用户名: 密码: 验证码:
缺血性脑卒中相关炎症因子及候选基因多态性与环境暴露交互作用的分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     缺血性脑卒中是一种受遗传、环境共同作用的慢性疾病,基因与环境间的交互作用与缺血性脑卒中易感性密切相关。随着人类基因组密码的逐渐解译,从候选基因及全基因组水平探讨基因多态性与缺血性脑卒中易感性的发病机制成为医学界关注的热点。近年来,越来越多的研究表明炎症可能与缺血性脑卒中、冠心病发病机理密切相关。但是关于炎症因子多态性与缺血性脑卒中易感性的研究,目前,国内报道尚不多。
     研究目的1.探究IL-6基因-174G/C、-572G/C多态性与缺血性脑卒中易感性。2.探讨TNF-α-238G/A、-308G/A多态性与缺血性脑卒中易感性。3.探讨IL-1RN、IL-4小卫星VNTR多态性与缺血性脑卒中易感性。4.探讨12P13两候选SNPs与缺血性脑卒中易感性。5.应用CART及MDR模型构建缺血性脑卒中发病风险预测模型。
     研究方法
     按照TOAST标准,开展以医院为基础的1:1配对病例-对照研究。研究对象来自于深圳三大医院、牡丹江医学院附属医院、新疆哈密市多家三甲医院,病例和对照按年龄≤5岁、性别、民族相同进行匹配,共收集汉族样本648对,维族样本100对。使用一致的个案调查表调查研究对象。用Taqman探针技术及尾巴引物延伸方案来检测基因型。拟合logistic回归模型分析基因多态性与缺血性脑卒中之间的关联性,另外,运用分类回归树构建缺血性脑卒中发病风险预测模型,构建单体型及运用MDR(多因子降维法)分析基因与基因、基因与环境之间的交互作用。
     主要研究结果
     1.单因素Logistic回归分析结果显示:文化水平、BMI、WHR、吸烟及高血压、负性生活事件、糖尿病、TG等是缺血性脑卒中的危险因素。多变量Logistic回归模型表明:吸烟(OR=2.158;95%CI:1.554~2.997)、腰臀比(OR=2.777;95%CI:2.084~3.699)、糖尿病(OR=1.519;95%CI:1.107~2.086)和高血压(OR=3.143;95%CI:2.445~4.042)是汉族人群缺血性脑卒中发病的独立危险因素;而饮茶史(OR=0.347;95%CI:0.269~0.448)是汉族人群缺血性脑卒中发病的独立保护因素。然而在维族人群中,我们仅发现腰臀比(OR=5.707;95%CI:2.688~12.116)和高血压(OR=13.544;95%CI:5.496~33.380)为其人群缺血性脑卒中发病的独立危险因素。
     2. IL-6基因G-572C多态性基因型分布差异具有统计学意义,在未调整混杂因素前后,携带GC基因型的个体患缺血性脑卒中风险为CC的1.49倍,P=0.00。IL-6基因G-572C多态性病例组的G等位基因频率高于对照组,差异有统计学意义(P<0.01),可见随着等位基因G的增加,发生缺血性脑卒中的危险性也增高。在调整上述影响因素后,GC是缺血性脑卒中发病的独立危险因素,OR值为1.446,P=0.004。在维族人群中,以携带CC基因型的个体作为参考基因型,未发现GC基因型在病例组与对照组间存在显著性差异,而GG基因型的携带频率病例组则明显低于对照组比值比为0.36(95% CI:1.19-1.88;P<0.05),G等位基因的携带频率,病例组也明显低于对照组比值比为0.67(95% CI:0.45-0.99;P<0.05)。
     3.肿瘤坏死因子启动子-238G/A多态性与两人群缺血性脑卒中发病的关联性不显著。然而,-308 G/A多态性与两人群关联性较强,在两人群中,病例组GA的分布频率均明显低于对照组,同时病例组A等位基因的分布也明显低于对照组。提示,A等位基因对于两人群缺血性脑卒中的发病风险具有保护作用,GA杂合子在调整常见的风险因素后,关联依然显著,其可能是一项中国人群缺血性脑卒中发病的独立的保护因素。
     4. IL-4 VNTR和IL-1RN VNTR单个VNTR调整相关混杂因素后,发现其与缺血性脑卒中发病的关联性不显著。然而,两VNTR构建单体型后,则发现2R-2R为汉族人群缺血性脑卒中的风险单体型。
     5. 12P13区Rs11833579 A等位基因为在中国汉族人群中风险等位基因,A等位基因型携带者发生缺血性脑卒中的危险性是G等位基因型者的1.27倍,隐性模式下风险性更高,而在维族中却未发现这一结果。Rs11833579多态性在不同民族人群中的频率存在显著差异,提示不同人群中存在明显的遗传异质性。Rs11833579与Rs12425791可能存在交互作用,A-G单体型在中国汉族人群中为缺血性脑卒中的风险单体型, A-G单体型携带者发生缺血性脑卒中的危险性是G-G基因型者的1.52倍。
     6.采用分类回归树构建缺血性脑卒中发病风险预测模型,汉族分类树模型生长深度为5层,共纳入7个解释变量,维族分类回归树模型生长深度为3层,共纳入3个解释变量。运用筛检模型评价指标对分类树的灵敏度和特异度进行评价,评价结果表明灵敏度及特异度均较为合理。多因子降维法提示基因-基因,基因-环境间存在交互作用;分类树模型能够较好的拟合缺血性脑卒中发病风险的预测模型。
     研究结论
     1.传统的心脑血管疾病行为危险因素是汉族及维族人群缺血性脑卒中发生的主要危险因素,高血压、糖尿病、血脂和体重等仍是缺血性脑卒中发病的危险因素。
     2.在汉族人群中IL-6-572 G等位基因型可能为缺血性脑卒中的风险基因型,而维族则可能为缺血性脑卒中的保护基因型。
     3. TNF-α-308GA杂合子基因型可能是一项中国人群缺血性脑卒中发病的独立的保护因素。
     4.未发现单个IL-4或IL-1RN VNTR与IS发病存在显著关联性,但两VNTR的交互作用与IS发病存在一定关联性。
     5.12P13区Rs11833579 A等位基因在隐性遗传模式下会增加在汉族人群缺血性脑卒中的风险,A-G单体型在中国汉族人群中为缺血性脑卒中的风险单体型。
     6.多因子降维法提示基因-基因,基因-环境间存在一定交互作用;分类回归树模型适合拟合两人群缺血性脑卒中发病风险预测模型。
     创新点本研究在国内属于首次基于炎症因子相关信号转导通路及相关基因功能位点在多民族人群中分析基因多态性及环境暴露交互作用与缺血性脑卒中的关联性。同时本研究基于国外GWAS观察结果,分析相关候选基因与中国人群缺血性脑卒中的关联性。本研究还采用全新尾巴引物方案的策略,灵敏检测IL-4与IL-1RN基因的VNTR与缺血性脑卒中的关联性,在国内外尚属首次。
     此外本研究在多民族人群中采用分类树结合MDR法分析构建风险预测模型。
Backgrounds
     Ischemic stroke (IS) is a chronic disease influenced by environmental and genetic factors. Gene-environmental interaction are closely related with the susceptibility of IS. With the completement of Human Hapmap, it has become the focus in medical fields to study the pathogenesis of IS from the view of candidate Gene and whole-genome. In recent years, more and more studies have suggested that Inflammation play important roles in IS and coronary heart disease (CHD). However, studies on the association of the inflammatory cytokines and the interaction between the gene polymorphisms and environment exposures with IS are rare presently in the Han population.
     Objectives
     1. To explore the association of the G-174C, G-572C polymorphisms of IL-6 with the susceptibility of IS.
     2. To explore the association of the G-238A, G-308A polymorphisms of TNF-αwith the susceptibility of IS.
     3. To explore the association of the VNTR polymorphisms of IL-1RN and the VNTR with the susceptibility of IS.
     4. To explore two key SNPs on chromosome 12p13 with the susceptibility of IS.
     5. Classification tree model and Multifactor dimensionality reduction were applied to explore the possible interaction between gene and environment and build the risk model for IS.
