用户名: 密码: 验证码:
惯性淘析器内气固两相流动的数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论模型、数值模拟和实验研究三个方面分析研究了惯性淘析器内气固两相流动的特性。采用FLUENT6.2模拟了淘析器内气相流场结构及固体颗粒运动行为,得到了气相速度场、压力场分布及颗粒的运动轨迹,分析了影响分级效率的结构因素,为抑制器内气体的不规则湍动和防止成品粒料溢出提供了理论依据。以数值模拟结果为指导,设计制造了高效的BIE(Bounced Inertia Elutriator)型淘析器实验设备,搭建新型惯性淘析器实验台,进行了相关流场测试与实验研究。所作主要研究工作如下:
     1、对惯性淘析器内气固两相流动中的颗粒进行受力分析,探讨了各种作用力对颗粒运动的影响程度。建立模型时,对气相场采用欧拉法,建立雷诺时均方程组,为使方程组封闭,引入k-ε双方程模型;对固相运动的描述则采用基于拉格朗日法的随机轨道模型。气固相的耦合问题采用四向耦合来处理,不仅考虑颗粒和气相的相互影响,还考虑了颗粒之间及颗粒与壁面间的碰撞。
     2、在GAMBIT 2.2中建立了惯性淘析器的几何模型并对其划分网格,提出了一种进行纵向分区划分混合网格的新方法。在FLUENT 6.2中,用基于雷诺时均方程法的标准k-ε模型对UGS型淘析器湍流场进行了数值模拟。针对UGS型淘析器各部分的改进需求设计了五个试验方案,并一一做出了模拟分析,这些探索研究为新型淘析器的开发提供了思路。设计了BIE型淘析器并对其流场进行模拟验证,计算结果表明:连接加速段和渐扩口径的内筒,有效地消除了对流段顶部环隙的短路流和死旋涡,避免了对冲气流的相互扰动;通过调整分离段长度和直径,增大了气流对颗粒的剪切力,增加了粒料的停留时间;在淘析区,下移进气位置并加入两层格栅后,该区域气流更加匀称规整,导流格栅的整流效果明显,加强了气流对粒料的淘析作用。
     3、在气相流场模拟的基础上,用相间耦合的随机轨道模型对两种惯性淘析器内的颗粒运动行为进行模拟,预测了不同粒径颗粒的运动轨迹,分析了颗粒在器内的速度分布情况。通过对颗粒轨迹的分析,找到了设备结构对颗粒运动行为的影响规律,BIE型淘析器独特的内构件设计有效的提高了颗粒运动的可控性。用基于颗粒追踪法的分级效率表征了两种淘析器在三种工况下的分级性能
     4、测试了BIE型淘析器内不同位置的轴向速度和静压分布,测试值与模拟值吻合较好,数值模拟结果是可信的。以工业生产中的高压聚乙烯粒料为实验物料,对UGS型和BIE型淘析器进行了分离性能的测试实验,分级效率的实验值与模拟值基本一致,这说明用颗粒追踪法模拟计算分级效率是有意义的。实验结果表明,BIE型淘析器的综合分级效率比UGS型高28%左右。
The behaviors of gas stream and solid discrete phase had been studied bynumerical simulation and experimental method. The commercial CFD softwareFLUENT6.2 was used to simulate the flow field in inertia elutriators. The velocityand static pressure distributions of gas phase were obtained, which had been used toanalyze structure factors affecting classification efficiency in order to restructure andimprove the performance of the equipment. Based on the numerical simulation results,high efficiency BIE elutriator equipment was developed. The main works of this studyincludes:
     1. The influence of each force act on particles in inertia elutriator was analyzed.For gas stream, Reynolds-averaged model based on Euler method was used and k-εmodel was applied to form algebraic finite volume equations. For solid phase,discrete phase model based on Lagrange method was used considering couplingbetween gas and solid phase, in which interaction between particles and gas, as wellas interaction between particles and wall were considered.
     2. The physical model of inertia elutriator was established and meshed inGAMBIT2.2. A new method that generated the grid through reasonable cutting theflow field region was put forward. The standard k-εmodel provided by FLUENT6.2was selected to simulate flow field in UGS and BIE. To meet the rebuilt request ofeach part of UGS elutriator, five projects were designed, simulated and analyzed,which provide new thoughts to develop new type elutriator. BIE elutriator wasdesigned, based on the result of simulation and experiment study. It is found that:short circuit and bad vortex in the top of convection sect were eliminated, disturbbetween mutual flow was avoided through connecting inner canister of accelerate andexpand section; share stress and stay time of particles was increased in the newelutriator. Flow field became more symmetry as gas inlet was lowered and two layersof jalousie was added. It is found that jalousie had a distinctness effect on flow field.
