells:involvement of a metalloprotease of the TNF -converting enzyme (TACE) type. Eur. J. Immunol.32:2965-2970.
    [68]McLoughlin, R. M., B. J. Jenkins, D Grail, A. S. Williams, C. R. Parker, M. Ernst, N. Topley, and S.A. Jones.2005. IL-6 trans-signaling via STAT3 directs T-cell infiltration in acute inflammation. Proc. Natl. Acad. Sci. USA 102:9589-9594.
    [69]Pope, R. M.2002. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol.2:1-9.
    [70]Salmon, M., D. Scheel-Toellner, A. P. Huissoon, D. Pilling, N. Shamsaadeen, A. D. D'Angeac, P. A. Bacon, P. Emery, and A. Akbar.1997. Inhibition of T-cell apoptosis in rheumatoid synovium. J. Clin. Invest.99:439-446.
    [71]Teague, T. K., P. Marrack, J. W. Kappler, and A. T. Vella.1997. IL-6 rescues resting mouse T-cells from apoptosis. J. Immunol.158:5791-5796.
    [72]Kovalovich, K., W. Li, R. DeAngelis, L. E. Greenbaum, G. Ciliberto, and R. Taub. 2001. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2 and Bcl-xL. J. Biol. Chem.276:26605-26613.
    [73]Narimatsu, M., H. Maeda, S. Itoh, T. Atsumi, T. Ohtani, K. Nishida, M. Itoh, D. Kamimura, S.-J. Park, K. Mizuno, et al.2001. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T-cells. Mol. Cell. Biol.21: 6615-6625.
    [74]Ivanov, V. N., A. Bhoumik, M. Krasilnikov, R. Raz, L. B. Owen-Schaub, D. Levy, C. M. Horvath, and Z. Ronai.2001. Cooperation between STAT3 and c-Jun suppresses Fas transcription. Mol. Cell 7:517-528.
    [75]Atsumi, T., K. Ishihara, D. Kamimura, H. Ikushima, T. Ohtani, S. Hirota, H. Kobayashi, S.-J. Park, Y. Saeki, Y. Kitamura, and T. Hirano.2002. A point mutation of Tyr-759 in interleukin-6 family cytokine receptor subunit gp130 causes autoimmune arthritis. J. Exp. Med.196:979-990.
    [76]Chomarat, P., J. Banchereau, J. Davoust, and A. K. Palucka.2000. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol.1: 510-514.
    [77]Rochman, I., W. E. Paul, and S. Z. Ben-Sasson.2005. IL-6 increases primed cell expansion and survival. J. Immunol.174:4761-4767.
    [78]Yamamoto, I., K. Yoshizaki, T. Kishimoto, and H. Ito.2000. IL-6 is required for the development of Thl cell-mediated murine colitis. J. Immunol.164:4878-4882.
    [79]Rivino, L., M. Messi, D. Jarrossay, A. Lanzavecchia, F. Sallusto, and J. Geginat. 2004. Chemokine receptor expression identifies pre-T helper (Th)1, pre-Th2, and nonpolarized cells among human CD4 central memory T cells. J. Exp. Med.200: 725-735.
    [80]Romani, L., A. Mencacci, E. Cenci, R. Spaccapelo, C. Toniatti, P. Puccetti, F. Bistoni, and V. Poli.1996. Impaired neutrophil response and CD4 T-helper cell-1 development in interleukin-6-deficient mice infected with Candida albicans. J. Exp. Med. 183:1345-1355.
    [81]Rincon, M., J. Anguita, T. Nakamura, E. Fikrig, and M. Flavell.1997. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4 T-cells. J. Exp. Med.185: 461-469.
    [82]La Flamme, A. C., and E. J. Pearce.1999. The absence of IL-6 does not affect Th2 cell development in vivo, but does lead to impaired proliferation, IL-2 receptor expression,and B-cell responses. J. Immunol.162:5829-5837.
    [83]Wang J., R. J. Homer, Q. Chen, and J. A. Elias.2000. Endogenous and exogenous IL-6 inhibits aeroallergen-induced Th2 inflammation. J. Immunol.165:4051-4061.
    [84]Liu, Z., R. J. Simpson, and C. Cheers.1994. Role of IL-6 in activation of T-cells for acquired cellular resistance to Listeria monocytogenes. J. Immunol.152:5375-5380.
    [85]Mackay, C. R.2001. Chemokines:immunology's high impact factors. Nat. Immunol.2:95-101.
    [86]Tilg. H., E. Trehu, M. B. Atkins, C. A. Dinarello, and J. W. Mier.1994. Interleukin-6 (IL-6) as an anti-inflammatory cytokine:induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83:113-118.
    [87]Levy, D. E. and Darnell, Jr, J. E. (2002) STATs:transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol.3,656-662.
    [88]Brivanlou, A. H. and Darnell, Jr, J. E. (2002) Signal transdction and the control of gene expression. Science (Washington, D.C.) 295,813-818.
    [89]O'Shea, J. J., Gadina, M. and Schreiber, R. D. (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell (Cambridge, Mass.) 109 (suppl.), S121-S131.
    [90]Heinrich, P. C, Behrmann, I., M" uller-Newen, G., Schaper, F. and Graeve, L. (1998) IL-6-type cytokine signalling through the gp130/JAK/STAT pathway. Biochem. J. 334,297-314.
    [91]Robledo, O., Fourcin, M., Chevalier, S., Guillet, C., Auguste, P., Pouplard-Barthelaix, A.,Pennica, D. and Gascan, H. (1997) Signaling of the cardiotrophin-1 receptor. Evidencefor a third receptor component. J. Biol. Chem.272, 4855-4863.
    [92]Senaldi, G., Varnum, B. C., Sarmiento, U., Starnes, C., Lile, J., Scully, S., Guo, J.,Elliott, G., McNinch, J., Shaklee, C. L. et al. (1999) Novel neurotrophin-1/B cell-stimulating factor-3:a cytokine of the IL-6 family. Proc. Natl. Acad. Sci. U.S.A. 96,11458-11463.
    [93]M" uller-Newen, G., K" uster, A., Hemmann, U., Keul, R., Horsten, U., Martens, A.,Graeve, L., Wijdenes, J. and Heinrich, P. C. (1998) Soluble interleukin-6 receptor potentiates the antagonistic activity of soluble gp130 on interleukin-6 responses. J. Immunol.161,6347-6355.
    [94]Martens, A. S., Bode, J. G, Heinrich, P. C. and Graeve, L. (2000) The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells. J. Cell Sci.113,3593-3602.
    [95]Koshelnick, Y., Ehart, M., Hufnagl, P., Heinrich, P. C. and Binder, B. R. (1997) Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J. Biol. Chem.272,28563-28567.
    [96]Podar, K., Tai, Y. T., Cole, C. E., Hideshima, T., Sattler, M., Hamblin, A., Mitsiades, N., Schlossman, R. L., Davies, F. E., Morgan, G. J., Munshi, N. C., Chauhan, D. and Anderson, K. C. (2002) Essential role of caveolae in IL-6-and IGF-I-triggered Akt-1-mediated survival of multiple myeloma cells. J. Biol. Chem.278,5794-5801.
    [97]Sehgal, P. B., Guo, G. G., Shah, M., Kumar, V. and Patel, K. (2002) Cytokine signaling:STATS in plasma membrane rafts. J. Biol. Chem.277,12067-12074.
    [98]Elson, G. C. A., Leli evre, E., Guillet, C., Chevalier, S., Plun-Favreau, H., Froger, J., Suard, I., Benoit de Coignac, A., Delneste, Y., Bonnefoy, J.-F. et al. (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat. Neurosci.3,867-872.
    [99]Plun-Favreau, H., Elson, G., Chabbert, M., Froger, J., deLapeyriere, O., Lelievre, E., Guillet, C., Hermann, J., Gauchat, J. F., Gascan, H. and Chevalier, S. (2001) The ciliary neurotrophic factor receptor a component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J.20,1692-1703.
    [100]Moore, P. S., Boshoff, C., Weiss, R. A. and Chang, Y. (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science (Washington, D.C.) 274,1739-1744.
    [101]Kaleeba, J. A., Bergquam, E. P. and Wong, S. W. (1999) A rhesus macaque rhadinovirus. related to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 encodes a functional homologue of interleukin-6. J. Virol.73,6177-6181.
    [102]Hoischen, S. H., Vollmer, P., Marz, P., Ozbek, S., Gotze, K. S., Peschel, C., Jostock, T.,Geib, T., M" ullberg, J., Mechtersheimer, S. et al. (2000) Human herpes virus 8 interleukin-6 homologue triggers gp130 on neuronal and hematopoietic cells. Eur. J. Biochem.267,3604-3612.
