用户名: 密码: 验证码:
木质素高效分离、结构表征及基于离子液体的降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质不论是转化为材料还是能源,高值化利用的关键还是组分的高效、清洁、经济分离。有效的将三大素以完整分子形式提取出来,各自加以利用,才能达到高值化利用的目的。本文选用柽柳和桉木为原料来开展生物质能源高值化利用研究。针对木质素组分高效、清洁、绿色分离途径和复杂结构性能表征两方面问题进行了系统论述。主要采用有机溶剂体系、碱性溶液体系和离子液体体系对木质素进行提取分离,全面分析了木质素在不同溶剂体系下的溶解规律及物理化学性质;研究了纤维板中木质素在热压过程中的迁移规律,建立了纤维板性能与木质素结构变化的构效关系;提出将离子液体-有机溶剂体系用于木质纤维原料全溶,并将该技术引入到木质素选择性分离研究。同时率先将离子液体-水体系引入到木质素的溶解及降解过程中,提出了降解机理,探索了木质素转化为能源及化学品的高值化利用工艺和机理。为离子液体在木质纤维组分分离及转化方面提供了理论依据。
     采用有机溶剂、碱性溶液体系分别对木质纤维进行溶解,提取木质素。分析得出有机溶剂能够有效的从柽柳中分离出木质素,该木质素具有较高分子量(1585-4730g/mol)及较多的S型结构单元。碱溶性木质素具有均一的结构单元,含有相对较高含量的G型木质素(guaiacyl units)结构单元。柽柳中有机溶剂木质素的主要连接结构是p-0-4'芳基醚键连接结构,占总木质素样品中侧链含量的相对比例为73%,其次是p-β'、p-5'和β-1'结构连接,分别占19%、3%和2%。有机溶剂木质素具有较高的热稳定性,这与其结构及分子量有直接关系。
     采用轻度球磨、温和提取磨木木质素MWL的方法,随后用有机溶剂和碱性溶液连续抽提得到细胞壁不同部位的OL(有机溶剂木质素)和AL(碱木质素)。MWL、OL和AL的得率分别为6.7%、17.7%和15.3%。得到有机溶剂木质素糖含量相对较低(0.79%),碱性木质素糖含量较高(1.86%),说明有机溶剂和碱性溶剂提取能够破坏木质素与半纤维素之间绝大部分连接键LCC。二维核磁共振HSQC分析表明柽柳木质素结构为GSH结构类型,主要连接结构p-0-4'占总侧链相对值在68.4-79.0%,β-β'结构含量在17.3-22.3%内,此外,还检测到少量的苯基香豆满(2.2-5.6%)和螺旋二烯酮结构(1.5-5.0%),其中γ位发生乙酰化作用的β-O-4'结构含量最高为7.9%。
     热压纤维板中酸不溶木质素和总糖含量比原料分别提高了13.5%和8.9%,有利于“无胶粘合”。纤维板的内结合强度高达1.81MPa,远远高于国标要求(0.6MPa)。热压后的纤维板中木质素p-O-4'结构从60.1%上升到69.2%(绝对值),意味着木质素分子之间存在缩合作用。31PNMR分析表明S型木质素结构单元更容易缩合,而G型单元易于解聚。热压过程中木质素的缩合和解聚均存在,是一对竞争性的反应。该发现为深入研究无胶纤维板粘合机理提供参考,具有很高的工业应用前景。
     从廉价和功能化两个角度出发,合成具有特殊性能的功能化离子液体1-丁基-3-甲基咪唑乙酰磺胺盐[Bmim][Ace],将离子液体-有机溶剂体系引入到木质纤维原料的全溶和木质素的选择性分离,有效提高了木质素得率,为提高木质纤维素的酶解效率“扫清”障碍。结果表明,IL-甲苯体系提取得到的木质素最多。指出木质素得率受有机溶剂介电常数(ε)影响,介电常数越小,木质素得率越高。离子液体-有机溶剂体系增强了木质纤维原料的全溶效果和木质素得率,分析表明离子液体回收率平均在94.6%以上,且结构未发生改变,循环使用3次提取效率未发生较大改变。
     采用不同离子液体体系对原本木质素进行溶解和再生,探讨降解机理。分析表明,反相溶剂再生木质素的能力顺序为:酸性水溶液>水>>乙醇,离子液体对木质素的降解能力顺序为:[Emim][OAc]>[Bmim][HSO4]>[Bmim]C1>[Bmim][BF4]。降解反应和缩合反应均存在于离子液体对木质素的降解和再生过程中。随反应温度上升,酸性离子液体中S型单元容易脱除甲氧基(-OCH3),导致G型结构单元含量升高,S/G值变小,木质素分子量显著降低(Mw=630g/mo1)。β-0-4'结构的断裂导致非缩合的S和G结构单元中羟基(-OH)含量上升。此外,经过离子液体体系再生后木质素具有“蜂窝”多孔小球结构,这种小分子量的木质素可以用在材料制备领域,如多孔吸附材料等,给木质素应用开辟了新的研究方向。
     率先将ILs-H20均相体系引入到了木质素溶解及降解过程中。重点分析对木质素的降解能力及降解机理。结果表明:ILs-H20体系对木质素的降解主要分为两个阶段(以离子液体质量分数为5-65%和66-100%划分),在两个阶段中引起降解的主导作用不同。表明水能代替一部分离子液体,有利于木质素降解。创新性的研究了离子液体中木质素降解产物的类型及分子量,总结出木质素在离子液体中降解的主要原因是由于两种不同强度氢键作用力竞争导致。
Lignocellulosic biomass is considered to be one of the most sustainable and renewable enrgy resources that can displace a significant fraction of current petroleum supplies. In some other areas, it can also be used to produce material. However, the key points of biomass utilization is, economically, clean, and highly efficient separation of lignin in the whole macromolecular, and then to make high-value added products, In this study, tamarix and eucalyptus are used as raw materials to study the structure of the main components. Organic solvents, alkali solutions, and ionic liquid-based systems were used to isolate lignin from the biomass. The yields, structure characteristic and physical-chemical properties of the lignin fractions were fully investigated. We focus on the dissolution of biomass in ionic liquds (ILs)-organic solvents systems and selectively isolation the lignin fraction. At the same time, the ILs-water system was fistly introduced into the lignin dissolution and regeneration process. The dissolution mechanism and flowchart were given, and the structure of the regenerated lignin as high value-added products was studied.
     Different organic solvents and alkali solutions were used to dissolve the tamarix wood powder and isolate the lignin fraction. It was found that the alkali-soluble lignin showed uniform structure and contained a high amount of G type lignin, but the organosolv-lignin is rich in S type lignin. The HSQC results indicated that the main linkages of organoslv-lignin was β-O-4'aryl ether structure, which was amount to73%of the total side chains, followed by lower amounts of β-β'resinol-type (19%of total side chains), trace amounts of β-5'phenylcoumaran (3%), and β-1'spirodienone-type (3%) substructures. The organosolv-lignin showed a higher thermal stability than the alkali-soluble lignin, and this was probably owing to the high molecular weight of the organosolv-lignin.