     Methods
     Case collection was made according to the diagnostic criteria of TOAST, two 1:1 matched hospital- based case-control studies were performed. We enrolled inpatients attending the stroke units of five large general hospitals in Shenzhen, Heinongjiang and Xinjiang from September 2003 to February2009. A total of 748 subjects presenting within 24h of symptom onset were enrolled in two case–control studies. Additionally, 748 age-, gender- and ethnicity-matched normal healthy controls were randomly selected from healthy volunteers from four local community-based populations. A structured questionnaire was used to record general information, clinical history of IS and associated clinical parameters, and epidemiological data. Genotypes were examined by using Taqman Primers and a novel tailed primers protocol. Logistic regression models were used to study the association between the polymorphisms and ischemic stroke. Classification tree model was applied to build up the risk model for IS, multifactor dimensionality reduction and Haplotype analyses were used to assess the possible interaction between gene and environment.
     Results
     1. Univariate logistic regression showed that traditional risk factors of IS including education, income, BMI, smoking, WHR,hypertension, diabetes, negative events and TG. In two multivariate logistic models, WHR, smoking, Diabetes, and Hypertension were positively associated with IS, with OR=2.158 (95%CI: 1.554~2.997), OR=2.777 (95%CI: 2.084~3.699), OR=1.519 (95%CI: 1.107~2.086), OR=3.143 (95%CI: 2.445~4.042) respectively, while tea-drinking was inversely associated with IS, with an OR of 0.347 (95%CI: 0.269~0.448) in the Hans. However, we only find WHR and Hypertension were independent risk factors of IS with OR=2.158 (95%CI: 1.554~2.997) and OR=2.777 (95%CI: 2.084~3.699) respectively. 2. For IL-6 G-572C polymorphisms, significant difference was found in the distributions of genotypes between two populations. The G allele of the promoter single nucleotide polymorphism (SNP) G-572C was more common in IS subjects than controls (P = 0.004, corrected for multiple testing) in the Han population. GC carriage therefore increased the risk of IS in the Han ethnic group (OR 1.45, 95% CI 1.13–1.86). However, GG carriage decreased the risk of IS in the Uyghur ethnic group (OR= 0.36, 95% CI:1.19-1.88;P<0.05). The G allele was also less common in IS subjects than controls (OR= 0.67, 95% CI:0.45-0.99;P<0.05) in the Uyghur population.
     3. No significant difference was found in the association between TNF-α?238G/A and IS in both ethnic populations. However, the result showed that carriage of the TNF-α?308GA was a decreased risk of IS in both Han and Uyghur populations (OR:0.453, 0.213). GA heterozygous may be an independent protective factor for IS in the Chinese Han and Uyghur populations.
     4. The distributions of both IL-4 and IL-1RN VNTR polymorphisms were not significantly associated with IS subjects after adjustment for risk factors. We, however, found that subjects with the 2R-2R haplotype had about two fold lower risk of IS than those with the 4R-2R haplotype (OR=0.504, 95%CI: 0.322-0.789, P=0.002).
     5. Significant allelic association was identified between rs11833579 and IS in the Han population (OR 1.27, 95% CI 1.08–1.49). The association remained more significant after adjusting for IS covariates in the Han population in a recessive model but not in the Uyghur population. The significant difference in genotypes frequency of Rs11833579 was found between the two ethnic controls (P=0.000), which indicated that there may be genetic variations between Chinese Han and Uyghur populations that may affect the risk of IS. One risk haplotype (A-G; OR 1.52, 95% CI 1.21-1.92) was identified in the Han population. However, the associations between rs12425791 and IS were insignificant in both ethnic populations.
     6. Classification regression smodel were applied to build the risk model for IS in two ethnic groups. The model had five stratums including seven explanatory variations in Han population. There were three stratums and three explanatory variations in Uyghur population model. Additionally, the indexes of the screening test were applied to assess the fitness of the model. The results showed that sensitivity and specificity were reasonable in both ethnic populations. There were interactions between gene and environment by multi-factor dimensionality reduction analysis.
     Conclusions:
     1. The traditional risk factors were the main risk for IS in the Han population and Uyghur population.
     2. IL-6 G allele may be an independent risk factor for IS in the Chinese Han population. However, G allele may be protective factor for IS in the Uyghur population.
     3. TNF-α?308GA heterozygous may be an independent protective factor for IS in the Chinese Han andUyghur populations.
     4. Significant associations were not found between Single VNTR polymorphisms and IS after adjustment for risk factors. 2R-2R haplotype of IL-4 and IL-1RN is significantly associated with lower IS risk in Chinese Han population.
     5. The A allele of SNP rs11833579 on chromosome 12p13 may play a role in mediating susceptibility to IS in the Han Chinese population in a recessive model. The A-G haplotype is also significantly associated with higher IS risk in the Han Chinese population.
     6. There were interactions between gene and environment by multi-factor dimensionality reduction analysis; Classification tree model can reasonably predict the occurrences of IS.
     Innovations:
     The study was the first research based on signal transduction pathways associated with Inflammation and related functional polymorphisms in Chinese two populations. Meanwhile, the study was the first to explore the association between two key SNPs on chromosome 12p13 and ischemic stroke in Chinese two populations based on the American genome-wide association study results.
     The study was the first to apply a novel tailed primers protocol to identify the association of IL-4 and IL-1RN (receptor antagonist) gene variable number of tandem repeats with ischemic stroke in Chinese Han population.
     In addition, the study was the first to apply Classification tree and Multifactor dimensionality reduction model to build up the risk model for IS in Chinese two populations.
引文
[1] Humphries SE, Morgan L. Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. Lancet Neurol 2004; 3:227-235.
    [2] Dichgans M. Genetics of ischaemic stroke. Lancet Neurol 2007; 6:149-161.
    [3] Bova IY, Bornstein NM, Korczyn AD. Acute infection as a risk factor for ischemic stroke. Stroke 1996; 27:2204-2206.
    [4] Grau AJ, Buggle F, Becher H, et al. Recent bacterial and viral infection is a risk factor for cerebrovascular ischemia: clinical and biochemical studies. Neurology 1998; 50:196-203.
    [5] Macko RF, Ameriso SF, Barndt R, Clough W, Weiner JM, Fisher M. Precipitants of brain infarction. Roles of preceding infection/inflammation and recent psychological stress. Stroke 1996; 27:1999-2004.
    [6] Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340:115-126.
    [7] Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1999; 19:2364-2367.
    [8] Rus HG, Vlaicu R, Niculescu F. Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis 1996; 127:263-271.
    [9] Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000; 101:1372-1378.
    [10] Seino Y, Ikeda U, Ikeda M, et al. Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 1994; 6:87-91.
    [11] Hojo Y, Ikeda U, Takahashi M, Shimada K. Increased levels of monocyte-related cytokines in patients with unstable angina. Atherosclerosis 2002; 161:403-408.
    [12] Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342:836-843.
    [13] Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101:1767-1772.
    [14] Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009; 29:464-479.
    [15] Banerjee I, Gupta V, Ahmed T, Faizaan M, Agarwal P, Ganesh S. Inflammatory system gene polymorphism and the risk of stroke: a case-control study in an Indian population. Brain Res Bull 2008; 75:158-165.
    [16] Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102:1369-1376.
    [17] Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem 2000; 275:18138-18144.
    [18] Yamada Y, Metoki N, Yoshida H, et al. Genetic risk for ischemic and hemorrhagic stroke. Arterioscler Thromb Vasc Biol 2006; 26:1920-1925.
    [19] Castillo J, Rodriguez I. Biochemical changes and inflammatory response as markers for brain ischaemia: molecular markers of diagnostic utility and prognosis in human clinical practice. Cerebrovasc Dis 2004; 17 Suppl 1:7-18.
    [20] Acalovschi D, Wiest T, Hartmann M, et al. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke 2003; 34:1864-1869.
    [21] Castellanos M, Castillo J, Garcia MM, et al. Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke 2002; 33:982-987.
    [22] Smith CJ, Emsley HC, Gavin CM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol 2004; 4:2.
    [23] Perini F, Morra M, Alecci M, Galloni E, Marchi M, Toso V. Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurol Sci 2001; 22:289-296.
    [24] Waje-Andreassen U, Krakenes J, Ulvestad E, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand 2005; 111:360-365.
    [25] Tso AR, Merino JG, Warach S. Interleukin-6 174G/C polymorphism and ischemic stroke: a systematic review. Stroke 2007; 38:3070-3075.
    [26] Pola R, Flex A, Gaetani E, Flore R, Serricchio M, Pola P. Synergistic effect of -174 G/C polymorphism of the interleukin-6 gene promoter and 469 E/K polymorphism of theintercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke. Stroke 2003; 34:881-885.
    [27] Licata G, Tuttolomondo A, Raimondo DD, Corrao S, Sciacca RD, Pinto A. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb Haemost 2009; 101:929-937.