    [103]Bravo, J. and Heath, J. K. (2000) Receptor recognition by gp130 cytokines. EMBO J.19,2399-24.11.
    [104]Deller, M. C, Hudson, K. R., Ikemizu, S., Bravo, J., Jones, E. Y. and Heath, J. K. (2000) Crystal structure and functional dissection of the cytostatic cytokine oncostatin M. Structure Fold. Des.8,863-874.
    [105]Owczarek, C. M., Zhang, Y, Layton, M. J., Metcalf, D., Roberts, B. and Nicola, N. A. (1997) The unusual species cross-reactivity of the leukemia inhibitory factor receptor a-chain is determined primarily by the immunoglobulin-like domain. J. Biol. Chem.272, 23976-23985.
    [106]Hammacher, A., Richardson, R. T., Layton, J. E., Smith, D. K., Angus, L. J. L., Hilton, D. J., Nicola, N. A., Wijdenes, J. and Simpson, R. J. (1998) The immunoglobulin-like module of gp130 is required for signaling by interleukin-6 but not by leukemia inhibitory factor. J. Biol. Chem.273,22701-22707.
    [107]Kurth, I., Horsten, U., Pflanz, S., Dahmen, H., K" uster, A., Gr" otzinger, J., Heinrich, P. C. and M" uller-Newen, G. (1999) Activation of the signal transducer gp130 by both interleukin-6 and interleukin-11 requires two distinct binding epitopes. J. Immunol. 162,1480-1487.
    [108]Timmermann, A., Pflanz, S., Gr" otzinger, J., K" uster, A., Kurth, I., Pitard, V, Heinrich, P. C. and M" uller-Newen, G. (2000) Different epitopes are required for gp130 activation by interleukin-6, oncostatin M and leukemia inhibitory factor. FEBS Lett.468, 120-124.
    [109]Pflanz, S., Kurth, I., Gr" otzinger, J., Heinrich, P. C. and M" uller-Newen, G. (2000) Two different epitopes of the signal transducer gp130 sequentially cooperate on IL-6-induced receptor activation. J. Immunol.165,7042-7049.
    [11O]Chow, D., He, X., Snow, A. L., Rose-John, S. and Garcia, K. C. (2001) Structure of an extracellular gp 130 cytokine receptor complex. Science (Washington, D.C.) 291, 2150-2155.
    [111]Varghese, J. N., Moritz, R. L., Lou, M. Z., Van Donkelaar, A., Ji, H., Ivancic, N, Branson, K. M., Hall, N. E. and Simpson, R. J. (2002) Structure of the extracellular domains of the human interleukin-6 receptor a-chain. Proc. Natl. Acad. Sci. U.S.A.99, 15959-15964.
    [112]Dittrich, E., Renfrew Haft, C., Muys, L., Heinrich, P. C. and Graeve, L. (1996) A di-leucine motif and an upstream serine in the interleukin-6 (IL-6) signal transducer gp130 mediate ligand-induced endocytosis and down-regulation of the IL-6 receptor. J. Biol. Chem.271,5487-5494.
    [113]Thiel, S., Behrmann, I., Timmermann, A., Dahmen, H., M" uller-Newen, G, Schaper, F., Tavernier, J., Pitard, V., Heinrich, P. C. and Graeve, L. (1999) Identification of a Leu-lle internalization motif within the cytoplasmic domain of the leukaemia inhibitory factor receptor. Biochem. J.339,15-19.
    [114]Thiel, S., Dahmen, H., Martens, A., M" uller-Newen, G., Schaper, F., Heinrich, P. C. And Graeve, L. (1998) Constitutive internalization and association with adaptor protein-2 of the interleukin-6 signal transducer gp130. FEBS Lett.441,231-234.
    [115]Gibson, R. M., Schiemann, W. P., Prichard, L. B., Reno, J. M., Ericsson, L. H. and Nathanson, N. M. (2000) Phosphorylation of human gp130 at Ser-782 adjacent to the di-leucine internalization motif. Effects on expression and signaling. J. Biol. Chem.275, 22574-22582.
    [116]Wang, Y. and Fuller, G. M. (1994) Phosphorylation and internalization of gp130 occur after IL-6 activation of Jak2 kinase in hepatocytes. Mol. Biol. Cell 5,819-828.
    [117]Blanchard, F., Duplomb, L., Wang, Y., Robledo, O., Kinzie, E., Pitard, V., Godard, A.,Jacques, Y. and Baumann, H. (2000) Stimulation of leukemia inhibitory factor receptor degradation by extracellular signal-regulated kinase. J. Biol. Chem.275, 28793-28801.
    [118]Blanchard, F., Wang, Y, Kinzie, E., Duplomb, L., Godard, A. and Baumann, H. (2001) Oncostatin M regulates the synthesis and turnover of gp130, leukemia inhibitory factor receptor a,and oncostatin M receptor P by distinct mechanisms. J. Biol. Chem.276, 47038-47045.
    [119]Strobl, B., Arulampalam, V., Is'harc, H., Newman, S. J., Schlaak, J. F., Watling, D., Costa-Pereira, A. P., Schaper, F., Behrmann, I., Sheehan, K. C. et al. (2001) A completely foreign receptor can mediate an interferon-γ-like response. EMBO J.20, 5431-5442.
    [120]Mitani, Y., Takaoka, A., Kim, S. H., Kato, Y., Yokochi, T., Tanaka, N. and Taniguchi, T. (2001) Cross talk of the interferon-α/β signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells 6,631-640.
    [121]Qiu, Y., Ravi, L. and Kung, H.-J. (1998) Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature (London) 393,83-85.
    [122]Kurth, I., Horsten, U., Pflanz, S., Timmermann, A., K" uster, A., Dahmen, H., Tacken, I., Heinrich, P.C.andM" uller-Newen, G. (2000) Importance of the membrane-proximal extracellular domains for activation of the signal transducer gp130. J. Immunol.164,273-282.
    [123]Hammacher, A., Wijdenes, J., Hilton, D. J., Nicola, N. A., Simpson, R. J. and Layton, J. E. (2000) Ligand-specific utilization of the extracellular membrane-proximal region of the gp130-related signalling receptors. Biochem. J.345,25-32.
    [124]Timmermann, A., K" uster, A., Kurth, I., Heinrich, P. C. and M" uller-Newen, G. (2002) Afunctional role of the membrane-proximal extracellular domains of the signal transducer gp130 in heterodimerization with the leukemia inhibitory factor receptor. Eur. J. Biochem.269,2716-2726.
    [125]Autissier, P., De Vos, J., Liautard, J., Tupitsyn, N., Jacquet, C., Chavdia, N., Klein, B., Brochier, J. and Gaillard, J. P. (1998) Dimerization and activation of the common transducing chain (gp130) of the cytokines of the IL-6 family by mAb. Int. Immunol.10,1881-1889.
    [126]M" uller-Newen, G., K" uster, A., Wijdenes, J., Schaper, F. and Heinrich, P. C. (2000) Studies on the IL-6-type cytokine signal transducer gp130 reveal a novel mechanism of receptor activation by monoclonal antibodies. J. Biol. Chem.275, 4579-4586.
    [127]Livnah, O., Stura, E. A., Middleton, S. A., Johnson, D. L., Jolliffe, L. K. and Wilson, I. A. (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science (Washington, D.C.) 283,987-990.
    [128]Chan, F. K., Chun, H. J., Zheng, L., Siegel, R. M., Bui, K. L. and Lenardo, M. J. (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science (Washington, D.C.) 288,2351-2354.
    [129]Ballinger, M. D. and Wells, J. A. (1998) Will any dimer do? Nat. Struct. Biol.5, 938-940.
    [130]Jiang, G. and Hunter, T. (1999) Receptor signaling:When dimerization is not enough.Curr. Biol.9,R568-R571.
    [131]Greiser, J. S., Stross, C., Heinrich, P. C., Behrmann, I. and Hermanns, H. M. (2002) Orientational constraints of the gp130 intracellular juxtamembrane domain for signaling. J. Biol. Chem.277,26959-26965.
    [132]Constantinescu, S. N., Huang, L. J., Nam, H. and Lodish, H. F. (2001) The erythropoietin receptor cytosolic juxtamembrane domain contains an essential, precisely oriented, hydrophobic motif. Mol. Cell 7,377-385.
    [133]L utticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, C. Ziemiecki, A., Harpur, A. G, Wilks, A. F., Yasukawa, K., Taga, T. et al. (1994) Association of transcription factor APRF and protein kinase JAK1 with the interleukin-6 signal transducer gp130. Science (Washington, D.C.) 263,89-92.