     The gentle milling technique was used to isolate the ball-milled wood lignin (MWL). The organosolv-lignin (OL) and alkali-lignin (AL) were successively isolated from the biomass by organic solvents and sodium hydroxide solution. The yields of MWL, OL, and AL were6.7%,17.7%and15.3%(based on Klason lignin), respectively. It was found that the OL fraction was associated with a low amount of carbohydrate (0.79%) as compared to the alkali lignin (1.86%), indicating that the ethanol containing NaOH solution was effective in cleaving the ester and ether bonds between lignin and hemicelluloses. GPC results showed different molecular weights for MWL (2395g/mol), OL (3415g/mol), and AL (1870g/mol). The2D NMR analysis showed that the lignin fraction was GSH type lignin, including the main linkages of β-O-4'(68.4-79.0%, relative amount), β-β'(17.3-22.3%), phenylcoumaran β-5'(2.2-5.6%), and spirodienone linkages (1.5-5.0%). The acetylation occurred at the γ position of the β-O-4'substructure, which amount to7.9%.
     Results showed that the acid insoluble lignin and the total sugar contents of the binderless board (BB) increased by13.5%and8.9%compared to the original material, respectively, which was in favor of the physical properties of binderless board. The BB showed high internal bond (IB) strength of1.81MPa, which was satisfied the Chinese Standard GB/T11718-2009(0.6MPa). HSQC results indicated an increase of β-O-4'linkages (69.2%) in the EMAL of BB, revealing that the condensation reaction occurred during hot pressing.31P NMR analysis showed that lignin containing S units is preferentially condensed by hot pressing over those containing G units, and G units are easier to degrade than S units. The decomposition and recondensation of lignin were two competitiveness reactions during hot pressing. The study showed a high reference value in binderless board production.
     Lignin was extracted by the cheap imidazolium acesulfamate IL1-butyl-3-methylimidazolium acesulfamate [Bmim][Ace] from the wood powder. The resulting carbohydrate enriched materials were subsequently extracted with70%ethanol containing1M NaOH. Results showed that the yield of alkaline ethanol lignin (AEL,8.0-23.3%) was relatively higher than that of IL-organic solvents lignin (IOL,11.5-15.4%, based on the Klason lignin content). The increased yield was due to the different conductivities of the co-solvents affected by dielectric constants (ε) of the organic solvetns. It was found that a low dielectric constant of organic solvent resulted in a high yield of lignin. To achieve environmentally friendly biomass processing, the recovery and reuse of ILs is one of the main challenges. The IL used was recycled with the average yield over94.6%, and the structure and properties of the IL was unchanged.
     Lignin was dissolved in several imidazoulium-based ionic liquids, and subsequently regenerated using ethanol-water mixtures or water, respectively. Results showed that acidic water was effective in precipitating lignin than water or ethanol-water mixture or ehthanol. The degradation ability of ILs followed the order of [Emim][OAc]>[Bmim][HSO4]>[Bmim]Cl>[Bmim][BF4]. The degradation and condensation reactions are both exist in the lignin dissolution and regenerated process. The decreased S/G ratio of regenerated lignin was probably owing to the demethoxylation reaction of S type lignin under the acidic condition. Meanwhile, the demethoxylation of S type lignin leads to increase of G type lignin, which contains more phenolic OH groups. It was also found that the regenerated lignin obtained at high temperatures exhibited higher thermal stability than that obtained at low temperatures. SEM images showed a regular uniform structure of lignin droplets of regenerated lignin ranged from4.5-10.8μm in diameter. The compact structure and alveolate surface of lignin caused by the dissolution and regeneration of ILs suggest a functional material of lignin;
     ILs-water system was firstly used in lignin dissolution and regeneration, and the mechanism of lignin dissolution was studied. Water was effective in precipitating lignin than the ethanol-water mixture or ethanol. Measurement of lignin yield of different proportions of [Emim][OAc]-water mixtures suggested two different modes with ILs-water system treatment. It was found that the yield of lignin increased with increasing [Emim][OAc] content from5%to65%, implying that water plays a leading role in the system. It should be noted that the yields of lignin decreased in66-100wt%aqueous [Emim][OAc], where ionic liquid is believed to play a major role in the degradation process. GPC results showed that the Mw of regenerated lignin ranged from560to790g/mol. The Mw of regenerated lignin from the pure IL was580g/mol. It can be deduced that a certain amount of water could replace partial ILs and benefit the lignin degradation. The solubilized compounds in ILs were identified by GC-MS analysis. It is believed that the interaction energy of IL-lignin tends to decrease, and the hydrogen bonds between ILs and lignin is weaken or even destroyed by the addition of water.
引文
1.曹玲,全金英,李忠正.木质素在肥料中的应用[J].1998,2:68-70.
    2.曹湘洪.实现生物质废弃物的循环经济技术途径[M].北京:高等教育出版社,2013.
    3.程贤建,陈云平,吴耿云,陈耀庭,杨相玺.高沸醇木质素的研究进展[J].化工进展,2006,25(2):147-151.
    4.黄志桂,黄冬根.改性黑液木质素胶一木屑纤维板的研制[J].西南师范大学学报(自然科学版),1993,18(1):44-51
    5.蒋挺大,黄文海,张春萍.造纸黑液中木质素的提取和用作橡胶补强剂的研究[J].环境科学1997,18(4):81-88.
    6.蒋挺大.木质素[M].北京:化学工业出版社,2001.
    7.李黛青,池小玉,穆环珍.利用造纸废液制取MS—1油水混融剂[J].轻工环保,1997,1:3-4.
    8.李凤起,朱书全.木质素表面活性剂及木质素磺酸盐的化学改性方法[J].精细石油化工,2001,3(2):15-16.
    9.马涛,詹怀远,王德汉,廖宗文.造纸黑液木质素在农业领域的应用近况[J].广东造纸,1997,(5-6):125-127.
    10.蒙衍强,谢鸿武.绿皮桉木与红皮桉木KP法制浆性能的比较[J].制浆与造纸工艺,2011,42(3):12-13.
    11.穆环珍,曾文,黄衍初,孙悦风,杨问波.增效磷肥的研制与增产效应研究[J].农业环境保护.2002,21(1):26-28.
    12.钱薄章.生物质能技术与应用[M].北京:科学出版社,2010.
    13.谌凡更,卢卓敏,涂宾.麦草碱木质素烷基化反应的研究[J].林产化学与工业,2001,21(2):39-43.
    14.石淑兰,何福望.制桨造纸分析与检测[M].北京:中国轻工业出版社,2003,328.
    15.陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    16.王安安,邱学青,欧阳新平,邓国颂,庞煜霞.复配改性磺化碱木质素减水剂的性能研究[J].精细化工,2009,26(9):857-862.
    17.王超,潘京学,都占魁,杨正宇.利用富含木质素的稻草低温重组制备生物石油[J].高分子通报,2007,6:32-37.
    18.王海洋,陈克利.木质素的综合利用概况分析[J].化工时刊,2004,18(4):8-10.
    19.谢益民,伍红,赖燕明.桉木的化学组成及材性对KP法制浆特性的影响[J].中国制浆造纸,1998,5:7-11.