    [28] Osiri M, McNicholl J, Moreland LW, Bridges SL, Jr. A novel single nucleotide polymorphism and five probable haplotypes in the 5' flanking region of the IL-6 gene in African-Americans. Genes Immun 1999; 1:166-167.
    [29] Jordanides N, Eskdale J, Stuart R, Gallagher G. Allele associations reveal four prominent haplotypes at the human interleukin-6 (IL-6) locus. Genes Immun 2000; 1:451-455.
    [30] Ota N, Nakajima T, Nakazawa I, et al. A nucleotide variant in the promoter region of the interleukin-6 gene associated with decreased bone mineral density. J Hum Genet 2001; 46:267-272.
    [31] Nibali L, D'Aiuto F, Donos N, et al. Association between periodontitis and common variants in the promoter of the interleukin-6 gene. Cytokine 2009; 45:50-54.
    [32] Sarecka-Hujar B, Zak I, Krauze J. Carrier-state of two or three polymorphic variants of MTHFR, IL-6 and ICAM1 genes increases the risk of coronary artery disease. Kardiol Pol 2008; 66:1269-1277.
    [33] Revai K, Patel JA, Grady JJ, Nair S, Matalon R, Chonmaitree T. Association between cytokine gene polymorphisms and risk for upper respiratory tract infection and acute otitis media. Clin Infect Dis 2009; 49:257-261.
    [34] Dema B, Martinez A, Fernandez-Arquero M, et al. The IL6-174G/C polymorphism is associated with celiac disease susceptibility in girls. Hum Immunol 2009; 70:191-194.
    [35] Popko K, Gorska E, Potapinska O, et al. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea. J Physiol Pharmacol 2008; 59 Suppl 6:607-614.
    [36] Gangwar R, Mittal B, Mittal RD. Association of interleukin-6 -174G>C promoter polymorphism with risk of cervical cancer. Int J Biol Markers 2009; 24:11-16.
    [37] Resch B, Radinger A, Mannhalter C, Binder A, Haas J, Muller WD. Interleukin-6 G(-174)C polymorphism is associated with mental retardation in cystic periventricular leucomalacia in preterm infants. Arch Dis Child Fetal Neonatal Ed 2009; 94:F304-306.
    [38] Chamorro A, Revilla M, Obach V, Vargas M, Planas AM. The -174G/C polymorphism of the interleukin 6 gene is a hallmark of lacunar stroke and not other ischemic stroke phenotypes. Cerebrovasc Dis 2005; 19:91-95.
    [39] Balding J, Livingstone WJ, Pittock SJ, et al. The IL-6 G-174C polymorphism may be associated with ischaemic stroke in patients without a history of hypertension. Ir J Med Sci 2004; 173:200-203.
    [40] Lalouschek W, Schillinger M, Hsieh K, et al. Polymorphisms of the inflammatory system and risk of ischemic cerebrovascular events. Clin Chem Lab Med 2006; 44:918-923.
    [41] Strand M, Soderstrom I, Wiklund PG, et al. Polymorphisms at the osteoprotegerin and interleukin-6 genes in relation to first-ever stroke. Cerebrovasc Dis 2007; 24:418-425.
    [42] Yamada Y, Ichihara S, Nishida T. Proinflammatory gene polymorphisms and ischemic stroke. Curr Pharm Des 2008; 14:3590-3600.
    [43]刘东芳,陈乃耀,王大力等.唐山地区汉族人群脑梗死患者IL-6基因572C/G多态性研究.细胞与分子免疫学杂志. 2010.6(9) :918.
    [1] Humphries SE, Morgan L. Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. Lancet Neurol 2004; 3:227-235.
    [2] Dichgans M. Genetics of ischaemic stroke. Lancet Neurol 2007; 6:149-161.
    [3] Bova IY, Bornstein NM, Korczyn AD. Acute infection as a risk factor for ischemic stroke. Stroke 1996; 27:2204-2206.
    [4] Grau AJ, Buggle F, Becher H, et al. Recent bacterial and viral infection is a risk factor for cerebrovascular ischemia: clinical and biochemical studies. Neurology 1998; 50:196-203.
    [5] Macko RF, Ameriso SF, Barndt R, Clough W, Weiner JM, Fisher M. Precipitants of brain infarction. Roles of preceding infection/inflammation and recent psychological stress. Stroke 1996; 27:1999-2004.
    [6] Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340:115-126.
    [7] Hoppe C, Klitz W, D'Harlingue K, et al. Confirmation of an association between the TNF(-308) promoter polymorphism and stroke risk in children with sickle cell anemia. Stroke 2007; 38:2241-2246.
    [8] Um JY, Lee JH, Joo JC, et al. Association between tumor necrosis factor-alpha gene polymorphism and Sasang constitution in cerebral infarction. Am J Chin Med 2005; 33:547-557.
    [9] Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 2002; 69:94-103.
    [10] Hashimoto T, Wen G, Lawton MT, et al. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke 2003; 34:925-931.
    [11] Nijboer CH, Heijnen CJ, Groenendaal F, van Bel F, Kavelaars A. Alternate pathways preserve tumor necrosis factor-alpha production after nuclear factor-kappaB inhibition in neonatal cerebral hypoxia-ischemia. Stroke 2009; 40:3362-3368.
    [12] Tuttolomondo A, Di Sciacca R, Di Raimondo D, et al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOASTsubtype, outcome and infarct site. J Neuroimmunol 2009; 215:84-89.
    [13] Reich K, Mossner R, Konig IR, Westphal G, Ziegler A, Neumann C. Promoter polymorphisms of the genes encoding tumor necrosis factor-alpha and interleukin-1beta are associated with different subtypes of psoriasis characterized by early and late disease onset. J Invest Dermatol 2002; 118:155-163.
    [14] Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997; 94:3195-3199.
    [15] Vicari P, Silva GS, Nogutti MA, et al. Absence of Association between TNF-alpha Polymorphism and Cerebral Large-Vessel Abnormalities in Adults with Sickle Cell Anemia. Acta Haematol 2010;125:141-144.
    [16] Aller R, de Luis DA, Izaola O, et al. G308A polymorphism of TNF-alpha gene is associated with insulin resistance and histological changes in non alcoholic fatty liver disease patients. Ann Hepatol 2010;9:439-44.
    [17] Zhan P, Wang J, Wei SZ, et al. TNF-308 gene polymorphism is associated with COPD risk among Asians: meta-analysis of data for 6,118 subjects. Mol Biol Rep 2010;38:219-27.
    [18] Anvari M, Khalilzadeh O, Esteghamati A, et al. Graves' disease and gene polymorphism of TNF-alpha, IL-2, IL-6, IL-12, and IFN-gamma. Endocrine;2010 37:344-8.
    [19] Takahashi T, Takahashi K, Yamashina M, et al. Association of the TNF-{alpha}-C-857T polymorphism with resistance to the cholesterol-lowering effect of HMG-CoA reductase inhibitors in type 2 diabetic subjects. Diabetes Care 2010;33:463-6.
    [20] Jung JH, Chae YS, Moon JH, et al. TNF superfamily gene polymorphism as prognostic factor in early breast cancer. J Cancer Res Clin Oncol 2010;136:685-94.
    [21] Kilpelainen TO, Laaksonen DE, Lakka TA, et al. The rs1800629 polymorphism in the TNF gene interacts with physical activity on the changes in C-reactive protein levels in the Finnish Diabetes Prevention Study. Exp Clin Endocrinol Diabetes 2010;118:757-9.
    [22] Dichgans M. Genetics of ischaemic stroke. Lancet Neurol 2007; 6:149-161.
    [23] Kouwenhoven M, Carlstrom C, Ozenci V, Link H. Matrix metalloproteinase and cytokine profiles in monocytes over the course of stroke. J Clin Immunol 2001; 21:365-375.
    [24] Chao CC, Hu S, Ehrlich L, Peterson PK. Interleukin-1 and tumor necrosis factor-alphasynergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 1995; 9:355-365.
    [25] Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 1992; 263:C1-16.
    [26] Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 1995; 26:676-681.
    [27] Bruce AJ, Boling W, Kindy MS, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2:788-794.
    [28] Castillo J, Moro MA, Blanco M, et al. The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke. Ann Neurol 2003; 54:811-819.
    [29] Kroeger KM, Carville KS, Abraham LJ. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 1997; 34:391-399.