    [134]Stahl, N., Boulton, T. G, Farruggella, T., Ip, N. Y, Davis, S., Witthuhn, B. A., Quelle, F. W., Silvennoinen,O., Barbieri, G., Pellegrini, S. et al. (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6β receptor components. Science (Washington, D.C.) 263,92-95.
    [135]Radtke, S., Hermanns, H. M., Haan, C., Schmitz-Van De Leur, H., Gascan, H., Heinrich, P. C. and Behrmann, I. (2002) Novel role of Janus kinase 1 in the regulation of oncostatin M receptor surface expression. J. Biol. Chem.277,11297-11305.
    [136]Hermanns, H. M., Radtke, S., Haan, C., Schmitz-Van de Leur, H., Tavernier, J., Heinrich, P. C. and Behrmann, I. (1999) Contributions of leukemia inhibitory factor receptor and oncostatin M receptor to signal transduction in heterodimeric complexes with glycoprotein 130. J. Immunol.163,6651-6658.
    [137]Guschin, D., Rogers, N., Briscoe, J., Witthuhn, B., Watling, D., Horn, F., Pellegrini, S., Yasukawa, K., Heinrich, P., Stark, G. R. and Kerr, I. M. (1995) A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J.14,1421-1429.
    [138]Rodig, S. J., Meraz, M. A., White, J. M., Lampe, P. A., Riley, J. K., Arthur, C. D., King, K. L., Sheehan, K. C., Yin, L., Pennica, D., Johnson, E. M., Jr. and Schreiber, R. D. (1998) Disruption of the Jakl gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell (Cambridge, Mass.) 93,373-383.
    [139]Murakami, M., Narazaki, M., Hibi, M., Yawata, H., Yasukawa, K., Hamaguchi, M., Taga, T. and Kishimoto, T. (1991) Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. U.S.A.88,11349-11353.
    [140]Haan, C, Hermanns, H. M., Heinrich, P. C. and Behrmann, I. (2000) A single amino acid substitution (Trp666 →Ala) in the interbox 1/2 region of the interleukin-6 signal transducer gp130 abrogates binding of JAK1, and dominantly impairs signal transduction. Biochem. J.349,261-266.
    [141]Haan, C., Heinrich, P. C. and Behrmann, I. (2002) Structural requirements of the interleukin-6 signal transducer gp 130 for its interaction with Janus kinase 1:the receptor is crucial for kinase activation. Biochem. J.361,105-111.
    [142]Lai, C. F., Ripperger, J., Morella, K. K., Wang, Y, Gearing, D. P., Fey, G. H. and Baumann, H. (1995) Separate signaling mechanisms are involved in the control of STAT protein activation and gene regulation via the interleukin 6 response element by the box 3 motif of gp130. J. Biol. Chem.270,14847-14850.
    [143]Tanner, J. W., Chen, W., Young, R. L., Longmore, G. D. and Shaw, A. S. (1995) The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem.270,6523-6530.
    [144]Kishimoto, T., Akira, S., Narazaki, M. and Taga, T. (1995) Interleukin-6 family of cytokines and gp130. Blood 86,1243-1254.
    [145]Huang, L. J., Constantinescu, S. N. and Lodish, H. F. (2001) The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8,1327-1338.
    [146]Pearson, M. A., Reczek, D., Bretscher, A. and Karplus, P. A. (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell (Cambridge, Mass.) 101,259-270.
    [147]Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. and Hakoshima, T. (2000) Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J.19,4449-4462.
    [148]Han, B. G., Nunomura, W., Takakuwa, Y., Mohandas, N. and Jap, B. K. (2000) Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat. Struct. Biol.7,871-875.
    [149]Haan, C., Is'harc, H., Hermanns, H. M., Schmitz-Van De Leur, H., Kerr, I. M., Heinrich, P. C., Gr" otzinger, J. and Behrmann, I. (2001) Mapping of a region within the N-terminus of Jakl involved in cytokine receptor interaction. J. Biol. Chem.276, 37451-37458.
    [150]Zhou, Y. J., Chen, M., Cusack, N. A., Kimmel, L. H., Magnuson, K. S., Boyd, J. G., Lin, W., Roberts, J. L., Lengi, A., Buckley, R. H. et al. (2001) Unexpected effects of FERM domain mutations on catalytic activity of Jak3:structural implication for Janus kinases. Mol. Cell 8,959-969.
    [151]Schaeffer, M., Schneiderbauer, M., Weidler, S., Tavares, R., Warmuth, M., de Vos, G. and Hallek, M. (2001) Signaling through a novel domain of gp130 mediates cell proliferation and activation of Hck and Erk kinases. Mol. Cell. Biol.21,8068-8081.
    [152]De Falco, G., Neri, L. M., Falco, M. D., Bellan, C., Yu, Z., Luca, A. D., Leoncini, L. and Giordano, A. (2002) Cdk9, a member of the cdc2-like family of kinases, binds to gp130, the receptor of the IL-6 family of cytokines. Oncogene 21,7464-7470.
    [153]Novotny-Diermayr, V., Zhang, T., Gu, L. and Cao, X. (2002) Protein kinase Cδ associates with the interleukin-6 receptor subunit glycoprotein (gp) 130 via Stat3 and enhances STAT3-gp130 interaction. J. Biol. Chem.277,49134-49142.
    [154]Gauzzi, M. C., Barbieri, G., Richter, M. F., Uze, G., Ling, L., Fellous, M. and Pellegrini, S. (1997) The N-terminal region of Tyk2 sustains the level of interferon a receptor 1, a component of the interferon α/β receptor. Proc. Natl. Acad. Sci. U.S.A.94, 11839-11844.
    [155]Ragimbeau, J., Dondi, E., Alcover, A., Eid, P., Uze, G. and Pellegrini, S. (2003) The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J.22,537-547.
    [156]Vinkemeier, U., Moarefi, I., Darnell, Jr, J. E. and Kuriyan, J. (1998) Structure of the N-terminal protein interaction domain of STAT4. Science (Washington, D.C.) 279, 1048-1052.
    [157]Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, Jr, J. E. and Kuriyan, J. (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell (Cambridge, Mass.) 93,827-839.
    [158]Becker, S., Groner, B. and M" uller, C. W. (1998) Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature (London) 394,145-151.
    [159]Fu, X. Y. and Zhang, J. J. (1993) Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell (Cambridge, Mass.) 74,1135-1145.
    [160]Greenlund, A. C., Farrar, M. A., Viviano, B. L. and Schreiber, R. D. (1994) Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J.13,1591-1600.
    [161]Stancato, L. F., David, M., Carter-Su, C., Lamer, A. C. and Pratt, W. B. (1996) Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J. Biol. Chem.271,4134-4137.
    [162]Novak, U., Ji, H., Kanagasundaram, V., Simpson, R. and Paradiso, L. (1998) STAT3 forms stable homodimers in the presence of divalent cations prior to activation. Biochem. Biophys. Res. Commun.247,558-563.
    [163]Ndubuisi, M. I., Guo,G. G., Fried, V. A., Etlinger, J. D. and Sehgal, P. B. (1999) Cellular physiology of STAT3:Where's the cytoplasmic monomer? J. Biol. Chem.274, 25499-25509.
    [164]Haan, S., Kortylewski, M., Behrmann, I., M" uller-Esterl, W., Heinrich, P. C. And Schaper, F. (2000) Cytoplasmic STAT proteins associate prior to activation. Biochem. J.345,417-421
    [165]Shah, M., Patel, K., Fried, V. A. and Sehgal, P. B. (2002) Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J. Biol. Chem.277, 45662-45669.
    [166]Fujitani, Y., Hibi, M., Fukada, T., Takahashi-Tezuka, M., Yoshida, H., Yamaguchi, T., Sugiyama, K., Yamanaka, Y., Nakajima, K. and Hirano, T. (1997) An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene 14,751-761
    [167]Stahl, N., Farruggella, T. J., Boulton, T. G., Zhong, Z., Darnell, Jr, J. E. and Yancopoulos, G. D. (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science (Washington, D.C.) 267,1349-1353.
    [168]Heim, M. H., Kerr, I. M., Stark, G. R. and Darnell, Jr, J. E. (1995) Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science (Washington, D.C.) 267,1347-1349.
    [169]Hemmann, U., Gerhartz, C., Heesel, B., Sasse, J., Kurapkat, G., Gr" otzinger, J., Wollmer, A., Zhong, Z., Darnell, Jr, J. E., Graeve, L. et al. (1996) Differential activation of acute phase response factor/Stat3 and Statl via the cytoplasmic domain of the interleukin 6 signal transducer gp130. Ⅱ. Src homology SH2 domains define the specificity of Stat factor activation. J. Biol. Chem.271,12999-13007
    [170]Gerhartz, C., Heesel, B., Sasse, J., Hemmann, U., Landgraf, C., Schneider-Mergener, J., Horn, F., Heinrich, P. C. and Graeve, L. (1996) Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin-6 signal transducer gp130.1. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J. Biol. Chem.271,12991-12998.