     3. Based on flow field simulation, moving behavior of particles in the two inertiaelutriator was simulated with discrete phase model, which predicted tracks of particlesof different sizes. Equipment structure influence on particle was found throughanalyzing particle velocity distribution. The particular inner parts in BIE elutriatormade the particle movement more controllable. Separate performance in threeoperation condition was token by classification efficiency based on particle tracingmethod. The compared result showed that classification efficiency for polyethyleneparticles in BIE is 30 percent higher than in UGS.
     4. Using the IFA-300 and U-mould pressure meter, the flow field and staticpressure distribution had been measured in different section of BIE elutriator. Thecomparison of the experiment data and the simulation result showed that simulation isreliable, experiment is carried out using industry product polyethylene and theseparation ability of UGS and BIE is tested. The consistent experiment and simulationresult showed that it is reasonable to calculate separation efficiency with particletracing method. Best operation condition is found after repetitious experiments, inwhich integrate separation efficiency is 28% higher than UGS's.
引文
[1] 陶珍东,郑少华,粉体工程与设备,化学工业出版社,2003
    [2] Arundel P. A., Hobson C. A., Lalor M. J., Weston W., Measurement of Individual Alumina P article Velocitiesand the Relative Slipof Different-Sized Particles in a Vertical Gas-Solid S uspension Flow Usinga Laser-Anemomter System, J. Phys.-D., Vol.6, No.6, 2288-2300, 1974
    [3] 卢寿慈,粉体加工技术,中国轻工业出版社,1999
    [4] 鲁林平,叶京生等,超细粉体分级技术研究进展,化工装备技术,26(3)2005
    [5] Hiroshi, Morimoto, Toshihiko Shakouchi. Classification of ultra fine powder by a new pneumatic type classifier. Powder Technology, 2003, 131: 71-79
    [6] 孙成林,我国超细粉碎与超细分级发展及问题,中国非金属矿工业导刊,2003,1:42-44
    [7] 吴其胜,张少明,马振华,超细分级技术的现状与发展.硅酸盐通报,1997,6:46-47
    [8] 冯平仓,气流分级原理及分级设备的最新进展,非金属矿,1997,6:37-39
    [9] 刘家祥,高效涡流空气分级机分级机理及开发,西安交通大学博士学位论文,2001
    [10] 韩英,尤官林,关于超细分级机几个问题的探讨,武汉化工学院学报,1999,2:40-41
    [11] 王福军,计算流体动力学,清华大学出版社,2004
    [12] Wissink J. G., DNS of separating low Reyonlds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow, 24(4): 626-635, 2003
    [13] Michelassi V., Wissink J. G., Rodi W., Direct numerical simulation, large eddy simulation and unsteady Reyonlds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. Journal of Power and Energy, 217(4): 403-412, 2003
    [14] Stephane V., Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows, Proceedings of the ASME/JSME Joint Fluid Engineering Conference: 1229-1305, 2003
    [15] Abbott M. B., Basco D. R., Computational Fluid Dynamics-An Introduction for Engineers. Longman Scientific & Technical, Harlow, England, 1989
    [16] Feiz A. A., Ould-Rouis M., Lauriat G., Large eddy simulation of turbulent flow in a rotating pipe. International Journal of Heat and Fluid Flow, 24(3): 412-420, 2003
    [17] Mary Ivan, Sagaut Pierre. Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 40(6): 1139-1145, 2002
    [18] Grigoridis D. G. E., Bartzis J. G., Goulas A., Efficient treatment of complex geometries for large eddy simulations of turbulent flows. Computers and Fluids, 33(2): 201-222, 2004
    [19] Shen L., Yue D. K., Large-eddy simulation of free-surface turbulence. Journal of Fluid Mechanics, n440: 75-116, 2001
    [20] Julia n R. E., Smolarkiewicz K., Eddy resolving simulation of turbulent solar convection, International Journal for Numerical Methods in Fluids, 39(9): 855-864, 2002
    [21] Li J. C., Large eddy simulation of complex turbulent flows: Physical aspects and research trends. Acta Mechanica Sinica, 17(4): 289-301, 2001
    [22] Rollet-Miet P., Laurence D., Ferziger J., LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow, 20(3): 241-254, 1999
    [23] Fluent Inc., FLUENT User's Guide. Fluent Inc., 2003
    [24] Hinze J. O., Turbulence. McGraw-Hill, New York, 1975
    [25] 黄克智,薛明德,陆明万,张量分析,清华大学出版社,2003
    [26] 周力行,湍流气粒两相流动和燃烧的理论与数值模拟,科学出版社,1994
    [27] 周力行,湍流两相流动与燃烧的数值模拟,清华大学出版社,1991
    [28] 陶文铨,数值传热学,西安交通大学出版社,1988
    [29] 帕坦卡著,张政译,传热及流体流动的数值计算,科学出版社,1983
    [30] Hoekstra A. J., Derksen J. J., Van Den Akker, An experimental and numerical study of turbulent swirling flow in gas cyclones, Chemical Engineering Science, V54, 1999
    [31] Boysan F., Swithenbank J., Hayers W., Mathematical modeling of gas-partical flows in cyclone separators.