    [30] Bouma G, Xia B, Crusius JB, et al. Distribution of four polymorphisms in the tumour necrosis factor (TNF) genes in patients with inflammatory bowel disease (IBD). Clin Exp Immunol 1996; 103:391-396.
    [31] Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997; 94:3195-3199.
    [32] Vogelgesang A, May VE, Grunwald U, et al. Functional status of peripheral blood T-cells in ischemic stroke patients. PLoS One; 5:e8718.
    [33] Grove J, Daly AK, Bassendine MF, Day CP. Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis. Hepatology 1997; 26:143-146.
    [34] Um JY, An NH, Kim HM. TNF-alpha and TNF-beta gene polymorphisms in cerebral infarction. J Mol Neurosci 2003; 21:167-171.
    [35] Um JY, Kim HM. Tumor necrosis factor alpha gene polymorphism is associated with cerebral infarction. Brain Res Mol Brain Res 2004; 122:99-102.
    [36] Shi KL, He B, Wang JJ, Zou LP. Role of TNF-alpha gene variation in idiopathic childhood ischemic stroke: a case-control study. J Child Neurol 2009; 24:25-29.
    [1] Weyrich AS, Skalabrin EJ, Kraiss LW. Targeting the inflammatory response in secondary stroke prevention: a role for combining aspirin and extended-release dipyridamole. Am J Ther 2009; 16:164-170.
    [2] Kashyap RS, Nayak AR, Deshpande PS, et al. Inter-alpha-trypsin inhibitor heavy chain 4 is a novel marker of acute ischemic stroke. Clin Chim Acta 2009; 402:160-163.
    [3] Castillo J, Alvarez-Sabin J, Martinez-Vila E, Montaner J, Sobrino T, Vivancos J. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol 2009; 256:217-224.
    [4] Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 2009; 117:497-509.
    [5] Kang DW, Yoo SH, Chun S, et al. Inflammatory and hemostatic biomarkers associated with early recurrent ischemic lesions in acute ischemic stroke. Stroke 2009; 40:1653-1658.
    [6] Um JY, Kim HM. Polymorphisms of RANTES and IL-4 genes in cerebral infarction. J Mol Neurosci 2009; 37:1-5.
    [7] Vandenbroeck K, Martino G, Marrosu M, et al. Occurrence and clinical relevance of an interleukin-4 gene polymorphism in patients with multiple sclerosis. J Neuroimmunol 1997; 76:189-192.
    [8] Olsson T. Cytokine-producing cells in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurology 1995; 45:S11-15.
    [9] Dinarello CA. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 2000; 343:732-734.
    [10] Skinner RA, Gibson RM, Rothwell NJ, Pinteaux E, Penny JI. Transport of interleukin-1 across cerebromicrovascular endothelial cells. Br J Pharmacol 2009; 156:1115-1123.
    [11] Jerrard-Dunne P, Sitzer M, Risley P, Buehler A, von Kegler S, Markus HS. Inflammatory gene load is associated with enhanced inflammation and early carotid atherosclerosis in smokers. Stroke 2004; 35:2438-2443.
    [12] Bessler H, Osovsky M, Beilin B, Alcalay Y, Sirota L. The existence of gender difference in IL-1Ra gene polymorphism. J Interferon Cytokine Res 2007; 27:931-935.
    [13] Hurme M, Lahdenpohja N, Santtila S. Gene polymorphisms of interleukins 1 and 10 ininfectious and autoimmune diseases. Ann Med 1998; 30:469-473.
    [14] Mansfield JC, Holden H, Tarlow JK, et al. Novel genetic association between ulcerative colitis and the anti-inflammatory cytokine interleukin-1 receptor antagonist. Gastroenterology 1994; 106:637-642.
    [15] Francis SE, Camp NJ, Dewberry RM, et al. Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation 1999; 99:861-866.
    [16] Haneda S, Nagaoka K, Nambo Y, et al. Interleukin-1 receptor antagonist expression in the equine endometrium during the peri-implantation period. Domest Anim Endocrinol 2009; 36:209-218.
    [17] Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356:1517-1526.
    [18] Andreas K, Haupl T, Lubke C, et al. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther 2009; 11:R15.
    [19] Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1beta genes. Eur J Immunol 1998; 28:2598-2602.
    [20] Witkin SS, Gerber S, Ledger WJ. Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin Infect Dis 2002; 34:204-209.
    [21] Syrjanen J, Valtonen VV, Iivanainen M, Kaste M, Huttunen JK. Preceding infection as an important risk factor for ischaemic brain infarction in young and middle aged patients. Br Med J (Clin Res Ed) 1988; 296:1156-1160.
    [22] Zeller JA, Lenz A, Eschenfelder CC, Zunker P, Deuschl G. Platelet-leukocyte interaction and platelet activation in acute stroke with and without preceding infection. Arterioscler Thromb Vasc Biol 2005; 25:1519-1523.
    [23] Lindsberg PJ, Grau AJ. Inflammation and infections as risk factors for ischemic stroke. Stroke 2003; 34:2518-2532.
    [24] Steinbrugger I, Haas A, Maier R, et al. Analysis of inflammation- and atherosclerosis-related gene polymorphisms in branch retinal vein occlusion. Mol Vis 2009; 15:609-618.
    [25] Markus HS, Labrum R, Bevan S, et al. Genetic and acquired inflammatory conditions are synergistically associated with early carotid atherosclerosis. Stroke 2006; 37:2253-2259.
    [26] Worrall BB, Azhar S, Nyquist PA, Ackerman RH, Hamm TL, DeGraba TJ. Interleukin-1 receptor antagonist gene polymorphisms in carotid atherosclerosis. Stroke 2003; 34:790-793.
    [27] Lalouschek W, Schillinger M, Hsieh K, et al. Polymorphisms of the inflammatory system and risk of ischemic cerebrovascular events. Clin Chem Lab Med 2006; 44:918-923.
    [28] Tso AR, Merino JG, Warach S. Interleukin-6 174G/C polymorphism and ischemic stroke: a systematic review. Stroke 2007; 38:3070-3075.
    [29] Yamada Y, Ichihara S, Nishida T. Proinflammatory gene polymorphisms and ischemic stroke. Curr Pharm Des 2008; 14:3590-3600.
    [30] Peeters W, Hellings WE, de Kleijn DP, et al. Carotid atherosclerotic plaques stabilize after stroke: insights into the natural process of atherosclerotic plaque stabilization. Arterioscler Thromb Vasc Biol 2009; 29:128-133.
    [31] Fischer E, Van Zee KJ, Marano MA, et al. Interleukin-1 receptor antagonist circulates in experimental inflammation and in human disease. Blood 1992; 79:2196-2200.
    [32] Lennard A, Gorman P, Carrier M, et al. Cloning and chromosome mapping of the human interleukin-1 receptor antagonist gene. Cytokine 1992; 4:83-89.
    [33] Tarlow JK, Blakemore AI, Lennard A, et al. Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum Genet 1993; 91:403-404.
    [34] Hyams JS, Fitzgerald JE, Wyzga N, Treem WR, Justinich CJ, Kreutzer DL. Characterization of circulating interleukin-1 receptor antagonist expression in children with inflammatory bowel disease. Dig Dis Sci 1994; 39:1893-1899.
    [35] Chomarat P, Vannier E, Dechanet J, et al. Balance of IL-1 receptor antagonist/IL-1 beta in rheumatoid synovium and its regulation by IL-4 and IL-10. J Immunol 1995; 154:1432-1439.
    [36] Santtila S, Savinainen K, Hurme M. Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol 1998; 47:195-198.
    [37] Blakemore AI, Tarlow JK, Cork MJ, Gordon C, Emery P, Duff GW. Interleukin-1 receptor antagonist gene polymorphism as a disease severity factor in systemic lupus erythematosus. Arthritis Rheum 1994; 37:1380-1385.
    [38] Worrall BB, Brott TG, Brown RD, Jr., et al. IL1RN VNTR polymorphism in ischemicstroke: analysis in 3 populations. Stroke 2007; 38:1189-1196.
    [39] Seripa D, Dobrina A, Margaglione M, et al. Relevance of interleukin-1 receptor antagonist intron-2 polymorphism in ischemic stroke. Cerebrovasc Dis 2003; 15:276-281.
    [40] Cvetkovic JT, Wiklund PG, Ahmed E, Weinehall L, Hallmans G, Lefvert AK. Polymorphisms of IL-1beta, IL-1Ra, and TNF-alpha genes: a nested case-control study of their association with risk for stroke. J Stroke Cerebrovasc Dis 2005; 14:29-35.