    [171]Kuropatwinski, K. K., De Imus, C., Gearing, D., Baumann, H. and Mosley, B. (1997) Influence of subunit combinations on signaling by receptors for oncostatin M, leukemia inhibitory factor, and interleukin-6. J. Biol. Chem.272,15135-15144.
    [172]Tomida, M., Heike, T. and Yokota, T. (1999) Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells. Blood 93,1934-1941.
    [173]Schmitz, J., Dahmen, H., Grimm, C., Gendo, C., M" uller-Newen, G., Heinrich, P. C. And Schaper, F. (2000) The cytoplasmic tyrosine motifs in full-length gp130 have different roles in IL-6 signal transduction. J. Immunol.164,848-854.
    [174]Shuai, K., Stark, G. R., Kerr, I. M. and Darnell, Jr, J. E. (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ.Science (Washington, D.C.) 261,1744-1746.
    [175]Kaptein, A., Paillard, V. and Saunders, M. (1996) Dominant negative stat3 mutant inhibits interleukin-6-induced Jak-STAT signal transduction. J. Biol. Chem. 271,5961-5964.
    [176]Shuai, K., Horvath, C. M., Huang, L. H., Qureshi, S. A., Cowburn, D. and Darnell, Jr, J. E. (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell (Cambridge, Mass.) 76,821-828.
    [177]Haan, S., Hemmann, U., Hassiepen, U., Schaper, F., Schneider-Mergener, J.,Wollmer, A., Heinrich, P. C. and Grotzinger, J. (1999) Characterization and binding specificity of the monomeric STAT3-SH2 domain. J. Biol. Chem.274,1342-1348.
    [178]Pfeffer, L. M., Mullersman, J. E., Pfeffer, S. R., Murti, A., Shi, W. and Yang, C. H. (1997) STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science (Washington, D.C.) 276,1418-1420.
    [179]Uddin, S., Sassano, A., Deb, D. K., Verma, A., Majchrzak, B., Rahman, A., Malik, A. B., Fish, E. N. and Platanias, L. C. (2002) Protein kinase C-δ (PKC-δ)isactivated by type I interferons and mediates phosphorylation of Statl on serine 727. J. Biol. Chem. 277,14408-14416.
    [180]Jain, N., Zhang, T., Kee, W. H., Li, W. and Cao, X. (1999) Protein kinase Cδ associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J. Biol. Chem.274,24392-24400.
    [181]Schuringa, J. J., Dekker, L. V., Vellenga, E. and Kruijer, W. (2001) Sequential activation of Rac-1, SEK-1/MKK-4, and protein kinase Cδ is required for interleukin-6-induced STAT3 Ser-727 phosphorylation and transactivation. J. Biol. Chem. 276,27709-27715.
    [182]Schuringa, J. J., Jonk, L. J., Dokter, W. H., Vellenga, E. and Kruijer, W. (2000) Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components. Biochem. J.347, 89-96.
    [183]Lim, C. P. and Cao, X. (2001) Regulation of Stat3 activation by MEK kinase l.J. Biol. Chem.276,21004-21011.
    [184]Abe, K., Hirai, M., Mizuno, K., Higashi, N., Sekimoto, T., Miki, T., Hirano, T. and Nakajima, K. (2001) The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser 727 through an H7-sensitive kinase pathway. Oncogene 20,3464-3474.
    [185]Nair, J. S., DaFonseca, C. J., Tjernberg, A., Sun, W., Darnell, Jr, J. E., Chait, B. T. and
    Zhang, J. J. (2002) Requirement of Ca2+and CaMKII for Statl Ser-727 phosphorylation in response to IFN-γ.Proc.Natl. Acad. Sci. U.S.A.99,5971-5976.
    [186]Haq, R., Halupa, A., Beattie, B. K., Mason, J. M., Zanke, B. W. and Barber, D. L. (2002) Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J. Biol. Chem.277,17359-17366.
    [187]Beuvink, I., Hess, D., Flotow, H., Hofsteenge, J., Groner, B. and Hynes, N. E. (2000) Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity. J. Biol. Chem.275,10247-10255.
    [188]Sanceau, J., Hiscott, J., Delattre, O. and Wietzerbin, J. (2000) IFN-β induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via ind uction of IRF-1 and activation of caspase-7. Oncogene 19,3372-3383.
    [189]L" utticken, C., Coffer, P., Yuan, J., Schwartz, C., Caldenhoven, E., Schindler, C., Kruijer, W., Heinrich, P. C. and Horn, F. (1995) Interleukin-6-induced serine phosphorylation of transcription factor APRF:evidence for a role in interleukin-6 target gene induction. FEBS Lett.360,137-143.
    [190]Boulton, T. G., Zhong, Z., Wen, Z., Darnell, Jr, J. E., Stahl, N. and Yancopoulos, G. D. (1995) STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc. Natl. Acad. Sci. U.S.A.92,6915-6919.
    [191]Chung, J., Uchida, E., Grammer, T. C. and Blenis, J. (1997) STAT3 serine phosphorylation by ERK-dependent and-independent pathways negatively modulates its tyrosine phosphorylation. Mol. Cell. Biol.17,6508-6516.
    [192]Abramovich, C., Yakobson, B., Chebath, J. and Revel, M. (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J.16,260-266.
    [193]Pollack, B. P., Kotenko, S. V, He, W., Izotova, L. S., Barnoski, B. L. and Pestka, S. (1999) The human homologue of the yeast proteins Skbl and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem.274,31531-31542.
    [194]Mowen, K. A., Tang, J., Zhu, W., Schurter, B. T., Shuai, K., Herschman, H. R. And David, M. (2001) Arginine methylation of STAT1 modulates IFNa/(3-induced transcription. Cell (Cambridge, Mass.) 104,731-741.
    [195]Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T. and Yoneda, Y. (1997) Extracellular signal-dependent nuclear import of Statl is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J.16,7067-7077.
    [196]McBride, K. M., McDonald, C. and Reich, N. C. (2000) Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J.19, 6196-6206.
    [197]Begitt, A., Meyer, T., van Rossum, M. and Vinkemeier, U. (2000) Nucleocytoplasmic translocation of Statl is regulated by a leucine-rich export signal in the coiled-coil domain. Proc. Natl. Acad. Sci. U.S.A.97,10418-10423.
    [198]Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G, Zhao, Y., Pestell, R. G., Albanese, C. and Darnell, Jr, J. E. (1999) Stat3 as an oncogene. Cell (Cambridge, Mass.) 98,295-303.
    [199]Milocco, L. H., Haslam, J. A., Rosen, J. and Seidel, H. M. (1999) Design of conditionally active STATs:insights into STAT activation and gene regulatory function. Mol. Cell. Biol.19,2913-2920.
    [200]Bild, A. H., Turkson, J. and Jove, R. (2002) Cytoplasmic transport of Stat3 by receptor-mediated endocytosis. EMBO J.21,3255-3263.
    [201]Lillemeier, B. F., K" oster, M. and Kerr, I. M. (2001) STAT1 from the cell membrane to the DNA. EMBO J.20,2508-2517.
    [202]Spiekermann, K., Pau, M., Schwab, R., Schmieja, K., Franzrahe, S. and Hiddemann, W.(2002) Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp. Hematol.30,262-271.
    [203]Herrington, J., Rui, L., Luo, G., Yu-Lee, L. Y. and Carter-Su, C. (1999) A functional DNA binding domain is required for growth hormone-induced nuclear accumulation of Stat5B. J. Biol. Chem.274,5138-5145.
    [204]McBride, K. M., Banninger, G., McDonald, C. and Reich, N. C. (2002) Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-a. EMBO J.21,1754-1763.
    [205]Meyer, T., Begitt, A., Lodige, I., van Rossum, M. and Vinkemeier, U. (2002) Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J.21,344-354.
    [206]Melen, K., Kinnunen, L. and Julkunen, I. (2001) Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J. Biol. Chem. 276,16447-16455.
    [207]Fagerlund, R., Melen, K., Kinnunen, L. and Julkunen, I. (2002) Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin a5. J. Biol. Chem.277,30072-30078.
    [208]Mowen, K. and David, M. (2000) Regulation of STAT1 nuclear export by Jakl.Mol. Cell. Biol.20,7273-7281.
    [209]Haspel, R. L. and Darnell, Jr, J. E. (1999) A nuclear protein tyrosine phosphatase is required for the inactivation of Statl. Proc. Natl. Acad. Sci. U.S.A.96,10188-10193.
    [210]Meyer, T., Gavenis, K. and Vinkemeier, U. (2002) Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp. Cell Res.272,45-55.