    20.杨军,吕晓静,王迪珍.木质素在塑料中的应用[J].高分子通报,2002,4:53-60.
    21.杨树栋.浅议柽柳的栽培和药用价值[J].现代园艺,2010,3,53-54.
    22.杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2005.
    23.岳国君.基于木质纤维素转化技术构建糖平台[M].北京:高等教育出版社,2013.
    24.曾荣.木质素的沉淀絮凝剂研究进展[J].纤维素科学与技术,2007,15(1):75-78.
    25.张洁,李忠正.SFP木质素在钻井液中的作用效能[J].纤维素科学与技术,1997,5(1):48-53.
    26.张芝兰,陆雍森.稻麦草类碱木素混凝剂的性质及其应用[J].环境科学学报,1997,17(4):450-454.
    27.赵菊英,武志博,谢宗才,张斌武,李万政.平茬高度对柽柳萌条生长影响的研究[J].内蒙古林业科技,2013,39(1):27-30.
    28.郑大峰,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工,2005,22(4):249-252.
    29.周勇,高德发.碱法造纸废液合成香兰素的研究[J].化学工程师,2000,2:29-30.
    30.朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002.
    31. Abbott A P, Boothby D, Capper G, Davies D L, Rasheed R K. Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids [J]. Journal of American Chemical Society,2004,126(29):9142-9147.
    32. Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures [J]. Chemical Communations,2003,1:70-71.
    33. Abbott A P, Harris R C, Ryder K S. Application of hole theory to define ionic liquids by their transport properties. The Journal of Physical Chemistry B,2007,111(18):4910-4913.
    34. Adams G A. Extraction of lipopolysaccharides from gramnegative bacteria with demethyl sulfoxide [J]. Canadian Journal of Biochemistry,1967,45(3):422-426.
    35. Adler E. Lignin chemistry-past, present and future [J]. Wood Science and Technology,1977, 11(3):169-218.
    36. Akim L, Argyropoulos D, Houanin L, Lepl6 J L, Pilate G, Pollet B, Lapierre C. Quantitative 31P NMR spectroscopy of lignins from transgenic poplars [J]. Holzforshung,2001,55(4):386-390.
    37. Akim L G, Argyropoulos D S, Jouanin L, Leple J C, Pilate G, Pollet B, Lapierre C. Quantitative 3 IP NMR spectroscopy of lignins from transgenic poplars [J]. Holzforschung,2005,55(4): 386-390.
    38. Alen R. Structural and chemical composition of wood [M]. Forest Products Chemistry. Helsinki: Fapet Oy,2000,12-55.
    39. Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels [J]. Green Chemistry,2010,12(9):1493-1513.
    40. Anex R P, Lynd L R, Laser M S, Heggenstaller A H, Liebman M. Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems [J]. Science,2007,47(4): 1327-1335.
    41. Argyropoulos D S. Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist [J]. Journal of Wood Chemistry and Technology,1994,14(1):45-63.
    42. Argyropoulos D S, Hording B, Sun Y J. Pulping:lignin characterization by NMR spectroscopy and oxidation degradation. In:The Proceeding of 8th ISWPC, Helsindi, Finland,1995,2: 495-502.
    43. Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future [J]. Nature Materials,2009,8(8):621-629.
    44. Atalla R H, Vanderhart D L. Native cellulose:a composite of two distinct crystalline forms. Science,1984,223(4633):283-285.
    45. Balakshin M Y, Capanema E A, Chang H-U. MWL fraction with a high concentration of lignin-carbohydrate linkages:isolation and 2D NMR spectroscopic analysis [J]. Holzforchung, 2007,61(1):1-7.
    46. Balakshin M Y, Capanema E A, Chen C L, Gracz H S. Elucidation of the Structures of Residual and Dissolved Pine Kraft Lignins Using an HMQC NMR Technique [J]. Journal of Agricultural and Food Chemistry,2003,51(21):6116-6127.
    47. Balogh D T, Curvelo A A S, De Groote R A M C. Solvent effects on organosolv lignin from pinus caribea bondurensis [J]. Holzforschung,1992,46(4):343-348.
    48. Benar P, Goncalves A R, Mandeli D, Schuchardt U. Eucalyptus organosolv lignins:study of the hydroxymethylation and use in resols [J]. Bioresource Technology,1999,68(1):11-16.
    49. Billa E, Tollier M T, Monties B. Characterisation of the monomeric composition of in situ wheat straw lignins by alkaline nitrobenzene oxidation:Effect of temperature and reaction time [J]. Journal of the Science of Food and Agriculture,1996, 72(2):250-256.
    50. Binder J B, Gray M J, White J F, Zhang Z C, Holladay J E. Reactions of lignin model compounds in ionic liquids [J]. Biomass Bioenergy,2009,33(9):1122-1130
    51. Bjorkman A. Lignin and lignin-carbohydrate complexes extraction from wood meal with neutral solvents [J]. Industrial & Engineering Chemistry,1957,49(9):1395-1398.
    52. Bjorkman A. Studies on finely divided wood I. Extraction of lignin with neutral solvents [J]. Svensk Papperstidning,1956,59(13):477-485.
    53. Bland D E, Foster R C, Logan A F. The mechanism of permanganate and osmium tetroxide fixation and distribution of lignin in the cell wall of Pinus radiate [J]. Holzforschung,1971,25(5): 137-143.
    54. Boeriu C G, Bravo D, Gosselink R J A, van Dam J E G Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy [J]. Industrial Crops and Products, 2004,20(2):205-218.
    55. Bose S K, Francis R C, Govender M. Bush M, Spark A. Lignin content versus syringyl to guaiacyl ratio amongst poplars [J]. Bioresource Technology,2009,100(4):1628-1633.
    56. Bouajila J, Limare A, Joly C, Dole P. Lignin plasticization to improve binderless fiberboard mechanical properties [J]. Polymer Engineering & Science,2005,45(6):809-816.
    57. Bracewell J M, Robertson G W, Williams B L. Pyrolysismass spectrometry studies of humification in a peat and a peaty podzol [J]. Journal of Analytical and Applied Pyrolysis,1980, 2(1):53-62.
    58. Brauns F E. Native lignin I. Its isolation and methylation [J]. Journal of American Chemical Society,1939,61(8):2120-2127.
    59. Brauns F E. The chemistry of lignin [J]. Academic Press,1952, New York,24-28.
    60. Brebu M, Vasile C. Thermal degradation of lignin—A review [J]. Cellulose Chemistry and Technology,2010,44(9):353-363.
    61. Brown V K, Robinson J, Stevenson D E. A note on the toxicity and solvent properties of dimethyl sulphoxide [J]. Journal of Pharmacy and Pharmacology,1963,15(1):688-692.
    62. Cammarata L, Kazarian S G, Salter P A, Welton T. Molecular states of water in room temperature ionic liquids [J]. Physical Chemistry Chemical Physics,2001,3(23):5192-5200.
    63. Capanema B E A, Balakshin M Y, Chen C L, Gratzl J S, Gracz H. Structural analysis of residual and technical lignins by 1H-13C correlation 2D NMR-spectroscopy [J]. Holzforschung,2001, 55(3):302-308.