    1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119:e21-181.
    2. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol 2007; 6:456-464.
    3. Bak S, Gaist D, Sindrup SH, Skytthe A, Christensen K. Genetic liability in stroke: a long-term follow-up study of Danish twins. Stroke 2002; 33:769-774.
    4. Liao D, Myers R, Hunt S, et al. Familial history of stroke and stroke risk: the Family Heart Study. Stroke 1997;28:1908-12.
    5. Jousilahti P, Rastenyte D, Tuomilehto J, Sarti C, Vartiainen E. Parental history of cardiovascular disease and risk of stroke. A prospective follow-up of 14371 middle-aged men and women in Finland. Stroke 1997; 28:1361-1366.
    6. Goracy I, Cyrylowski L, Kaczmarczyk M, Fabian A, Koziarska D, Goracy J, Ciechanowicz A. C677t polymorphism of the methylenetetrahydrofolate reductase gene and the risk of ischemic stroke in polish subjects. J Appl Genet. 2009;50:63-67
    7. Moe KT, Woon FP, De Silva DA, Wong P, Koh TH, Kingwell B, Chin-Dusting J, Wong MC. Association of acute ischemic stroke with the mthfr c677t polymorphism but not with nos3 gene polymorphisms in a singapore population. Eur J Neurol. 2008;15:1309-1314
    8. Shi C, Kang X, Wang Y, Zhou Y. The coagulation factor V Leiden, MTHFRC677T variant and eNOS 4ab polymorphism in young Chinese population with ischemic stroke. Clin Chim Acta 2008; 396:7-9.
    9. Hong SH, Park HM, Ahn JY, et al. ACE I/D polymorphism in Korean patients with ischemic stroke and silent brain infarction. Acta Neurol Scand 2008; 117:244-249.
    10. Cheng J, Liu J, Li X, Peng J,et al. Insulin-like growth factor-1 receptor polymorphism and ischemic stroke: a case–control study in Chinese population.Acta Neurol Scand, 2008,118: 333–8
    11. Han S, Peng J, Zhang R, et al. Lack of association of GH T1663A variation and IGFBP3-202A/C polymorphism with risk of ischemic stroke in Chinese.Clin Chem LabMed, 2008, 46(7):1056-8.
    12. Dichgans M. Genetics of ischaemic stroke. Lancet Neurol 2007; 6:149-161.
    13. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921.
    14. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291:1304-1351.
    15. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308:385-389.
    16.Rosskopf D, Bornhorst A, Rimmbach C, et al. Comment on "A common genetic variant is associated with adult and childhood obesity". Science 2007; 315(5809):187.
    17.Herbert A, Gerry NP, McQueen MB, et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312:279-283.
    18. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316:1341-1345.
    19. Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316:1331-1336.
    20. Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem 2006; 281:28858-28864.
    21. Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 2005; 19:387-396.
    22. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-678.
    23. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357:443-453.
    24. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007; 316:1488-1491.
    25. Kruglyak L. Power tools for human genetics. Nat Genet 2005; 37:1299-1300.
    26. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet 2005; 37:1217-1223.
    27. Zeggini E, Rayner W, Morris AP, et al. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 2005;37:1320-1322.
    28. Goldstein DB, Cavalleri GL. Genomics: understanding human diversity. Nature 2005; 437:1241-1242.
    29. Maraganore DM, de Andrade M, Lesnick TG, et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 2005; 77:685-693.
    30. Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat Genet 2006; 38:659-662.
    31. Nicolae DL, Wen X, Voight BF, Cox NJ. Coverage and characteristics of the Affymetrix GeneChip Human Mapping 100K SNP set. PLoS Genet 2006; 2:e67.
    32. Magi R, Pfeufer A, Nelis M, Montpetit A, Metspalu A, Remm M. Evaluating the performance of commercial whole-genome marker sets for capturing common genetic variation. BMC Genomics 2007; 8:159.
    33. Bansal A, van den Boom D, Kammerer S, et al. Association testing by DNA pooling: an effective initial screen. Proc Natl Acad Sci U S A 2002; 99:16871-16874.
    34. Wang H, Thomas DC, Pe'er I, Stram DO. Optimal two-stage genotyping designs for genome-wide association scans. Genet Epidemiol 2006; 30:356-368.
    35. Zuo Y, Zou G, Zhao H. Two-stage designs in case-control association analysis. Genetics 2006; 173:1747-1760.
    36. Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. N Engl J Med 2009; 360:1718-1728.
    37. Zhang, S, Dailey, G. M, Kwan, E, et al. An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion, Genes Dev, 2006, 20: 1899-1910.
    38. Moon, A. R, Oh, G. T, Kim, J. W, et al. Genomic DNA sequence and transcription factor binding sites of mouse ninjurin, DNA Seq, 2001, 12: 385-395.
    39. Mandich, P, Bellone, E, Di Maria, E, et al. Exclusion of the ninjurin gene as a candidate for hereditary sensory neuropathies type I and type II, Am J Med Genet, 1999, 83: 409-410.
    40. Araki, T. and Milbrandt, J. Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth, J Neurosci, 2000, 20: 187-195.
    41. Araki, T, Zimonjic, D. B, et al. Mechanism of homophilic binding mediated by ninjurin,a novel widely expressed adhesion molecule, J Biol Chem, 1997, 272: 21373-21380.
    42. Araki, T and Milbrandt, J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth, Neuron, 1996, 17: 353-361.
    43. Jerregard, H.Sensory neurons influence the expression of cell adhesion factors by cutaneous cells in vitro and in vivo, J Neurocytol, 2001, 30: 327-336.
    44. Dimou, L, Schnell, L, Montani, L, et al. Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration, J Neurosci, 2006, 26: 5591-5603.
    45. Seilheimer, B and Schachner, M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture, J Cell Biol, 1988, 107: 341-351.
    46. Wilson, F. H, Disse-Nicodeme, S, et al. Human hypertension caused by mutations in WNK kinases, Science, 2001, 293: 1107-1112.
    47. Eladari, D. and Chambrey, R. WNKs: new concepts in the regulation of NaCl and K+ balance, J Nephrol, 2007, 20: 260-264.
    48. Deaton, S. L, Sengupta, S and Cobb, M. H. WNK kinases and blood pressure control, Curr Hypertens Rep, 2009, 11: 421-426.
    49. Wilson, F. H, Disse-Nicodeme, S, Choate, K. A, et al. Human hypertension caused by mutations in WNK kinases, Science, 2001, 293: 1107-1112.
    50. Newhouse, S, Farrall, M, Wallace, C, et al. Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion, PLoS One, 2009, 4: e5003.
    51. Tobin, M. D, Raleigh, S. M, Newhouse, S, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population, Circulation, 2005, 112: 3423-3429.
    52. Zheng, L, Sun, Z, Li, J, et al. Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of China, Stroke, 2008, 39: 1932-1937.
    [1]Moore JH, Ritchie MD. STUDENTJAMA. The challenges of whole-genome approaches to common diseases. JAMA 2004; 291:1642-1643.
    [2] Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 2003; 56:73-82.
    [3]Lahmann NA, Tannen A, Dassen T, Kottner J. Friction and shear highly associated with pressure ulcers of residents in long-term care - Classification Tree Analysis (CHAID) of Braden items. J Eval Clin Pract; 17:168-173.
    [4]Koyuncugil AS, Ozgulbas N. Detecting road maps for capacity utilization decisions by Clustering Analysis and CHAID Decision Trees. J Med Syst; 34:459-469.
    [5]Horner SB, Fireman GD, Wang EW. The relation of student behavior, peer status, race, and gender to decisions about school discipline using CHAID decision trees and regression modeling. J Sch Psychol; 48:135-161.
    [6]Stevenson JC, Mahoney ER, Walker PL, Everson PM. Technical note: prediction of sex based on five skull traits using decision analysis (CHAID). Am J Phys Anthropol 2009; 139:434-441.
    [7]Chan F, Cheing G, Chan JY, Rosenthal DA, Chronister J. Predicting employment outcomes of rehabilitation clients with orthopedic disabilities: a CHAID analysis. Disabil Rehabil 2006; 28:257-270.
    [8]Sargeant A, McKenzie J. The lifetime value of donors: gaining insight through CHAID. Fund Raising Manage 1999; 30:22-27.
    [9]Hill DA, Delaney LM, Roncal S. A chi-square automatic interaction detection (CHAID) analysis of factors determining trauma outcomes. J Trauma 1997; 42:62-66.
    [10] Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 2003; 24:150-157.