    [211]Zeng, R., Aoki, Y., Yoshida, M., Arai, K. and Watanabe, S. (2002) Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and-independent manner. J. Immunol.168,4567-4575.
    [212]Kumar, A., Commane, M., Flickinger, T. W., Horvath, C. M. and Stark, G. R. (1997) Defective TNF-a-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science (Washington, D.C.) 278,1630-1632.
    [213]Chatterjee-Kishore, M., Wright, K. L., Ting, J. P. and Stark, G. R. (2000) How Statl mediates constitutive gene expression:a complex of unphosphorylated Statl and IRF1 supports transcription of the LMP2 gene. EMBO J.19,4111-4122.
    [214]Andrews, R. P., Ericksen, M. B., Cunningham, C. M., Daines, M. O. and Hershey, G. K.(2002) Analysis of the life cycle of STAT6. Continuous cycling of STAT6 is required for IL-4 signaling. J. Biol. Chem.277,36563-36569.
    [215]Schiemann, W. P., Bartoe, J. L. and Nathanson, N. M. (1997) Box 3-independent signaling mechanisms are involved in leukemia inhibitory factor receptor a-and gp130-mediated stimulation of mitogen-activated protein kinase. Evidence for participation of multiple signaling pathways which converge at Ras. J. Biol. Chem.272, 16631-16636.
    [216]Hermanns, H. M., Radtke, S., Schaper, F., Heinrich, P. C. and Behrmann, I. (2000) Non-redundant signal transduction of interleukin-6-type cytokines. The adapter protein Shc is specifically recruited to rhe oncostatin M receptor. J. Biol. Chem. 275,40742-40748.
    [217]Holgado-Madruga, M., Emlet, D. R., Moscatello, D. K., Godwin, A. K. and Wong, A. J. (1996) A Grb2-associated docking protein in EGF-and insulin-receptor signalling. Nature (London) 379,560-564.
    [218]Gu, H., Pratt, J. C., Burakoff, S. J. and Neel, B. G. (1998) Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell 2,729-740.
    [219]Schaper, F., Gendo, C., Eck, M., Schmitz, J., Grimm, C., Anhuf, D., Kerr, I. M. And Heinrich, P. C. (1998) Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jakl and limits acute-phase protein expression. Biochem. J.335,557-565.
    [220]Fukada, T., Hibi, M., Yamanaka, Y., Takahashi-Tezuka, M., Fujitani, Y., Yamaguchi, T., Nakajima, K. and Hirano, T. (1996) Two signals are necessary for cell proliferation induced by a cytokine receptor gp130:involvement of STAT3 in anti-apoptosis.Immunity 5,449-460.
    [221]Schaeper, U., Gehring, N. H., Fuchs, K. P., Sachs, M., Kempkes, B. and Birchmeier, W.(2000) Coupling of Gabl to c-Met, Grb2, and Shp2 mediates biological responses. J. Cell Biol.149,1419-1432.
    [222]Liu, Y. and Rohrschneider, L. R. (2002) The gift of Gab. FEBS Lett.515,1-7.
    [223]Takahashi-Tezuka, M., Yoshida, Y., Fukada, T., Ohtani, T., Yamanaka, Y., Nishida, K., Nakajima, K., Hibi, M. and Hirano, T. (1998) Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol. Cell. Biol.18,4109-4117.
    [224]Itoh, M., Yoshida, Y., Nishida, K., Narimatsu, M., Hibi, M. and Hirano, T. (2000) Role of Gabl in heart, placenta, and skin development and growth factor and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol. Cell. Biol.20,3695-3704.
    [225]Cunnick, J. M., Meng, S., Ren, Y, Desponts, C., Wang, H. G, Djeu, J. Y. and Wu, J. (2002) Regulation of the mitogen-activated protein kinase signaling pathway by SHP2. J. Biol. Chem.277,9498-9504.
    [226]Zhang, S. Q., Tsiaras, W. G., Araki, T., Wen, G., Minichiello, L., Klein, R. and Neel, B. G.(2002) Receptor-specific regulation of phosphatidylinositol 3-kinase activation by the protein tyrosine phosphatase Shp2. Mol. Cell. Biol.22,4062-4072.
    [227]Cacalano, N. A., Sanden, D. and Johnston, J. A. (2001) Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat.Cell Biol.3,460-465.
    [228]Wang, Y., Robledo, O., Kinzie, E., Blanchard, F., Richards, C., Miyajima, A. and Baumann, H. (2000) Receptor subunit-specific action of oncostatin M in hepatic cells and its modulation by leukemia inhibitory factor. J. Biol. Chem.275,25273-25285.
    [229]Bode, J. G., Ludwig, S., Freitas, C. A., Schaper, F., Ruhl, M., Melmed, S.,Heinrich, P.C.andH" aussinger, D. (2001) The MKK6/p38 mitogen-activated protein-kinase pathway is capable of inducing SOCS3 gene expression and inhibits IL-6-induced transcription. Biol. Chem.382,1447-1453.
    [230]Zauberman, A., Zipori, D., Krupsky, M. and Ben-Levy, R. (1999) Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3.Oncogene 18,3886-3893.
    [231]Negoro, S., Oh, H., Tone, E., Kunisada, K., Fujio, Y, Walsh, K., Kishimoto, T. and Yamauchi-Takihara, K. (2001) Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 103,555-561.
    [232]Jee, S. H., Chiu, H.C., Tsai, T. F., Tsai, W. L., Liao, Y. H., Chu, C. Y and Kuo, M. L.(2002) The phosphatidyl inositol 3-kinase/Akt signal pathway is involved in interleukin-6-mediated Mcl-1 upregulation and anti-apoptosis activity in basal cell carcinoma cells. J. Invest. Dermatol.119,1121-1127.
    [233]Shi, Y, Hsu, J. H., Hu, L., Gera, J. and Lichtenstein, A. (2002) Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J. Biol. Chem.277,15712-15720.
    [234]Hsu, J. H., Shi, Y., Hu, L., Fisher, M., Franke, T. F. and Lichtenstein, A. (2002) Role of the AKT kinase in expansion of multiple myeloma clones:effects on cytokine-dependent proliferative and survival responses. Oncogene 21,1391-1400.
    [235]Hideshima, T., Nakamura, N., Chauhan, D. and Anderson, K. C. (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20, 5991-6000.
    [236]Chen, R. H., Chang, M. C., Su, Y. H., Tsai, Y. T. and Kuo, M. L. (1999) Interleukin-6 inhibits transforming growth factor-β-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J. Biol. Chem.274,23013-23019.
    [237]Kortylewski, M., Feld, F., Kr" uger, K. D., Bahrenberg, G, Roth, R. A., Joost, H. G., Heinrich, P. C., Behrmann, I. and Barthel, A. (2003) Akt modulates STAT3-mediated gene expression through a FKHR (FOXOla)-dependent mechanism. J. Biol. Chem.278, 5242-5249.
    [238]Burfoot, M. S., Rogers, N. C., Watling, D., Smith, J. M., Pons, S., Paonessaw, G,Pellegrini, S., White, M. F. and Kerr, I. M. (1997) Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J. Biol. Chem.272,24183-24190.
    [239]Boulton, T. G, Stahl, N. and Yancopoulos, G. D. (1994) Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J. Biol. Chem.269,11648-11655.
    [240]Hof, P., Pluskey, S., Dhepaganon, S., Eck, M. J. and Shoelson, S. E. (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell (Cambridge, Mass.) 92,441-450.
    [241]Lechleider, R. J., Sugimoto, S., Bennett, A. M., Kashishian, A. S., Cooper, J. A.,Shoelson, S. E., Walsh, C. T. and Neel, B. G (1993) Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009,on the human plateled-derived growth factor receptor. J. Biol. Chem.268,21478-21481.
    [242]Sugimoto, S., Wandless, T. J., Shoelson, S. E., Neel, B. G. and Walsh, C. T. (1994) Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1.J. Biol. Chem.269,13614-13622.
    [243]Pluskey, S., Wandless, T. J., Walsh, C. T. and Shoelson, S. E. (1995) Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains.J. Biol. Chem.270,2897-2900.
    [244]Lu, W, Gong, D., Bar-Sagi, D. and Cole, P. A. (2001) Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8,759-769.
    [245]Symes, A., Stahl, N., Reeves, S. A., Farruggella, T., Servidei, T., Gearan, T.,Yancopoulos, G. and Fink, J. S. (1997) The protein tyrosine phosphatase SHP-2 negatively regulates ciliary neurotrophic factor induction of gene expression. Curr. Biol.7, 697-700.