    64. Capanema E A, Balakshin M Y, Kadla J F. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy [J]. Journal of Agricultural and Food Chemistry,2005,53(25):9639-9649.
    65. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro M J, Castro E. Production of fuel ethanol from steam-explosion pretreated olive tree pruning [J]. Fuel,2008,87(6):692-700.
    66. Casas A, Oliet M, Alonso M V, Rodriguez F. Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation:Lignin regeneration and characterization [J]. Separation and Purification Technology,2012,97(ILSEPT2011 Special Issue):115-122.
    67. Celik A, Demirbas A. Removal of heavy metal ions form aqueous solutions via adsorption onto modified lignin from pulping wastes [J]. Energy Sources,2005,27(12):1167-1177.
    68. Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry [J]. Industrial Crops and Products,2004,20(2):131-141.
    69. Chang H M, Cowling E B, Brown W, Adler E, Miksche G. Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce [J]. Holzforschung,1975,29(5): 153-159.
    70. Chen C L, Capanema E A, Gracz H S. Comparative studies on the delignification of pine kraft-anthraquinone pulp with hydrogen peroxide by binucleus Mn (Ⅳ) complex catalysis [J]. Journal of Agricultural and Food Chemistry,2003,51(21):6223-6232.
    71. Chen C-L. In lignin and lignan biosynthesis [B]. Sarkanen S. (Eds.), American Chemical Society, Washington, DC,1996, pp.255-275.
    72. Chudakov M I, Kazarnovskii A M. Complex lignin-based fertilizers [P]. USSR Patent 333,156
    73. Cox B J, Jia S, Zhang Z C, Ekerdt J G. Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids:Hammett acidity and anion effects [J]. Polymer Degradation and Stability,2011,96(4):426-431.
    74. Crawford D L, Pometto A L, Crawford R L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediate [J]. Applied and Environmental Microbiology,1983,45(3):898-904.
    75. Crocker E C. An experimental study of the significance of lignin color reactions [J]. Industrial & Engineering Chemistry,1921,13(7):625-627.
    76. Crowhurst L, Mawdsley P R, Perez-Arlandis J M, Salter P A, Welton T. Solvent-solute interactions in ionic liquids [J]. Physical Chemistry Chemical Physics,2003,5(13):2790-2794.
    77. da Costa Lopes A M, Joao K G, Rubik D F, Bogel-Lukasik E, Duarte L C, Andreaus J, Bongel-Lukasik R. Pre-treatment of lignocellulosic biomas using ionic liquids:wheat straw fractionation [J]. Bioresource Technology,2013,142:198-208
    78. Debons F E, Whittington L E. Improved oil recovery surfactants based on lignin [J]Journal of Petroleum Science and Engineering,1992,7(1-2):131-138.
    79. del Rio J C, Marques G, Rencoret J, Martinez A T, Gutierrez A. Occurrence of naturally acetylated lignin units [J]. Journal of Agricultural and Food Chemistry,2007,55(14):5461-5468.
    80. del Rio J C, Rencoret J, Marques G, Gutierrez A, Ibarra D, Santos J. I, Jimenez-Barbero J, Zhang L M, Martinez A T. Highly Acylated (Acetylated and/or p-Coumaroylated) Native Lignins from Diverse Herbaceous Plants [J]. Journal of Agricultural and Food Chemistry,2008,56(20): 9525-9534.
    81. del Rio J C, Rencoret J, Marques G, Li J, Gellerstedt G, Jimenez-Barbero J, Martinez A T, Gutierrez A. Structural Characterization of the Lignin from Jute (Corchorus capsularis) Fibers [J]. Journal of Agricultural and Food Chemistry,2009,57(21):10271-10281.
    82. Dizhbite T, Zakis G, Kizima A, Lazareva E, Rossinskaya G, Jurkjane V, Telysheva G, Viesturs U. Lignin---a useful bioresource for the production of sorption-active materials [J]. Bioresource Technology,1999,67(3):221-228.
    83. Dominquez de Maria P. "Nonsolvent" applications of ionic liquids in biotransformations and organocatalysis [J]. Angewandte Chemie International Edition,2008,47(37):6960-6968.
    84. Dominguez J C, Oliet M, Alonso M V, Gilarranz M A, Rodriguez F. Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus [J]. Industrial Crops and Products,2008,27(2):150-156.
    85. Earle M J, McCormac P B, Seddon K R. Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures [J]. Green Chemistry,1999,1:23-25.
    86. Ebringerova A, Hromadkova Z, Alfodi J, Hribalova V. The immunologically active xylan from ultrasound-treated corn cobs:Extractability, structure and properties [J]. Carbohydrate Polymers, 1998,37(3):231-239.
    87. Enoki A, Tanaka H, Fuse G. Degradation of lignin-related compounds, pure cellulose and wood components by white-rot and brown-rot fungi [J]. Holzforschung,1988,42(2):85-93.
    88. Erickson M, Larsson S, Miksche G E. Gas-chromatographische analyse von ligninoxydationsprodukten VII. Zur struktur des lignins der fichte [J]. Acta Chemica Scandinavica,1973,27(1):903-904.
    89. Faix O, Beinhoff O. Ftir spextra of milled wood lignins and lignin polymer models (DHP's) with enhanced resolution obtained by deconvolution [J]. Journal of Wood Chemistry and Technology, 1988,8(4):505-522.
    90. Faix O. Classification of lignins from different botanical origins by FT-IR. spectroscopy [J]. Holzforschung,1991,45(s1):21-27
    91. Faix O, Grunwald C, Beinhoff O. Determination of phenolic hydroxyl group content of milled wood lignins (MWL's) from different botanical origins using selective aminolysis, FTIR,1H NMR and UV spectroscopy [J]. Holzforschung,1992,46(5):425-532.
    92. Fang Z, Sato T, Smith Jr R L, Inomata H. Reaction chemistry and phase behavior of lignin in high-temperature and supercriticalwater [J]. Bioresource Technology,2008,99(9):3424-3430.
    93. Feng L, Chen Z. Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures Research progress on dissolution and functional modification of cellulose in ionic liquids [J]. Journal of Molecular Liquids,2008,142(1-3):1-5.
    94. Ferdous D, Dalai A K, Bej S K, Thring R W. Pyrolysis of lignins:experimental and kinetics studies [J]. Energy & Fuels,2002,16(6):1405-1412.
    95. Fernando S, Adhikari S, Chandrapal C, Murali N. Biorefineries:current status, challenges and future direction [J]. Energy & Fuels,2006,20(4):1727-1737.
    96. FitzPatrick M, Champagne P, Cunningham M F, Whitney R A. Abiorefinery processing perspective:treatment of lignocellulosic materials for the production of value-added products [J]. Bioresource Technology,2010,101(23):8915-8922.
    97. Fort D A, Remsing R C, Swatloski R P, Moyna P, Moyna G, Rogers R D. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride [J]. Green Chemistry,2007,9:63-69.
    98. Friedl A. Lignocellulosic biorefinery [J]. Environmental Engineering and Management Journal, 2012,11(1):75-79.
    99. Fu D, Mazza G, Tamaki Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues [J]. Journal of Agricultural and Food Chemistry,2010,58(5): 2915-2922.