    [11] Brassat D, Motsinger AA, Caillier SJ, et al. Multifactor dimensionality reduction reveals gene-gene interactions associated with multiple sclerosis susceptibility in African Americans. Genes Immun 2006; 7:310-315.
    [12] Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software fordetecting gene-gene and gene-environment interactions. Bioinformatics 2003; 19:376-382.
    [13] Lu Y, Ye X, Cao Y, et al. Genetic variants in peroxisome proliferator-activated receptor-gamma and retinoid X receptor-alpha gene and type 2 diabetes risk: a case-control study of a Chinese Han population. Diabetes Technol Ther; 13:157-164.
    [14] Gui J, Andrew AS, Andrews P, et al. A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet; 75:20-28.
    [15]Gui J, Moore JH, Kelsey KT, Marsit CJ, Karagas MR, Andrew AS. A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. Hum Genet; 129:101-110.
    [16] Park J, Kim Y, Lee C. Identification of epistasis in ischemic stroke using multifactor dimensionality reduction and entropy decomposition. BMB Rep 2009; 42:617-622.
    [17] Milne RL, Fagerholm R, Nevanlinna H, Benitez J. The importance of replication in gene-gene interaction studies: multifactor dimensionality reduction applied to a two-stage breast cancer case-control study. Carcinogenesis 2008; 29:1215-1218.
    [18] Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001; 69:138-147.
    [19] Cho YM, Ritchie MD, Moore JH, et al. Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia 2004; 47:549-554.
    [20] Lou XY, Chen GB, Yan L, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 2007; 80:1125-1137.
    [21] Sayed-Tabatabaei FA, Schut AF, Hofman A, et al. A study of gene--environment interaction on the gene for angiotensin converting enzyme: a combined functional and population based approach. J Med Genet 2004; 41:99-103.
    [22] Sun L, Li Z, Zhang H, et al. Pentanucleotide TTTTA repeat polymorphism of apolipoprotein(a) gene and plasma lipoprotein(a) are associated with ischemic and hemorrhagic stroke in Chinese: a multicenter case-control study in China. Stroke 2003; 34:1617-1622.
    [23]Hsieh AR, Hsiao CL, Chang SW, Wang HM, Fann CS. On the use of multifactor dimensionality reduction (MDR) and classification and regression tree (CART) to identify haplotype-haplotype interactions in genetic studies. Genomics; 97:77-85.
    [24]Moore JH. Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction. Adv Genet; 72:101-116.
    [25]Gui J, Andrew AS, Andrews P, et al. A simple and computationally efficient sampling approach to covariate adjustment for multifactor dimensionality reduction analysis of epistasis. Hum Hered; 70:219-225.
    [26]Cattaert T, Urrea V, Naj AC, et al. FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PLoS One; 5:e10304.
    [27]Park J, Kim Y, Lee C. Identification of epistasis in ischemic stroke using multifactor dimensionality reduction and entropy decomposition. BMB Rep 2009; 42:617-622.
    [28]Kim Y, Park J, Lee C. Multilocus genotypic association with vascular dementia by multifactor dimensionality reduction and entropy-based estimation. Psychiatr Genet 2009; 19:253-258.
    [29]Namkung J, Elston RC, Yang JM, Park T. Identification of gene-gene interactions in the presence of missing data using the multifactor dimensionality reduction method. Genet Epidemiol 2009; 33:646-656.
    [30]Namkung J, Kim K, Yi S, Chung W, Kwon MS, Park T. New evaluation measures for multifactor dimensionality reduction classifiers in gene-gene interaction analysis. Bioinformatics 2009; 25:338-345.
    [31]Edwards TL, Lewis K, Velez DR, Dudek S, Ritchie MD. Exploring the performance of Multifactor Dimensionality Reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models. Hum Hered 2009; 67:183-192.
    [32]Milne RL, Fagerholm R, Nevanlinna H, Benitez J. The importance of replication in gene-gene interaction studies: multifactor dimensionality reduction applied to a two-stage breast cancer case-control study. Carcinogenesis 2008; 29:1215-1218.
    [1] Farrer LA, Cupples LA, Haines JL, et al.Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium[J].JAMA,1997,278:1349-1356.
    [2] McColl BW, Graham DI, Weir CJ,et al. Endocytic pathway alterations in human hippocampus after global ischemia and the influence of APOE genotype[J].Am J Pathol,2003,162:273-281.
    [3] Kitagawa K, Matsumoto M, Hori M, et al. Neuroprotective effect of apolipoprotein E against ischemia[J].Ann N Y Acad Sci, 2002,977:468-475.
    [4] Kitagawa K, Matsumoto M, Kuwabara K,et al. Protective effect of apolipoprotein E against ischemic neuronal injury is mediated through antioxidant action[J].J Neurosci Res, 2002,68:226-232.
    [5]Mori T, Kobayashi M, Town T, et al. Increased vulnerability to focal ischemic brain injury in human apolipoprotein E4 knock-in mice [ J ] .J Neuropathol Exp Neurol, 2003,62:280-291.
    [6]Kim JS, Han SR, Chung SW, et al. The apolipoprotein E epsilon 4 haplotype is animportant predictor for recurrence in ischemic cerebrovascular disease[J].J Neurol Sci, 2003,206:31-37.
    [7]Delghandi M, Thangarajah R, Nilsen M,et al. DNA polymorphisms of the apolipoprotein B gene (XbaI, EcoRI, and MspI RFLPs) in Norwegians at risk of atherosclerosis and healthy controls[J].Acta Cardiol,1999,54:215-225.
    [8]Cavalli SA, Hirata MH, Salazar LA,et al. Apolipoprotein B gene polymorphisms: prevalence and impact on serum lipid concentrations in hypercholesterolemic individuals from Brazil[J].Clin Chim Acta, 2000,302:189-203.
    [9]Valerio De Stefano, Patrizia Chiusolo, Katia Paciaroni,etal. Prothrombin G20210A Mutant Genotype Is a Risk Factor for Cerebrovascular Ischemic Disease in Young Patients [J]. Blood, 1998,91( 10 ): 3562-3565.
    [10]Bonduel M, Sciuccati G, Hepner M,et al. Factor V Leiden and prothrombin gene G20210A mutation in children with cerebral thromboembolism [ J ] .Am J Hematol,2003,73:81-86.
    [11]Corral J.Gonzalez-Cone jero R.Iniesta JA Factor(ⅹⅩ) Va134Leu polymorphism in primary intracerebral haemorrhage [J].Haematologica,2000,1(4) :269-273.
    [12]Corral J.Iniesta JA.Gonzalez-Conejero R Factor (ⅹⅩ) Va134Leu polymorphism in venous and arterial thromboembolism [J]. Haematologica 2000,85(3) :293-297.
    [13] Reiner AP.Schwartz SM.Frank MB Polymorhpisms of coagulation (ⅫⅫ) factor subunit A and risk of nonfatal hemorrhagic stroke in young white women [J]Stroke,2001,32(11):2580-2586.
    [14]Gao X, Yang H, ZhiPing T. Association studies of genetic polymorphism, environmental factors and their interaction in ischemic stroke[J].Neurosci Lett. 2006,398(3):172-7.
    [15] Reiner AP, Kumar PN, Schwartz SM,et al. Genetic variants of platelet glycoprotein receptors and risk of stroke in young women[J].Stroke,2000;31:1628-1633.
    [16] Gonzalez-Cone jero R.Lozano ML.Rivera J Polymorphisms of platelet membrane glycoprotein IB associated with arterial thrombotic disease[J]. Blood;1998;92(8):2771-2776
    [17]Sonoda A, Murata M, Ito D, et al. association between platelet glycoprotein Ibalpha genotype and ischemic cerebrovascular diseas[J].Stroke,2000,31:493-497.
    [18] Carter AM.Catto AJ.Bamford JM Platelet GPⅩa PLA and GP Ib variable number tandem trpeat polymorphisms and markers of platelet activation in acute stroke[J]. Arterioscler Thromb Vasc Biol,1998;18(7):1124-1131
    [19] Xu X, Li J, Sheng W, Liu LMeta-analysis of genetic studies from journals published in China of ischemic stroke in the Han Chinese population[J]. Cerebrovasc Dis. 2008;26(1):48-62.
    [20]Roest M,Schouw YT, and Banga JD Plasiminogen activator inhibitor4G polymorphism is associated with decreased risk of cerebrovascular mortality in older women[J].Corculation, 2000;101(1),67-70.