    [246]Kim, H. K., Hawley, T. S., Hawley, R. G. and Baumann, H. (1998) Protein tyrosine phosphatase 2 (SHP-2) moderates signaling by gp130 but is not required for the induction of acute-phase plasma protein genes in hepatic cells. Mol. Cell. Biol. 18,1525-1533.
    [247]Anhuf, D., Weissenbach, M., Schmitz, J., Sobota, R., Hermanns, H. M., Radtke, S.,Linnemann, S., Behrmann, I., Heinrich, P. C. and Schaper, F. (2000) Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M:structural receptor requirements for signal attenuation. J. Immunol.165,2535-2543.
    [248]Lehmann, U., Schmitz, J., Weissenbach, M., Sobota, R. M., H" ortner, M., Friederichs, K.,Behrmann, I., Tsiaris, W., Sasaki, A., Schneider-Mergener, J. et al. (2003) SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J. Biol. Chem.278,661-671.
    [249]Ohtani, T., Ishihara, K., Atsumi, T., Nishida, K., Kaneko, Y., Miyata, T., Itoh, S.,Narimatsu, M., Maeda, H., Fukada, T., et al. (2000) Dissection of signaling cascades through gp130 in vivo:reciprocal roles for STAT3-and SHP2-mediated signals in immune responses. Immunity 12,95-105.
    [250]Yin, T. G., Shen, R., Feng, G. S. and Yang, Y. C. (1997) Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases.J. Biol. Chem.272,1032-1037.
    [251]Gunaje, J. J. and Bhat, G. J. (2001) Involvement of tyrosine phosphatase PTP1D in the inhibition of interleukin-6-induced Stat3 signaling by α-thrombin. Biochem. Biophys.Res. Commun.288,252-257.
    [252]Wu, T. R., Hong, Y. K., Wang, X. D., Ling, M. Y., Dragoi, A. M., Chung, A. S.,Campbell, A. G., Han, Z. Y, Feng, G. S. and Chin, Y. E. (2002) SHP-2 is a dual-specificity phosphatase involved in Statl dephosphorylation at both tyrosine and serine residues in nuclei. J. Biol. Chem.277,47572-47580.
    [253]Shuai, K., Liao, J. and Song, M. M. (1996) Enhancement of antiproliferative activity of y interferon by the specific inhibition of tyrosine dephosphorylation of Statl.Mol. Cell. Biol.16,4932-4941.
    [254]Sasse, J, Hemmann, U., Schwartz, C., Schniertshauer, U., Heesel, B., Landgraf, C.,Schneider-Mergener, J., Heinrich, P. C. and Horn, F. (1997) Mutational analysis of acute-phase response factor Stat3 activation and dimerization. Mol. Cell. Biol. 17,4677-4686.
    [255]Strehlow, I. and Schindler, C. (1998) N-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation.J. Biol. Chem.273,28049-28056.
    [256]Tanuma, N., Nakamura, K., Shima, H. and Kikuchi, K. (2000) Protein-tyrosine phosphatase PTPε Cinhibits Jak-STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in Ml leukemia cells. J. Biol. Chem. 275,28216-28221.
    [257]Tanuma, N., Shima, H., Nakamura, K. and Kikuchi, K. (2001) Protein tyrosine phosphatase εC selectively inhibits interleukin-6-and interleukin-10-induced JAK-STAT signaling. Blood 98,3030-3034.
    [258]Myers, M. P., Andersen, J. N., Cheng, A., Tremblay, M. L., Horvath, C. M.,Parisien, J. P., Salmeen, A., Barford, D. and Tonks, N. K. (2001) TYK2 and JAK2 are substrates of protein-tyro sine phosphatase 1B. J. Biol. Chem.276,47771-47774.
    [259]Irie-Sasaki, J., Sasaki, T., Matsumoto, W., Opavsky, A., Cheng, M., Welstead, G,Griffiths, E., Krawczyk, C., Richardson, C. D., Aitken, K. et al. (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature (London)409, 349-354.
    [260]Bousquet, C., Susini, C. and Melmed, S. (1999) Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J. Clin. Invest.104,1277-1285.
    [261]Haspel, R. L., Salditt-Georgieff, M. and Darnell, Jr, J. E. (1996) The rapid inactivation of nuclear tyrosine phosphorylated Statl depends upon a protein tyrosine phosphatase.EMBO J.15,6262-6268.
    [262]ten Hoeve, J., de Jesus Ibarra-Sanchez, M., Fu, Y, Zhu, W., Tremblay, M., David, M.and Shuai, K. (2002) Identification of a nuclear Statl protein tyrosine phosphatase.Mol. Cell. Biol.22,5662-5668.
    [263]Yamamoto, T., Sekine, Y., Kashima, K., Kubota, A., Sato, N., Aoki, N. and Matsuda, T.(2002) The nuclear isoform of protein-tyro sine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation.Biochem. Biophys. Res. Commun.297,811-817.
    [264]Zhu, W., Mustelin, T. and David, M. (2002) Arginine methylation of STAT1 regulates its dephosphorylation by T cell protein tyrosine phosphatase. J. Biol. Chem. 277,35787-35790.
    [265]Valdez, B. C., Henning, D., Perlaky, L., Busch, R. K. and Busch, H. (1997) Cloning and characterization of Gu/RH-Ⅱ binding protein. Biochem. Biophys. Res. Commun.234,335-340.
    [266]Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P. and Shuai, K. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science (Washington, D.C.) 278,1803-1805.
    [267]Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D. and Shuai, K.(1998) Inhibition of Statl-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci.U.S.A.95,10626-10631.
    [268]Gross, M., Liu, B., Tan, J., French, F. S., Carey, M. and Shuai, K. (2001) Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells.Oncogene 20,3880-3887.
    [269]Liu, B., Gross, M., ten Hoeve, J. and Shuai, K. (2001) A transcriptional corepressor of Statl with an essential LXXLL signature motif. Proc. Natl. Acad. Sci. U.S.A. 98,3203-3207.
    [270]Liu, B. and Shuai, K. (2001) Induction of apoptosis by protein inhibitor of activated Statl through c-Jun NH2-terminal kinase activation. J. Biol. Chem.276, 36624-36631.
    [271]R" odel, B., Tavassoli, K., Karsunky, H., Schmidt, T., Bachmann, M., Schaper, F.,Heinrich, P., Shuai, K., Els" asser, H. P. and M" or" oy, T. (2000) The zinc finger proteinGfi-1 can enhance STAT3 signaling by interacting with the STAT3 inhibitor PIAS3.EMBO J.19,5845-5855.
    [272]Tan, J. A., Hall, S. H., Hamil, K. G., Grossman, G, Petrusz, P. and French, F. S. (2002)Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J. Biol. Chem.277,16993-17001.
    [273]Kotaja, N., Karvonen, U., Janne, O. A. and Palvimo, J. J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22,5222-5234.
    [274]Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F. and Grosschedl, R. (2001)PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev.15,3088-3103.
    [275]Jackson, P. K. (2001) A new RING for SUMO:wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev.15, 3053-3058.
    [276]Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N. A., Gilbert, D. J., Copeland, N. G.,Hara, T. and Miyajima, A. (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J.14,2816-2826.
    [277]Matsumoto, A., Masuhara, M., Mitsui, K., Yokouchi, M., Ohtsubo, M., Misawa, H.,Miyajima, A. and Yoshimura, A. (1997) CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89,3148-3154.
    [278]Starr, R., Willson, T. A., Viney, E. M., Murray, L. J., Rayner, J. R., Jenkins, B. J.,Gonda, T. J., Alexander, W. S., Metcaif, D., Nicola, N. A. and Hilton, D. J. (1997) A family of cytokine-inducible inhibitors of signalling. Nature (London) 387,917-921.
    [279]Endo, T. A., Masuhara, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K.,Matsumoto, A., Tanimura, S., Ohtsubo, M., Misawa, H. et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature (London) 387,921-924.
    [280]Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A.,Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K. et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature (London) 387,924-929.
    [281]Magrangeas, F., Boisteau,O., Denis, S., Jacques, Y. and Minvielle, S. (2001) Negative cross-talk between interleukin-3 and interleukin-11 is mediated by suppressor of cytokine signalling-3 (SOCS-3). Biochem. J.353,223-230.
    [282]Verdier, F., Chretien, S., Muller, O., Varlet, P., Yoshimura, A., Gisselbrecht, S.,Lacombe, C. and Mayeux, P. (1998) Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated CIS protein. J. Biol. Chem.273,28185-28190.
    [283]Yasukawa, H., Misawa, H., Sakamoto, H., Masuhara, M., Sasaki, A., Wakioka, T.,Ohtsuka, S., Imaizumi, T., Matsuda, T., Ihle, J. N. and Yoshimura, A. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J.18,1309-1320.