    100. Fujii T, Harada H, Saiki H. Ultrastructure of amorphous layer in xylem parenchyma cell wall of angiosperm species [J]. Mokuzai Gakkaishi,1981,25:251-257.
    101. Fujimoto A, Matsumoto Y, Chang H-M. Meshitsuka G Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin [J]. Journal of Wood Science,2005,51(1):89-91.
    102. Funazukuri T, Wakao N, Smith J M. Liquefaction of lignin sulphonate with subcritical and supercritical water [J]. Fuels,1990,69(3):349-353.
    103. Fuzzati N, Dyatmilo W, Rahman A, Achmad F, Hostettmann K. Triterpenoids, lignans and a benzofuran derivative from the bark of Aglaia elaeagnoidea [J]. Phytochemistry,1996,42(5): 1395-1398.
    104. Gaillarranz M A, Rodriguez F, Oliet M. Lignin behavior during the autocatalyzed methanol pulping of Eucalyptus globules changes in molecular weight and functionality [J]. Holzforschung, 2000,54(4):373-380.
    105. Galletti G C, Bocchini P. Pyrolysis/gas chromatograpHy/mass spectrometry of lignocellulose [J]. Rapid Communications in Mass Spectrometry,1995,9(9):815-826.
    106. Gellerstedt G, Northey R A. Analysis of birch wood lignin by oxidative degradation [J]. Wood Science and Technology,1989,23(1):75-83.
    107. Gibson L G The hierarchical structure and mechanics of plant materials [J]. Journal of the Royal Society Interface,2012,9(76):2749-2766.
    108. Gierer J. Chemical aspects of kraft pulping [J]. Wood Science and Technology,1980,14(4): 241-266.
    109. Gierer J. Chemistry of delignification Part 1:General concept and reactions during pulping [J]. Wood Science and Technology,1985,19(4):289-312.
    110. Gosselink R J A, de Jong E, Guran B, Abacherli A. Co-ordination network for lignin-standardisation, production and applications adapted to market requirements (EUROLIGNIN) [J]. Industrial Crops and Products,2004,20(2):121-129.
    111. Govender M, Bush T, Spark A, Bose S K, Francis R C. An accurate and non-labor intensive method for the determination of syringyl to guaiacyl ratio in lignin [J]. Bioresource Technology, 2009,100(23):5834-5839.
    112. Granata A, Argyropoulos D S.2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins [J]. Journal of Agricultural and Food Chemistry,1995,43(6):1538-1544.
    113. Guerra A, Filpponen I F, Lucia L A, Argyropoulos D S. Comparative evaluation of three lignin isolation protocols for various wood species [J]. Journal of Agricultural and Food Chemistry, 2006a,54(26):9696-9705.
    114. Guerra A, Filpponen I F, Lucia L A, Saquing C, Baumberger S, Argyropoulos D S. Toward a better understanding of the lignin isolation process from wood [J]. Journal of Agricultural and Food Chemistry,2006b,54(16):5989-5947.
    115. Guerra A, Norambuena M, Freer J, Argyropoulos D S. Determination of ayrlglycerol-β-aryl ether linkages in enzymatic mild acidolysis lignins (EMAL):comparison of DFRC/13P NMR with thioacidolysis [J]. Journal of Natural Products,2008,71(5):836-841.
    116. Hage R El, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus [J]. Polymer Degradation and Stability,2009,94(10):1632-1638.
    117. Hallac B, Ray M, Murphy R, Ragauskas A. Investigating the anatomical features of ethanol organosolv pretreated Buddleja davidii [J].32nd Symposium on Biotechnology for Fuels and Chemicals, Hilton Clearwater Beach Clearwater Beach, FL, April 19-22,2010,2-16.
    118. Hallett J P, Welton T. Room-Temperature Ionic Liquids:Solvents for Synthesis and Catalysis.2 [J]. Chemical Reviews,2011,111(5):3508-3576.
    119. Hanke C G, Lynden-Bell R M. A simulation of water-dialkylimidazolium ionic liquid mixtures [J]. Journal of Physical Chemistry B,2003,107(39):10873-10878.
    120. Harris D, Stork J, Debolt S. Genetic modification in cellulose-synthase reduces crystalliniry and improves biochemical conversion to fermentable sugar [J]. GCB Bioenergy,2009,1(1):51-61.
    121. Hashim R, Nadhari W N A, Sulaiman O, Kawamura F, Hiziroglu S, Sato M, Sugimoto T, Seng T G, Tanaka R. Characterization of raw materials and manufactured binderless particleboard from oil palm biomass [J]. Material Design,2011,32(1):246-254.
    122. Heikkinen S, Toikka M M, Karhunen P T, Kilpelainen I A. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy:application to wood lignin [J]. Journal of Amerian Chemical Society,2003,125(14):4326-4367.
    123. Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization [J]. Macromolecular Bioscience,2005,5(6):520-525.
    124. Hirao M, Sugimoto H, Ohno H. Preparation of Novel Room-Temperature Molten Salts by Neutralization of Amines [J]. Journal of The Electrochemical Society,2000,147(11):4168-4172.
    125. Holtman K M, Chang H M, Jameel H, Kaddla J F. Quantitative 13C NMR Characterization of Milled Wood Lignins Isolated by Different Milling Techniques [J]. Journal of Wood Chemistry and Technology,2006,26(1):21-34.
    126. Holtman K M, Chang H M, Kadla J F. Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin [J]. Journal of Agricultural and Food Chemistry,2004,52(4):720-726.
    127. Holtzapple M T, Humphrey A E, The effect of organosolv pretreatment on the enzymatic hydrolysis of poplar [J]. Biotechnology and Bioengineering,1984,26(7):670-676.
    128. Hsu W E, Schwald W, Schwald J, Shields J A. Chemical and physical changes required for producing dimensionally stable wood-based composites, Part 1:Steam pretreatment [J]. Journal of Wood Science and Technology,1988,22(3):281-289.
    129. Hu Z, Yeh T F, Chang H M, Matsumoto Y, Kadla J F. Elucidation of the structure of cellulolytic enzyme lignin [J]. Holzforschung,2006,60(4):389-397.
    130. Ibarra D, Chavez M I, Rencoret J, del Rio J C, Gutierrez A, Romero J, Camarero S, Martinez M J, Jimenez-Barbero J, Martinez A T. Lignin modification during eucalyptus globulus ksaft pulping followed by totally chlorine-free bleaching:a two-dimensional nuclear magnetic resonance, fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study [J]. Journal of Agricultural and Food Chemistry,2007a,55(9):3477-3490.
    131. Ibarra D, Chavez M I, Rencoret J, del Rio J C, Gutierrez A, Romero J. Structural modification of eucalypt pulp lignin in atotally chlorine free bleaching sequence including a laccase-mediator stage [J]. Holzforschung,2007b,61(6):634-646.
    132. Ikeda T, Holtman K, Kadla J F, Chang H M, Jameel H. Studies on the effect of ball milling on lignin structure using a modified DFRC method [J]. Journal of Agricultural and Food Chemistry, 2002,50(1):129-135.