    [21]Rubattu S.Iee-Kirsch MA.De paolis P Altered structuer,regulation and function of the gene encoding the atrial natriuretic piptide in the stroke-prone spontaneously hypertensive rat[J]. Cie Res1999;85(10):900-905.
    [22] Rubattu S.Ridker P.Stampfer MJ The gene encoding atrial natriuretic prtide and the risk of human stroke[J] .Circulation,1999;100(16),1722-26.
    [23]Rubattu S, Stanzione R, Di Angelantonio E, etal.Atrial natriuretic peptide gene polymorphisms and risk of ischemic stroke in humans[J]. Stroke, 2004;35(4):814-8.
    [24]Elbaz A, Poirier O, Moulin T,et al. association between the Glu298asp polymorphism in the endothelial constitutive nitric oxide synthase gene and brain infarction. The GENIC Investigators[J].Stroke,2000;31:1634-1639.
    [25]Hou L.Osei Hyiaman D.Yu H Association of a 27bp repeat polymorphism in eNOS gene with ischemic stroke in Chinese patients[J].Neurology ,2001;56(4):490-496.
    [26]Cheng J, Liu J, Li X,etal.Effect of polymorphisms of endothelial nitric oxide synthase on ischemic stroke: a case-control study in a Chinese population [J]. Clin Chim Acta. 2008 ,1(1-2):46-51.
    [27] Sharma P Meta-analysis of the ACE gene in ischaemic stroke[J]. J Neurol Neurosurg Psychiatry ,1998;64(2) :227-230
    [28]Nakase T, Mizuno T, Harada S,etal.Angiotensinogen gene polymorphism as a risk factor for ischemic stroke[J]. J Clin Neurosci.. 2007;14(10):943-7.
    [29]. Takami S.Imai Y.Katsuya T Gene polymorphism of the renin angiotensin system associates with risk for lacunar infarction.The Ohasama study [J].Am JHypertens.2000:13(2)121-127
    [30]Hong SH, Park HM, Ahn JY,etal.ACE I/D polymorphism in Korean patients with ischemic stroke and silent brain infarction[J]. Acta Neurol Scand. 2008;117(4):244-9.
    [31]Pera J, Slowik A, etal.ACE I/D polymorphism in different etiologies of ischemic stroke. ACE I/D polymorphism in different etiologies of ischemic stroke[J]. Acta Neurol Scand. 2006;114(5):320-2.
    [32]Kellyp J.Rosand J.Kistlerj P. Homocysteine MTHFR677C/T polymorphism and risk of ischemic stroke:results of a meta-analysis[J]. Neurology,2002;59(4):529-536.
    [33]Goracy I, Cyrylowski L, Kaczmarczyk M, etal.C677T polymorphism of the methylenetetrahydrofolate reductase gene and the risk of ischemic stroke in Polish subjects[J]. J Appl Genet. 2009;50(1):63-67.
    [34]Moe KT, Woon FP, De Silva DA,etal.polymorphism but not with NOS3 gene polymorphisms in a Singapore population[J]. Eur J Neurol. 2008;15(12):1309-14.
    [35]Cheng J, Liu J, Li X,etal。Insulin-like growth factor-1 receptor polymorphism and ischemic stroke: a case-control study in Chinese population[J]. Acta Neurol Scand.2008;118(5):333-8.
    [36] Liu J, Cheng J, Peng J,etal.Effects of polymorphisms of heat shock protein 70 gene on ischemic stroke, and interaction with smoking in China. Clin Chim Acta. 2007 Sep;384(1-2):64-8.
    [37]Mouw G, Zechel JL, Zhou Y, et al. Caspase-9 inhibition after focal cerebral ischemia improves outcome following reversible focal ischemia [ J ] .Metab Brain Dis,2002,17:143-151.
    [38] Skvortsova VI, Slominsky PA, Gubskii LV, etal. Connection between p53 gene Bam HI RFLP polymorphism with the volume of brain infarction in patients with carotid atherothrombotic ischemic stroke.[J]Restor Neurol Neurosci. 2004;22(2):81-5.
    [39] Latisha Love-Gregory, Richard Sherva, Lingwei Sun etal. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol[J].Human Molecular Genetics ,2008; 17(11):1695-1704
    [40] Fatar M, Stroick M, Steffens M Single-nucleotide polymorphisms of MMP-2 gene in stroke subtypes[J]. Cerebrovasc Dis. 2008;26(2):113-9.
    [41]Huang X, Zhu M, Jin Xetal. Association of matrix metalloproteinase-3 serum level and the promoter 5A/6A polymorphism of the MMP-3 gene with atherosclerotic cerebral infarction[J] Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008 Dec;25(6):653-6.
    [42]Flex A, Gaetani E, Papaleo P, etal.Proinflammatory genetic profiles in subjects with history of ischemic stroke[J].Stroke. 2004 Oct;35(10):2270-5.
    [43]Naganuma T, Nakayama T, Sato N etal.Hereditas. Association of extracellular superoxide dismutase gene with cerebral infarction in women: a haplotype-based case-control study[J].2008 Dec;145(6):283-92.
    [44]Naganuma T, Nakayama T, Sato N,etal. A haplotype-based case-control study examining human extracellular superoxide dismutase gene and essential hypertension[J]. Hypertens Res. 2008;31(8):1533-40.
    [45] Lee BC, Lee HJ, Chung JH.Peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes[J]. Neurosci Lett. 2006;410(2):141-5.
    [46]Ek J, Andersen G, Urhammer SA,etal. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians[J]. Diabetologia. 2001;44(9):1170-6.
    [47]Banerjee I, Gupta V, Ahmed T, etal. Inflammatory system gene polymorphism and the risk of stroke: a case-control study in an Indian population [J] Brain Res Bull. 2008 Jan;75(1):158-65.
    [48]Kostulas K, Gretarsdottir S, Kostulas V,etal. PDE4D and ALOX5AP genetic variants and risk for Ischemic Cerebrovascular Disease in Sweden [J]. J Neurol Sci. 2007;263(1-2):113-7.
    [49]Bevan S, Dichgans M, Gschwendtner A, etal. Variation in the PDE4D gene and ischemic stroke risk: a systematic review and meta-analysis on 5200 cases and 6600 controls [J] Stroke. 2008 l;39(7):1966-71.
    [50]Iacoviello L, Di Castelnuovo A, Gattone M,etal. Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro[J]. Arterioscler Thromb Vasc Biol. 2005;25(4):222-7
    [51]Lai J, Zhou D, Xia S, etal. Association of interleukin-1 gene cluster polymorphisms with ischemic stroke in a Chinese population[J].Neurol India.2006;54(4):366-9.
    [52]Lee BC, Ahn SY, Doo HK,etal. Susceptibility for ischemic stroke in Korean population is associated with polymorphisms of the interleukin-1 receptor antagonist and tumor necrosis factor-alpha genes, but not the interleukin-1beta gene. Neurosci Lett. 2004;357(1):33-6.
    [53]Seripa D, Dobrina A, Margaglione M,etal. Relevance of interleukin-1 receptor antagonist intron-2 polymorphism in ischemic stroke[J].
    [54] Ross R,etal. Atherosclerosis is an inflammatory disease[J]. Am Heart J, 1999, 138(11):5419-5420.
    [55] Lee A C, Tadayoshi N, Michael E R, etal. Tumor necrosis factor alpha plays a role in the acceleration of atherosclerosis by chlamydia pneumoniae in mice[J]. Infection and Immunity, 2005, 73(5): 3164-3165.
    [56] Canault M, Peiretti F, Poggi M, etal. Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha[J]. J Pathol, 2008, 214(5):574-583.
    [57] Sbarsi I, Falcone C, Boiocchi C, etal. Inflammation and atherosclerosis: the role of TNF and TNF receptors polymorphisms in coronary artery disease[J]. Int J Immunopathol Pharmacol, 2007;20(1): 145-154.
    [58] Schulz S, Schagdarsurengin U, Rehfeld D, etal. Genetic impact of TNF-beta on risk factors for coronary atherosclerosis[J]. Eur Cytokine Netw, 2006;17(3):148-154.
    [59] Liu S L, Li Y H, Shi G,etal. A novel inhibitory effect of naloxone on macrophage activation and atherosclerosis formation in mice[J]. J. Am. Coll.Cardiol., 2006, 48: 1871-1879.
    [60] Peppel K, Zhang L, Orman EO, etal. Activation of vascular smooth muscle cells by TNF and PDGFoverlapping and distinct signal transduction mechanisms[J].Cardiovasc Res, 2005, 65: 674-682.