    [284]Sasaki, A., Yasukawa, H., Suzuki, A., Kamizono, S., Syoda, T., Kinjyo, I., Sasaki, M.,Johnston, J. A. and Yoshimura, A. (1999) Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4,339-351.
    [285]Schmitz, J., Weissenbach, M., Haan, S., Heinrich, P. C. and Schaper, F. (2000) SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J. Biol. Chem.275,12848-12856.
    [286]Nicholson, S. E., De Souza, D., Fabri, L. J., Corbin, J., Willson, T. A., Zhang, J. G.,Silva, A., Asimakis, M., Farley, A., Nash, A. D. et al. (2000) Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc. Natl. Acad. Sci. U.S.A.97,6493-6498.
    [287]Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. and Yoshimura, A. (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem.275,29338-29347.
    [288]Eyckerman, S., Broekaert, D., Verhee, A., Vandekerckhove, J. and Tavernier, J. (2000) Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett.486,33-37.
    [289]BJ(?)rb(?)k, C., Lavery, H. J., Bates, S. H., Olson, R. K., Davis, S. M., Flier, J. S. and Myers, Jr, M. G. (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr 985. J. Biol. Chem.275,40649-40657.
    [290]H ortner, M., Nielsch, U., Mayr, L. M., Johnston, J. A., Heinrich, P. C. and Haan, S.(2002) Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction.J. Immunol.169,1219-1227.
    [291]H" ortner, M, Nielsch, U., Mayr, L. M., Heinrich, P. C. and Haan, S. (2002) A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Eur. J. Biochem.269,2516-2526.
    [292]De Souza, D., Fabri, L. J., Nash, A., Hilton, D. J., Nicola, N. A. and Baca, M. (2002) SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry 41,9229-9236.
    [293]Nicholson, S. E., Willson, T. A., Farley, A., Starr, R., Zhang, J. G., Baca, M.,Alexander, W. S., Metcalf, D., Hilton, D. J. and Nicola, N. A. (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J.18,375-385.
    [294]Zhang, J. G, Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J.,Moritz, R. L., Cary, D., Richardson, R., Hausmann, G. et al. (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. U.S.A.96, 2071-2076.
    [295]Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W. G. J., Conaway, R. C. and Conaway, J. W. (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev.12,3872-3881.
    [296]Frantsve, J., Schwaller, J., Sternberg, D. W., Kutok, J. and Gilliland, D. G. (2001) Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol. Cell. Biol.21,3547-3557.
    [297]Kamizono, S., Hanada, T., Yasukawa, H., Minoguchi, S., Kato, R., Minoguchi, M.,Hattori, K., Hatakeyama, S., Yada, M., Morita, S. et al. (2001) The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J. Biol. Chem. 276,12530-12538.
    [298]Ungureanu, D., Saharinen, P., Junttila, I., Hilton, D. J. and Silvennoinen, O. (2002) Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol. Cell. Biol. 22,3316-3326.
    [299]Rui, L., Yuan, M., Frantz, D., Shoelson, S. and White, M. F. (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2.J. Biol, Chem.277,42394-42398.
    [300]De Sepulveda, P., Ilangumaran, S. and Rottapel, R. (2000) Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275,14005-14008.
    [301]Kamura, T., Burian, D., Yan, Q., Schmidt, S. L., Lane, W. S., Querido, E., Branton, P. E.,Shilatifard, A., Conaway, R. C. and Conaway, J. W. (2001) Mufl, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbxl to reconstitute a ubiquitin ligase. J. Biol. Chem.276,29748-29753.
    [302]Chen, X. P., Losman, J. A., Cowan, S., Donahue, E., Fay, S., Vuong, B. Q.,Nawijn, M. C., Capece, D., Cohan, V. L. and Rothman, P. (2002) Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc. Natl. Acad. Sci. U.S.A. 99,2175-2180.
    [303]Hanada, T., Yoshida, T., Kinjyo, I., Minoguchi, S., Yasukawa, H., Kato, S., Mimata, H.,Nomura, Y., Seki, Y, Kubo, M. and Yoshimura, A. (2001) A mutant form of JAB/SOCS1 augments the cytokine-induced JAK/STAT pathway by accelerating degradation of wild-type JAB/CIS family proteins through the SOCS-box. J. Biol. Chem. 276,40746-40754.
    [304]Cohney, S. J., Sanden, D., Cacalano, N. A., Yoshimura, A., Mui, A., Migone, T. S. and Johnston, J. A. (1999) SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol. Cell. Biol.19,4980-4988.
    [305]Winzen, R., Kracht, M., Ritter, B., Wilhelm, A., Chen, C. Y, Shyu, A. B., Muller, M.,Gaestel, M., Resch, K. and Holtmann, H. (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J.18,4969-4980.
    [306]Neininger, A., Kontoyiannis, D., Kotlyarov, A., Winzen, R., Eckert, R., Volk, H. D.,Holtmann, H., Kollias, G. and Gaestel, M. (2002) MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem.277,3065-3068.
    [307]Chen, C. Y., Del Gatto-Konczak, F., Wu, Z. and Karin, M. (1998) Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science (Washington,D.C.) 280,1945-1949.
    [308]Ming, X. F., Stoecklin, G., Lu, M., Looser, R. and Moroni, C. (2001) Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol. Cell. Biol.21,5778-5789.
    [309]Bank, U., Kupper, B., Reinhold, D., Hoffmann, T. and Ansorge, S. (1999) Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett.461,235-240.
    [310]Siewert, E., M" uller-Esterl, W., Starr, R., Heinrich, P. C. and Schaper, F. (1999) Different protein turnover of interleukin-6-type cytokine signalling components. Eur. J. Biochem.265,251-257.
    [311]Gerhartz, C., Dittrich, E., Stoyan, T., Rose-John, S., Yasukawa, K., Heinrich, P. C. and Graeve, L. (1994) Biosynthesis and half-life of the interleukin-6 receptor and its signal transducer gp130. Eur. J. Biochem.223,265-274.
    [312]Schaefer, T. S., Sanders, L. K. and Nathans, D. (1995) Cooperative transcriptional activity of Jun and Stat3 β,ashortformofStat3.Proc. Natl. Acad. Sci. U.S.A. 92,9097-9101.
    [313]Chakraborty, A., White, S. M., Schaefer, T. S., Ball, E. D., Dyer, K. F. and Tweardy, D. J.(1996) Granulocyte colony-stimulating factor activation of Stat3a and Stat3β in immature normal and leukemic human myeloid cells. Blood 88,2442-2449.
    [314]Caldenhoven, E., van Dijk, T. B., Solari, R., Armstrong, J., Raaijmakers, J. A.,Lammers, J. W., Koenderman, L. and de Groot, R. P. (1996) STAT3β,asplice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J. Biol.Chem. 271,13221-13227.
    [315]Schaefer, T. S., Sanders, L. K., Park, O. K. and Nathans, D. (1997) Functional differences between Stat3a and Stat3p.Mol.Cell. Biol.17,5307-5316.
    [316]Yoo, J. Y, Huso, D. L., Nathans, D. and Desiderio, S. (2002) Specific ablation of Stat3β distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell (Cambridge, Mass.) 108,331-344.
    [317]Bode, J. G., Nimmesgern, A., Schmitz, J., Schaper, F., Schmitt, M., Frisch, W.,H" aussinger, D., Heinrich, P. C. and Graeve, L. (1999) LPS and TNFa induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett.463,365-370.
    [318]Stoiber, D., Kovarik, P., Cohney, S., Johnston, J. A., Steinlein, P. and Decker, T. (1999) Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-γ.J.Immunol.163,2640-2647.
    [319]Ahmed, S. T. and Ivashkiv, L. B. (2000) Inhibition of IL-6 and IL-10 signaling and Stat activation by inflammatory and stress pathways. J. Immunol.165,5227-5237.
    [320]Niemand, C., Nimmesgern, A., Haan, S., Fischer, P., Schaper, F., Rossaint, R.,Heinrich, P. C. and M" uller-Newen, G. (2003) Different sensitivities of IL-10-and IL-6-induced STAT3 activation towards SOCS3 induction and other inhibitory mechanisms in primary human macrophages. J. Immunol.170,3263-3272.
    [321]Stoiber, D., Stockinger, S., Steinlein, P., Kovarik, J. and Decker, T. (2001) Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3. J. Immunol.166, 466-472.
    [322]Sengupta, T. K., Talbot, E. S., Scherle, P. A. and Ivashkiv, L. B. (1998) Rapid inhibition of interleukin-6 signaling and Stat3 activation mediated by mitogen-activated protein kinases. Proc. Natl. Acad. Sci. U.S.A.95,11107-11112.