    133. Jaaskelainen A S, Sun Y, Argyropoulos D S, Tamminen T, Hording B. The effect of isolation method on the chemical structure of residual lignin [J]. Wood Science and Technology,2003, 37(2):91-102.
    134. Jiang N, Pu Y, Samuel R, Ragauskas A J. Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls [J]. Green Chemistry,2009,11(11): 1762-1766.
    135. Jia S, Cox B J, Guo X, Zhang Z C, Ekerdt J G Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride:an optional strategy for the degradation of lignin [J]. ChemSusChem,2010,3(9):1078-1084.
    136. Ji W, Ding Z, Liu J, Song Q, Xia X, Gao H, Wang H, Gu W. Mechanism of lignin dissolution and regeneration in ionic liquid [J]. Energy& Fuels,2012,26(10):6393-6403.
    137. Jung S, Foston M, Sullards M C, Ragauskas A J. Surface Characterization of Dilute Acid Pretreated Populus deltoides by ToF-SIMS [J]. Energy Fuels,2010,24(2):1347-1357.
    138. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers,2000, 43(2):195-203.
    139. Karhunen P, Rummakko P, Sipila J, Brunow Q Kilpelainen I. Dibenzodioxocins—a novel type of linkage in softwood lignins [J]. Tetrahedron Letters,1995,36(1):169-170.
    140. Kazi F K, Fortman J A, Anex R P, Hsu D D, Aden A, Dutta A, Kothandaraman G Techno-economic comparison of process technologies for biochemical ethanol production from corn stover [J]. Fuel,2010,89(11):S20-S28.
    141. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. Dissolution of wood in ionic liquids [J]. Journal of Agricultural and Food Chemistry,2007,55(22):9142-9148.
    142. Kim H, Ralph J, Akiyama T. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6 [J]. BioEnergy Research,2008,1(1):55-56.
    143. Kim J Y, Shin E J, Eom I Y, Won K, Kin Y H, Choi D, Choi I G, Choi j W. Structural features of lignin macromolecules extracted with ionic liquid from poplar wood [J]. Bioresource Technology, 2011,102(19):9020-9025.
    144. Kirk T K, Farrell R L. Enzymatic "combustion":The microbial degradation of lignin" [J]. Annual Review of Microbiology,1987,14:465-505.
    145. Klemm D, Heublein B, Fink H P, Bohn A. Cellulose:fascinating biopolymer and sustainable raw material [J]. Angewandte Chemie International Edition,2005,44(2):3358-3393.
    146. Kosan B, Michels C. Meister F. Dissolution and forming of cellulose with ionic liquids [J]. Cellulose,2008,15(1):59-66.
    147. Kouassi S S, Tognonvi M T, Soro J, Rossignol S. Consolidation mechanism of materials from sodium silicate solution and silica-based aggregates [J]. Journal of Non-Crystalline Solids,2011, 357(15):3013-3021.
    148. Kubo S, Hashida K, Yamada T, Hishiyama S, Magara K, Kishino M, Ohno H, Hosoya S. A characteristic reaction of lignin in ionic liquids; glycelol type enol-ether as the primary decomposition product of β-O-4'model compound [J]. Journal of Wood Chemistry and Technology,2008,28(2):84-96.
    149. Lai Y Z, Sarkanen K V. Isolation and structural studies. In:Lignins:Occurrence, Formation, Structure and Reactions. Sarkanen K V L, Ludwig C H. Eds. [M]. Wiley-Interscience, New York. pp.1971,165-230.
    150. Landucci L L. Quantitative 13C NMR Characterization of Lignin 1. A Methodology for High Precision [J]. Holzforschung,1985,39(6):355-359.
    151. Landucci L L. Quinones in alkaline pulping Characterization of an anthrahydroquinone quinone methide intermediate [J]. Tappi Journal,1980,63(7):95-99.
    152. Lansalot-Matras C, Moreau C. Dehydration of Fruetose into 5-Hydroxymethylfurfural in the Presence of Ionie Liquids [J]. Catalysis Communications,2003,4(10):517-520.
    153. Lapierre C, Lallemand J Y, Monties B. Evidence of poplar lignin heterogeneity by combination of 13C and 1H NMR spectroscopy [J]. Holzforschung,1982,36(6):275-282.
    154. Lapierre C, Monties B, Guittet E, Lallemand J Y. Photosynthetically 13C-Labelled Poplar Lignins:13C NMR Experiments [J]. Holzforschung,1984,38(6):333-342.
    155. Lee S H, Doherty T V, Linhardt R J, Dordick J S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis [J]. Biotechnology and Bioengineering,2008,102(5):1368-1376.
    156. Li B, Asikkala J, Filpponen I, Argyropoulos D S. Factors affecting wood dissolution and regeneration of ionic liquids [J]. Industrial & Engineering Chemistry Research,2010,49(5): 2477-2484.
    157.Liebner F, Patel I, Ebner G, Becker E, Horix M, Potthast A, Rosenau T. Thermal aging of l-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose [J]. Holzforschung,2010,64(2):161-166.
    158. Li M F, Sun S N, Xu F, Sun R C. Formic acid based organosolv pulping of bamboo (phyllostachys acuta):Comparative characterization of the dissolved lignins with milled wood lignin [J]. Chemical Engineering Journal,2012,179(1):80-89.
    159. Lin S Y, Dence C W. Methods in Lignin Chemistry [M]. Springer-Verlag:Berlin,1992,91-95.
    160. Liu H, Sale K L, Holmes B M, Simmons B A, Singh S. Understanding the interactions of cellulose with ionic liquids:a molecular dynamics study [J]. The Journal of Physical Chemistry B,2010,114(12):4293-4301.
    161. Liu Q, Wang S R, Zheng Y, Luo Z Y, Chen K F. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis [J]. Journal of Analytical and Applied Pyrolysis,2008,82(1):170-177.
    162. Li W J, Zhang Z F, Zhang J L, Han B X, Wang B, Hou M Q, Xie Y. Micropolarity and aggregation behavior in ionic liquid+organic solvent solutions [J]. Fluid Phase Equilibria,2006, 248(2):211-216.
    163. Lloyd T A, Wyman C E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids [J]. Bioresource Technology, 2005,96(18):1967-1977.
    164. Long J, Li X, Guo B, Wang F, Yu Y, Wang L. Simultaneous delignification and selective catalytic transformation of agricultural lignocellulose in cooperative ionic liquid pairs [J]. Green Chemistry,2012,14(7):1935-1941.
    165. Lora J H, Pye E K. The Alcell process:an environmentally sound approach to annual fibers pulping [J]. Pulp Paper,1993,67(1):243-245.
    166. Lou R, Wu S B, Lv G J. Effect of conditions on fast pyrolysis of bamboo lignin [J]. Journal of Analytical and Applied Pyrolysis,2010a,89(2):191-196.
    167. Lou R, Wu S B, Lv G J, Guo D L. Pyrolytic products from rice straw and en2ymatic/mild acidolysis lignin (EMAL) [J]. BioResources,2010b,5(4):827-837.