    [61] Zhou Z, Connell MC, and MacEwan DJ. TNFRl-induced NF-kappaB, but not ERK, p38MAPK or JNK activation mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells[J]. Cell Signal, 2007, 19(6): 1238-1248. Cerebrovasc Dis. 2003;15(4):276-81.
    [62] Hoppe C, Klitz W, D'Harlingue K,etal.Confirmation of an association between the TNF(-308) promoter polymorphism and stroke risk in children with sickle cell anemia [J]. Stroke. 2007;38(8):2241-6.
    [63] Harcos P, Laki J, Kiszel P, etal. Decreased frequency of the TNF2 allele of TNF-alpha -308 promoter polymorphism is associated with lacunar infarction[J].Cytokine.2006;33 (2):100-5.
    [64] Rubattu S, Speranza R, Ferrari M, etal. A role of TNF-alpha gene variant on juvenile ischemic stroke: a case-control study[J].Eur J Neurol. 2005;12(12):989-93.
    [65] Robertson A K L., Rudling M, Zhou X h, etal. Disruption of TGF-βsignaling in T cells accelerates atherosclerosis[J]. J Clin Invest, 2003, 112: 1342-1350.
    [66]HanssonGK, RobertsonAKL,finger D J. TGFβin atherosclerosis[J].Arterioscler Thromb Vasc Biol, 2004, 24: 137-138.
    [67] Ishisaki A, Matsuno H. Novel ideas of gene therapy for atherosclerosis:modulation of cellular signal transduction of TGF-beta family. Curr Pharm Des,2006, 12(7):877-886.
    [68]Kim Y, Lee C,etal. The gene encoding transforming growth factor beta 1 confers risk of ischemic stroke and vascular dementia[J]. Stroke. 2006;37(11):2843-5.
    [69] Betsholtz C. Insight into the Biological functions of PDGF through genetic studies in mice[J]. Cytokine Growth Factor Rev, 2004, 15: 215-228.
    [70] Han SH, Liu JP, Tan A,etal. Association of platelet-derived growth factor-D gene polymorphism with ischemic stroke in a Chinese case-control study[J].Blood Coagul Fibrinolysis. 2008 ;19(5):415-9.
    [71] Wang Q, Ding H, Tang JR, etal. C-reactive protein polymorphisms and genetic susceptibility to ischemic stroke and hemorrhagic stroke in the Chinese Han population[J].Acta Pharmacol Sin. 2009;30(3):291-8.
    [72] Ben-Assayag E, Shenhar-Tsarfaty S, Bova I,etal.Triggered C-reactive protein (CRP) concentrations and the CRP gene-717A>Gpolymorphism in acute stroke or transient ischemic attack[J]. Eur J Neurol.2007;14(3):315-20.
    [73] Liu ZZ, Lv H, Gao F,etal. Polymorphism in the human C-reactive protein (CRP) gene, serum concentrations of CRP, and the difference between intracranial and extracranial atherosclerosis[J]. Clin Chim Acta. 2008;389(1-2):40-4.
    [74] Winther M P.J de, Kanters E, Kraal q etal. Nuclear factor oB signaling inatherogenesis. Arterioscler Thromb Vasc Biol, 2005, 25(5): 904-914.
    [75] Kanters E, Pasparakis M, Gijbels M J J, etal. Inhibition of NF-oB activation in Macrophages increases atherosclerosis in LDL receptor-deficient mice[J]. J Clin Invest, 2003,12(8): 1176-1185.
    [76] Lo SS, Chen JH, Wu CW,etal.FunctionalpolymorphismofNFKB1promoter may correlate to the susceptibility of gastric cancer in aged patients[J].Surgery. 2009 Mar;145(3):280 -5.
    [77] Zhou B, Rao L, Li Y,etal. A functional insertion/deletion polymorphism in the promoter region of NFKB1 gene increases susceptibility for nasopharyngeal carcinoma[J]. Cancer Lett. 2009 Mar 8;275(1):72-6.
    [78] Fontaine-Bisson B, Wolever TM, Connelly PW,etal. NF-kappaB -49Ins/Del ATTG polymorphism modifies the association between dietary polyunsaturated fatty acids and HDL-cholesterol in two distinct populations[J]. Atherosclerosis. 2008 Nov 11. [Epub ahead of print]
    [79] Watanabe S, Mu W, Kahn A, etal. Role of JAK/STAT pathway in IL,-6-induced activation of vascular smooth muscle cells[J]. Am J Nephrol, 2004, 24(4): 387-392.
    [80] Kearney L, Gonzalez De Castro D,etal.Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia[J]. Blood. 2009;113(3):646-8.
    [81] Xie HJ, Bae HJ, Noh JH,etal.Mutational analysis of JAK1 gene in human hepatocellular carcinoma[J]. Neoplasma. 2009;56(2):136-40.
    [82] Vaclavicek A, Bermejo JL, Schmutzler RK,etal. Polymorphisms in the Janus kinase 2 (JAK)/signal transducer and activator of transcription (STAT) genes: putative association of the STAT gene region with familial breast cancer[J]. Endocr Relat Cancer. 2007;14(2):267-77.
    [83] Li Y, Wu B, Xiong H,etal. Polymorphisms of STAT-6, STAT-4 and IFN-gamma genes and the risk of asthma in Chinese population[J]. Respir Med. 2007;101(9):1977-81.
    [84] Zimmerman, P,Wieseman, M., Spalding, T;etal. A new intercellular adhesion molecule-1 allele identified in West Africans is prevalent in African-Americans in contrast to other North American racial groups[J]. Tissue Antigens. 1997, 50(6):654-656.
    [85] Li XX, Liu JP, Cheng JQ, etal. Intercellular adhesion molecule-1 gene K469Epolymorphism and ischemic stroke: a case-control study in a Chinese population[J].Mol Biol Rep. 2008 Sep 14.
    [86] Wei YS, Liu YG, Huang RY,etal. Intercellular adhesion molecule-1 gene K469E polymorphism and genetic susceptibility of ischemic stroke in Chinese Zhuang populations[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005 Jun;22(3):305-8.
    [87] Flex A, Gaetani E, Papaleo P, etal.Proinflammatory genetic profiles in subjects with history of ischemic stroke[J]. Stroke. 2004 Oct;35(10):2270-5.
    [88] Pola R, Flex A, Gaetani E, etal.Synergistic effect of -174G/Cpolymorphism of the interleukin-6 gene promoter and 469 E/K polymorphism of the intercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke[J].Stroke. 2003 Apr;34(4):881-5.
    [89]Yamada Y, Ichihara S, Nishida T,etal. Proinflammatory gene polymorphisms and ischemic stroke[J].Curr Pharm Des. 2008;14(33):3590-600.
    [90] Acalovschi D, Wiest T, Hartmann M,etal. Multiple levels of regulation of the interleukin-6 system in stroke[J].Stroke. 2003 Aug;34(8):1864-9.
    [91]Tso AR, Merino JG, Warach Setal. Interleukin-6 174G/C polymorphism and ischemic stroke: a systematic review[J].Stroke. 2007 Nov;38(11):3070-5.
    [92]Chamorro A, Revilla M, Obach V,etal. The -174G/C polymorphism of the interleukin 6 gene is a hallmark of lacunar stroke and not other ischemic stroke phenotypes[J]. Cerebrovasc Dis. 2005;19(2):91-5.
    [93]Lalouschek W, Schillinger M, Hsieh K,etal. Polymorphisms of the inflammatory system and risk of ischemic cerebrovascular events[J]. Clin Chem Lab Med. 2006;44(8):918-23.
    [94] Greisenegger S, Endler G, Haering D,etal. The (-174) G/C polymorphism in the interleukin-6 gene is associated with the severity of acute cerebrovascular events[J]. Thromb Res. 2003 Jun 1;110(4):181-6.
    [95]Banerjee I, Gupta V, Ahmed T,etal. Inflammatory system gene polymorphism and the risk of stroke: a case-control study in an Indian population[J].Brain Res Bull. 2008 Jan 31;75(1):158-65.
    [96]Medzhitov, Ruslan; Preston-Hurlburt,etal. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J]. Nature, 1997;388( 6640): 394-397.
    [97] Lin YC, Chang YM, Yu JM,etal.Toll-like receptor 4 gene C119A but not Asp299Glypolymorphism is associated with ischemic stroke among ethnic Chinese in Taiwan[J]. Atherosclerosis. 2005;180(2):305-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700