    [323]Andus, T., Geiger, T., Hirano, T., Kishimoto, T. and Heinrich, P. C. (1988) Action of recombinant human interleukin 6, interleukin 1 β and tumor necrosis factor a on the mRNA induction of acute-phase proteins. Eur. J. Immunol.18,739-746.
    [324]Bode, J. G., Fischer, R., H" aussinger, D., Graeve, L., Heinrich, P. C. and Schaper, F.(2001) The inhibitory effect of IL-1β on IL-6 induced a2-macroglobulin expression is due to activation of NF-κB. J. Immunol.167,1469-1481.
    [325]Kordula, T. and Travis, J. (1996) The role of Stat and C/EBP transcription factors in the synergistic activation of rat serine protease inhibitor-3 gene by interleukin-6 and dexamethasone. Biochem. J.313,1019-1027.
    [326]Brown, R. T.,Ades, I. Z. and Nordan, R. P. (1995) An acute phase response factor/NF-κBsite downstream of the junB gene that mediates responsiveness to interleukin-6 in a murine plasmacytoma. J. Biol. Chem.270,31129-31135.
    [327]Horvai, A. E., Xu, L., Korzus, E., Brard, G, Kalafus, D., Mullen, T. M., Rose, D. W.,Rosenfeld, M. G. and Glass, C. K. (1997) Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. U.S.A.94,1074-1079.
    [328]Symes, A., Gearan, T., Eby, J. and Fink, J. S. (1997) Integration of Jak-Stat and AP-1 signaling pathways at the vasoactive intestinal peptide cytokine response element regulates ciliary-neurotrophic factor-dependent transcription. J. Biol. Chem. 272,9648-9654.
    [329]Zhang, X., Wrzeszczynska, M. H., Horvath, C. M. and Darnell, Jr, J. E. (1999) Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation.Mol. Cell. Biol.19,7138-7146.
    [330]Zhang, Z., Jones, S., Hagood, J. S., Fuentes, N. L. and Fuller, G. M. (1997) STAT3 acts as a co-activator of glucocorticoid receptor signaling. J. Biol. Chem. 272,30607-30610.
    [331]Kunz, D., Zimmermann, R., Heisig, M. and Heinrich, P. C. (1989) Identification of the promoter sequences involved in the interleukin-6 dependent expression of the rat α2-macroglobulin gene. Nucleic Acids Res.17,1121-1138
    [332]Wegenka, U. M., Buschmann, J., L" utticken, C., Heinrich, P. C. and Horn, F. (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level.Mol. Cell. Biol. 13,276-288.
    [333]Zhang, X. and Darnell, Jr, J. E. (2001) Functional importance of Stat3 tetramerization in activation of the α2-macroglobulin gene. J. Biol. Chem.276, 33576-33581.
    [334]Zhang, Z. and Fuller, G. M. (1997) The competitive binding of STAT3 and NF-KBonan overlapping DNA binding site. Biochem. Biophys. Res. Commun.237,90-94.
    [335]Zhang, Z. and Fuller, G. M. (2000) Interleukin 1β inhibits interleukin 6-mediated rat γ fibrinogen gene expression. Blood 96,3466-3472.
    [336]Hiroi, M. and Ohmori, Y. (2003) The transcriptional coactivator CREB-binding protein cooperates with STAT1 and NF-κ Bfor synergistic transcriptional activation of the CXC ligand 9/monokine induced by interferon-y gene. J. Biol. Chem.278,651-660.
    [337]Korzus, E., Torchia, J., Rose, D. W., Xu, L., Kurokawa, R., McInerney, E. M., Mullen,T. M., Glass, C. K. and Rosenfeld, M. G. (1998) Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science (Washington, D.C.) 279,703-707.
    [338]Zhang, J. J., Vinkemeier, U., Gu, W., Chakravarti, D., Horvath, C. M. and Darnell, Jr, J. E. (1996) Two contact regions between Statl and CBP/p300 in interferon γ signaling. Proc. Natl. Acad. Sci. U.S.A.93,15092-15096.
    [339]Paulson, M., Pisharody, S., Pan, L., Guadagno, S., Mui, A. L. and Levy, D. E. (1999) Stat protein transactivation domains recruit p300/CBP through widely divergent sequences.J. Biol. Chem.274,25343-25349.
    [340]Pfitzner, E., Jahne, R., Wissler, M., Stoecklin, E. and Groner, B. (1998) p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol. Endocrinol. 12,1582-1593.
    [341]Zhu, M., John, S., Berg, M. and Leonard, W. J. (1999) Functional association of Nmi with Stat5 and Statl in IL-2-and IFNγ-mediated signaling. Cell (Cambridge, Mass.) 96,121-130.
    [342]Luo, G. and Yu-Lee, L. (2000) Stat5b inhibits NFκB-mediated signaling. Mol.Endocrinol.14,114-123.
    [343]Nakajima, H., Brindle, P. K., Handa, M. and Ihle, J. N. (2001) Functional interaction of STAT5 and nuclear receptor co-repressor SMRT:implications in negative regulation of STAT5-dependent transcription. EMBO J.20,6836-6844
    [344]Campos, S. P. and Baumann, H. (1992) Insulin is a prominent modulator of the cytokine-stimulated expression of acute-phase plasma protein genes. Mol. Cell. Biol.12, 1789-1797.
    [345]Wang, Y., Ripperger, J., Fey, G. H., Samols, D., Kordula, T., Wetzler, M., Van Etten, R. A.and Baumann, H. (1999) Modulation of hepatic acute phase gene expression by epidermal growth factor and Src protein tyrosine kinases in murine and human hepatic cells. Hepatology 30,682-697.
    [346]Nakayama, K., Kim, K. W. and Miyajima, A. (2002) A novel nuclear zinc finger protein EZI enhances nuclear retention and transactivation of STAT3. EMBO J. 21,6174-6184.
    [347]陈英群,董福轮,马贵同.三硝基笨磺酸诱导大鼠溃疡性结肠炎的实验研究[J].同济大学学报,2006,27(6):31-33.
    [348]王皓,欧阳钦,胡仁伟.三硝基苯磺酸结肠炎动物模型的建立[J].胃肠病学,2001,6(1):7-10.
    [349]Butzner JD, Parmar R, Bell CJ, et al. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat[J]. Gut,1996,38(4):568-573.
    [350]王旭丹,袁学勤.肠粘膜免疫调节紊乱介导炎症性肠病的发生[J].世界华人消化杂志,2005,13(18):2257-2262.
    [351]Aranda R, Sydora BC, McAllister PL, et al. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol,1997,158 (7):3464-3473.
    [352]王皓,欧阳钦,胡仁伟.三硝基苯磺酸结肠炎动物模型的建立[J].胃肠病学,2001,6(1)7-10.
    [353]刘登瑞,哈小琴,高明太.炎症性肠病动物模型的研究进展.中国比较医学杂志2008年1月第18卷第1期86-89.
    [354]郑礼,王淑仙.炎症性肠疾患的实验动物模型[J].中国药理学通报,1997,13(6):559-562.
    [355]BoirivantM,FussIJ,ChuA,etal.Oxazolonecolitis:Amurine model of Thelper cell type2 colitis treatable with antibodies to interleukin4 [J]. JExpMed,1998,188 (10):1929-1939.
    [356]Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows [J]. Science,1976,193(4257):1007-1008.
    [357]Creed TJ, Norman MR, Probert CS, et al. Basiliximab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis [J]. Aliment Pharmacol Ther,2003,18(1):65-75.
    [358]Mudter J,NeurathMF. IL-6 signaling in inflammatory bowel disease: Pathophysiological role and clinicalrelevance [J]. Inflamm Bowel Dis,2007,13 (8): 1016-1023.
    [359]PetrucciMT, RicciardiMR, Gregorj C, et al. Effects of IL-6 variants in multip le myeloma:growth inhibition and induction of apop tosis inp rimary cells [J]. Leuk Lymphoma,2002,43:2369~2375.
    [360]崔伟,IL-10在炎症性肠病大鼠脑、结肠组织中表达的研究[M].长春:吉林大学,2008.
    [361]张剑,碧清.创伤性休克患者血清TNF-α、IL-6变化的意义[J].浙江中西医结合杂志,2008,18(2):1032104.
    [362]Koziel MJ. Cytokines in viral hepatitis [J]. Semin Liver Dis,1999,19(2): 157-169.
    [363]MudterJ, WeigmannB, BartschB, Kiesslich R, Strand D, GallePR, Lehr HA, Schmidt J, Neurath MF. Activiation pattern of signal transducers and activiators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol, 2005,100:64~72.
    [364]白爱平,胡品津,陈洁等.信号转导与转录活化因子3蛋白在小鼠实验性三硝基苯磺酸结肠炎发病中的作用.Chin J Gastroenterol,2006,11:9~1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700