    168. Lu F, Ralph J. DFRC method for lignin analysis.1. New method for β-aryl ether cleavage:lignin model studies [J]. Journal of Agricultural and Food Chemistry,1997,45(12):4655-4660.
    169. Lu F C, Ralph J. Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR [J]. The Plant Journal,2003,35(4):535-544.
    170. Lu F, Ralph J. Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf [J]. Chemicals Communications,2002,1:90-91.
    171. Lundquist K, Hedlund K. Acid degradation of lignin. Part I. The formation of ketones of the guaiacylpropane series [J]. Acta Chemica Scandinavica,1967,21(7):1750-1754.
    172. Lundquist K. NMR studies of lignin.4. Investigation of spruce lignin by!H NMR spectroscopy [J]. Acta Chemica Scandinavica B,1980,34:21-26.
    173. Lundquist K, Parkas J. Different types of phenolic units in lignins [J]. BioResources,2011,6(2): 920-926
    174. Lzydorczyk M S, Biliaderis C G. Cereal arabinoxylans:advances in structure and physicochemical properties [J]. Carbohydrate Polymers,1995,28(1):33-48.
    175. Marchessault R H, Coulombe S, Morikawa H, Robert D. Characterization of aspen exploded lignin [J]. Canadian Journal of Chemistry,1981,60(18):2372-2382.
    176. Martinez A T, Rencoret J R, Marques G, Gutierrez A, Ibarra D, Jimenez-Barbero J, del Rio J C. Monolignol acylation and lignin structure in some nonwoody plants:A 2D NMR study [J]. Phytochemistry,2008,69(16):2831-2843.
    177. Mattila P, Konko K, Eurola M, Pihlava J-M, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V. Contents of Vitamins, Mineral Elements, and Some Phenolic Compounds in Cultivated Mushrooms [J]. Journal of Agricultural and Food Chemistry,2001, 49(5):2343-2348.
    178. Mazza M, Catana D A, Vaca-Garcia C, Cecutti C. Influence of water on the dissolution of cellulose in selected ionic liquids [J]. Cellulose,2009,16(2):207-215.
    179. Meister J J. Modification of lignin [J]. Journal of Macromolecular Science, Part C:Polymer Reviews,2002,42(2):235-289.
    180. Meshgini M, Sarkanen K. Synthesis and kinetics of acid-catalyzed hydrolysis of some a-aryl ether lignin model compounds [J]. Holzforschung,1989,43(4):239-243.
    181.Mobarak F, Fahmy Y, Augustin H. Binderless lignocelluloses composite from bagasse and mechanism of self-bonding [J]. Holzforschung,1982,36(3):131-135.
    182. Mohamad Ibrahim M N, Zakaria N, Sipaut C S, Sulaiman O, Hashim R. Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production [J]. Carbohydrate Polymers,2011,86(1):112-119.
    183. Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world [J]. Journal of Polymer and Environment,2002,10(1-2):19-26.
    184. Mora-Pale M, Meli L, Doherty T V, Linhardt R J, Dordick J S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass [J]. Biotechnology and Bioengineering,2011,106(6):1229-1245.
    185. Morreel K, Ralph J, Kim H, Lu F C, Goeminne G, Ralph S, Messens E, Boerjan W. Profiling of Oligolignols Reveals Monolignol Coupling Conditions in Lignifying Poplar Xylem [J]. Plant Physiology,2004,136(3):3537-3549.
    186. Morrison I M. Structural investigations on the lignin-carbohydrate complexes of lolrum perenne [J]. Biochemical Journal,1974,139:197-204.
    187. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch M R, Optimization of Ph controlled liquid hot water pretreatment of corn stover [J]. Bioresource Technology,2005,96(18):1986-1993.
    188. Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2005,96(6):673-686.
    189. Moulthrop J S, Swatloski R P, Monya G, Rogers R D. High-resolution 13CNMR studies of cellulose and cellulose oligomers in iionic liquid solutions [J]. Chemical Communications,2005, 12:1557-1559.
    190. Mousavioun P, Doherty W O S. Chemical and thermal properties of fractionated bagasse soda lignin [J]. Industrial Crops and Products,2010,31(1):52-58.
    191. Murai K, Uchida R, Okubo A, Kondo R. Characterization of the oil palm trunk as a material for bio-ethanol production [J]. Mokuzai Gakkaishi,2009,55(6):346-355.
    192. Murnen H K, Balan V, Chundawat S P S, Bals B, Sousa L D C, Dale B E. Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars [J]. Biotechnology Progress,2007,23(4):846-850.
    193. Nadji H, Diouf P N, Benaboura A, Bedard Y, Riedl B, Stevanovic T. Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.) [J]. Bioresource Technology,2009, 100(14):3585-3592.
    194. Namboodiri V V, Varma R S. Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent-free tetrahydropyranylation of alcohols and phenols [J]. Chemical Communications,2002,4:342-343.
    195. Nelson M L, O'Connor R T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part Ⅱ. A new infrared ratio for estimation of crystallinity in cellulose Ⅰ and Ⅱ [J]. Journal of Applied Polymer Science,1964,8(3):1325-1341.
    196. Neto C P, Evtuguin D V, Paulino P P. Effect of polyphenolic extractives on the quantification and structural characterization of the Eucalyptus globulus lignin [J]. In Proceedings of 9th ISWPC, Montreal,1997, pp.78:1-4.
    197. Nguyen T D, Kim K R, Han S J, Cho H Y, Kin J W, Park S M, Park J C, Sim S J. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars [J]. Bioresource Technology,2010,101(19):7432-7438.
    198. Nimz H H. Beech lignin-proposal of a constitutional cheme [J]. Angewandte Chemie International Edition,1974,13(5):313-321.
    199. Nimz H H, Casten R. Chemical processing of lignocellulosics [J]. Holz Roh-Werkstoff,1986, 44(6):207-212.
    200. Nimz H H, Robert D, Faix O, Nemr M. Carbon-13 NMR spectra of lignins,8:structural differences between lignins of hardwood, softwoods, grasses and compression wood [J]. Holzforschung,1981,35(1):16-26.
    201. Ni Y, Hu Q. Alcell(?) lignin solubility in ethanol-water mixtures [J]. Journal of Applied Polymer Science,1995,57(12):1441-1446.
    202. Oh S Y, Yoo D I, Younsook S, Kim H C, Kirn H Y, Chung Y S, Park W H, Youk J H. "Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spextroscopy [J]. Carbohydrate Research,2005,340(15):2376-2391.
    203. Ohtani Y, Mazumder B B, Saseshima K. Influence of chemical composition of kenaf bast and core in the alkaline response [J]. Journal of Wood Science,2001,47(1):30-35.
    204. Okuda N, Hori K, Sato M. Chemical changes of kenaf core binderless boards during hot pressing (Ⅰ):Influence of the pressing temperature condition [J]. Journal of Wood Science,2006a,52(3): 244-248.
    205. Okuda N, Hori K, Sato M. Chemical changes of kenaf core binderless boards during hot pressing (Ⅱ):Effects on the binderless board properties [J]. Journal of Wood Science,2006b,52(3): 249-254.