    [32] 张健,周力行,模拟强旋流的一种新的代数应力模型,应用基础与工程科学学报,Vol.7,No.3,step.1999
    [33] 庞磊,旋风分离器芯管结构形式优化的初步研究及性能计算,石油大学(北京)硕士学位论文,2001
    [34] 刘明侯,陈义良,易蔚卿,颗粒轨道模型对粉煤湍流燃烧计算结果影响的研究,燃烧科学与技术,Vol.5 No.1 14-20,1999
    [35] 岑可法,樊建人,工程气固多相流动的理论及计算,浙江大学出版社,1990
    [36] M. Sommerfeld and H. H. Qiu, Characterization of particle-laden, confined swirling flows by phase-dopper anemometry calculation. Int. J. Multiphase Flow. Vol. 19: 1093-1127, 1993
    [37] Tabakoff, W. and Hamed, A, Aerodynamic effects on erosion in turbo-machinery. Inter Proc. Tokyo Joint Gas Turbine Congr: 574-580, 1977
    [38] 范维澄,二维抛物型燃烧理论模型和计算,中国科技大学硕士学位论文,1986
    [39] Simonin, O. and Viollet, P.L., Numerical Study on Phase Dispersion Mechanisms in Turbulent Bubby Flows. Proc. 5th workshop on Two-phase Flow Predication, Erlangen, FRG, 1990, 156-166
    [40] Balzer, G, Boelle, A. and Simonin, O., Eulerian Gas-solid flow Modelling of Dense Fluidized bed. Fluidized, Int. Symp. of the Engineering Foundation, Tours, 1995, 1125-1134.
    [41] Gidaspow, D., Hydrodynamics of fluidization and heat transfer supercomputer modeling. Appl. Mech. Rev., 1986, 39: 1-22
    [42] Schiller, L. and Naumann, Z. Ver. Deutsch. Ing., 1953, 77: 318.
    [43] Chen, P. E., Wood, C, E., A turbulence closure model for dilute gas-particle flows. Can. J. Chem. Engr, 1985, 63, 349-360.
    [44] C. T., Crowe, On models for turbulence modulation in fluid-particle flows. Int. J. Multiphase Flow, 2000, 26: 719-927.
    [45] Mostafa, A. A., Mongia, H. C., Mcdonell, V. G., Samuelsen, G. S., Evolution of particle-laden jet flows: a theory and experimental study, AIAA J., 1989, 27(2): 167-183
    [46] R. I. lssa and P. J., Oliveira, Numerical prediction of turbulence dispersion in two-phase jet flows. Two-phase Flow modeling and experimentation, 1995
    [47] M. L. Bertodano, R. T. Lahey, O. C. Jones, Development of a K-emodel for bubby two-phase flow. Trans, of the ASME, J. Fluids Eng, 1994, 116: 128-134
    [48] Elghobashi, S. E. and Abou-Arab, T. W., A two-equation turbulence model for two-phase flows. Phys. Fluids, 1983, 26(4): 931-938
    [49] Tanaka, T. and Tsuji, Y., Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pope, Power Tech., 1992, 71: 239-250.
    [50] Lun, C. K., Liu, H. S., Numerical simulation of dilute turbulent gas-solid flows in horizontal channels. Int. J. Multi. flow. 1997, 23: 575-605
    [51] A. K. K. Lun., Numerical simulation of dilute turbulent gas-solid flows., Int. J. Multiphase Flow, 2000, Vol. 26: 1707-1736
    [52] S., Elghobashi, Particle-Laden Turbulent Flows: direct simulation and closure models. Applied Scientific Research, 1991, 48: 301-314
    [53] G. A., Bird, Molecular Gas Dynamics, 1976, Oxford Univ. Press.
    [54] S. C. C., Dennis, R. N., Singh, D. B., Ingham, The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech., 1980, 101: 257-279.
    [55] R. Mei, An approximate expression for the Shear lift force on a spherical particle at finite Reynolds number. Int. J. Multiphase Flow, 1992, 18: 145-147
    [56] Mindlin, R. D., Compliance of ellastioc bodies in contact. Appl. Mech., 1949, 16: 259-276
    [57] Cundall. P. A. and Strack, O. D., A discrete numerical model for granular assemblies, Geotechnique, 1970, 29(1): 47-65
    [58] 荣德刚,流化床流动、传热及燃烧的DEM仿真研究,东南大学博士学位论文,1999
    [59] R. A. Gore and C. T. Effect of particle size on modulating turbulent in tensity. Int. J. Multiphase Flow, 1989, Vol. 15. No.2: 27 9-28
    [60] G. H etsroni. P articles-turbulentin teraction. In t.J. M ultiphaseF low, I9 89, Vol. 15. No.5: 73 5-746
    [61] Elghobashi SE, Truesdell GC. On the Tw Interaction Between Homogeneous Turbulence and Dispersed Solids Particles: Turbulence Modification. Phys. FluidsA, 1993, Vol.5: 1790-1796
    [62] L. P. Yarin and G. Hetsroni. Turbulent Intensity in Dilute Two-Phase Flow Particles Turbulence Interaction in Dilute Two-Phase Flow. Int. J. Multiphase Flow, 1994, Vol. 20, No.1: 27-53
    [63] L. X. Zhou and Y. Li. Simulation of Swirling Gas-Particle Flows U singa DSM-PDF Two-Phase Turbulence Model., Powder Technology, 2000, Vol.11, 3: 70-79
    [64] Crowe. C. T., Sharma, M. P. and Stock D. E., Particle-Source In Cell Model for Gas-Drop F lows. Trans. ASME, J. Fluids Eng. 1977, Vol.99: 32-38
    [65] T. Yokomine and A. shimizu. Prediction of turbulent modulation by k-ε model for gas-solid flows. Advances in Multiphase Flow, 1995, 3: 191-196
    [66] Xi-ying Chen. Heavy particle dispersion in homogeneous, an isotropic turbulent flows. Int. J. Multiphase Flow, Vol. 26: 635-661
    [67] Eduardo. Bolio and Jennifer. L. sinclair, Gas turbulence modulation in the pneumatic conveying of massive particles in vertical tubes. Int. J. Multiphase Flow, 1995, Vol.21: 985-1001
    [68] A. K. K. Lun., Numerical simulation of dilute turbulent gas-solid flows., Int. J. Multiphase Flow, 2000, Vol. 26: 1707-1736
    [69] Z. Yuan and E. E. M ichaelides. Brief Communication Turbulence Modulation in Particulate Flows: A Theoretical Approach. Int. J. Multiphase Flow, 1992, Vol. 18, No.5: 779-785
    [70] 史峰,徐忠,稀薄气-固两相流中相间的相互作用模型,水动力学研究与进展,1995,Vol.10,No.4:381-393
    [71] Tsuji, Y. Morikawa, Y. Tanaka, Y. Nakatsukasa, N. and Nakatani M. Numerical simulation of g as-solid two-phase flow in a two-dimensional horizontal channel. Int. J. Multiphase Flow, 1987, Vol. 13, No.5: 67-68
    [72] Tsuji, Y. Seki, W. and Morikawa, Y. Computer simulation of pneumatic conveying: the case of the presence of pipe branches. J. Soc. Powder Tech. Japan, 1983, Vol. No.20: 270-275
    [73] 任永强,循环流化床气固两相流动力特性的三维数值模拟,华北电力大学(北京)硕士学位论文,1999
    [74] 兰中秋,电站锅炉尾部烟道湍流气固两相流场的数值模拟,重庆大学硕士学位论文,2003
    [75] 张力,旋转气固多相流分离的数值分析及实验研究,重庆大学博士学位论文,2001
    [76] 沈选举,管式干燥气固两相流的相似性原理及耦合数值模拟,昆明理工大学硕士学位论 文,2005
    [77] 陈云,旋流燃烧器内气固两相流动数值试验的研究,浙江大学硕士学位论文,2002
    [78] 马银亮,高浓度气固两相流的数值模拟研究,浙江大学博士学位论文,2001
    [79] 罗坤,气固两相自由剪切流动的直接数值模拟和实验研究,浙江大学博士学位论文,2005
    [80] 熊源泉,气固喷射器输送特性的试验研究及其三维数值模拟,东南大学博士学位论文,2003
    [81] 李昭祥,徐江荣,随机轨道模型中颗粒湍流量模拟方法,杭州电子工业学院学报,2004,Vol.24,No.3:11-15
    [82] 张会强,陈昌麟,柳开瑞,改进的随机轨道模型,工程热物理学报,1999,Vol.20.No.5:647-653
    [83] 王海刚,旋风分离器中气-固两相流数值计算与实验研究,中国科学院博士学位论文,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700