    206. Olivier-Bourbigou H, Magna L, Morvan D. Ionic Liquids and Catalysis:Recent Progress from Knowledge to Applications [J]. Applied Catalysis A:General,2010,373(1-2):1-56.
    207. Orabi M A A, Taniguchi S, Yoshimura M, Yoshida T, Kishino K, Sakagami H, Hatano T. Hydrolyzable tannins of tamaricaceous plants. Ⅲ. Hellinoyl-and macrocyclictype ellagitannins from tamarix nilotica [J]. Journal of Natural Products,2010,73(5):870-879.
    208.O'sullivan A C. Cellulose:the structure slowly unravels [J]. Cellulose,1997,4(3):173-207.
    209. Pandey M P, Kim C S. Lignin depolymerization and conversion:a review of thermochemical methods [J]. Chemical Engineering and Technollogy,2011,34(1):29-41.
    210. Pan X J, Sano Y. Comparison of acetic acid lignin with milled wood lignin and alkaline lignins from wheat straw [J]. Holzforschung,2000,54(1):61-65.
    211. Pan X J, Xie D, Yu R W, Saddler J N. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process [J]. Biotechnology and Bioengineering,2008,101(1):39-47.
    212. Pan X, Kadla J F, Ehara K, Gilkes N, Saddler J N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger:relationoship between lignin structure extraction conditions and antioxidant activity [J]. Journal of Agricultural and Food Chemistry,2006,54(16):5806-5813.
    213. Parham R A. Distribution of lignin in kraft pulp as determined by electron microscopy [J]. Wood Science and Technology,1974,6(1):305-315.
    214. Park S, Kazlauskas R J. Biocatalysis in ionic liquids-advantages beyond green technology [J]. Current Opinion in Biotechnology,2003,14(4):432-437.
    215. Pauly M, Keegstra K. Cell wall carbohydrates and their modification as a resource for biofuels [J]. The Plant Journal,2008,54(4):559-568.
    216. Pelaez-Samaniego M R, Yadama V, Lowell E, Espinoza-Herrera R E. A review of wood thermal pretreatments to improve wood composite properties [J]. Journal of Wood Science and Technology,2013,47(6):1285-1319.
    217. Peng X, Ren J, Sun R. Homogeneous Esterification of Xylan-Rich Hemicelluloses with Maleic Anhydride in Ionic Liquid [J]. Biomacromolecules,2010,11(12):3519-3524.
    218. Peng X, Ren J, Zhong L, Sun R. Homogeneous synthesis of hemicellulosic succinates with degree of substitution in ionic liquid [J]. Carbohydrate Polymers,2011,86(4):1768-1774.
    219. Pew J C. Properties of powered wood and isolation of lignin by cellulytic enzymes [J]. Tappi Journal,1957,40(7):553-558.
    220. Pinkert A, Goeke D F, Marsh K N, Pang S. Extracting wood lignin without dissolving or degrading cellulose:investigations on the use of food additive-derived ionic liquids [J]. Green Chemistry,2011,13(11):3124-3136.
    221. Pinkert A, Marsh K N, Pang S. Ionic Liquids and Their Interaction with Cellulose [J]. Industrial & Engineering Chemistry Research,2010,49(22):11809-11813.
    222. Pinkert A, Marsh K N, Pang S, Staiger M P. Ionic liquids and their interaction with cellulose [J]. Chemical Reviews,2009,109(12),6712-6728.
    223. Pinto P G R, Silva E A B D, Rodrigues A E. Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes [J]. Industrial & Engineering Chemistry Research,2011, 50(2):741-748.
    224. Plechkova N V, Seddon K R. Application of ionic liquid in the chemical industry [J]. Chemical Society Reviews,2008,37:123-150.
    225. Pu Y, Jiang N, Ragauskas A J. Ionic liquid as agreen solvent for lignin [J]. Journal of Wood Chemistry and Technology,2007,27(1):23-33.
    226. Pye E K, Lora J H. The Alcell process:a proven alternative to Kraft pulping [J]. Tappi Journal, 1991,74(3):113-118.
    227. Qi M Y, Wu G Z, Sha M L, Liu Y S. Radiation induced polymerization of MMA in imidazolium ionic liquids and their mixed solutions with organic solvents [J]. Radiation Physics and Chemistry,2008,77(10-12):1248-1252.
    228. Ralph J. An unusual lignin from kenaf [J]. Journal of Natural Products,1996,59(4):341-342.
    229. Ralph S A, Landucci L L, Ralph J. NMR Database of Lignin and Cell Wall Model Compounds. US Forest Products Laboratory, Madison, WI.2001, Available online at http://www.dfrc.ars.usda.gov/software.html.
    230. Ralph J, Hatfield R D, Quideau S, Helm R F, Grabber J H, Jung H J G J. Pathway of p-Coumaric Acid Incorporation into Maize Lignin As Revealed by NMR [J]. Journal of American Chemical Society,1994,116(21):9448-9456.
    231. Remsing R C, Swatloski R P, Rogers R D, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazoliumchloride:a 13C and 35/37C1 NMR relaxation study on model systems [J]. ChemicalCommunications,2006,12:1271-1273.
    232. Rencoret J, Gutierrez A, Nieto Lidia, Jimenez-Barbero J, Faulds C B, Kim H, Ralph J, Martinez A T, del Rio J C. Lignin composition and structure in young versus adult eucalyptus globulus plants [J]. Plant Physiology,2011,155(2):667-682.
    233. Rencoret J, Marques G, Gutierrez A, Ibarra D, Li J B, Gellerstedt G, Santos J I, Jimenez-Barbero J, Martinez A T, del Rio J C. Structural characterization of milled wood lignins from different eucalypt species [J]. Holzforschung,2008,62(5):514-526.
    234. Rencoret J, Marques G, Gutierrez A, Nieto L, Santos J I, Jimenez-Barbero J, Martinez A T, del Rio J C. HSQC-NMR analysis of lignin in woody (Eucalyptus globulis and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state [J]. Holzforschung,2009, 63(6):691-698.
    235. Rogers R D, Seddon K R. Ionic Liquids as Green Solvents:Progress and Prospects [B]. ACS Symposium Series 856, American Chemical Society, Washington, DC,2003.
    236. Rogers R D, Seddon K R. Ionic Liquids:Industrial Applications for Green Chemistry, Eds. ACS Symposium Series 818, American Chemical Society, Washington DC.2002:260-269.
    237. Rollin J A, Zhu Z, Sathitsuksanoh N, Percival Zhang Y.-H. Increasing cellulose accessibility is more important than removing lignin:a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia [J]. Biotechnology and Bioengineering,2011, 108(1):22-30.
    238. Rubin E M. Genomics of cellulosic biofaels [J]. Nature,2008,454(14):841-845.
    239. Sakakibara A, Sano Y. In Wood and Cellulosic Chemistry, ed. Hon D N S, Shiraishi N, Marcel Dekker, New York,2001, pp.109-174.
    240. Samayam I P, Schall C A. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures [J]. Bioresource Technology,2010,101(10):3561-3566.
    241. Samuel R, Pu Y, Raman B, Ragauskas A J. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment [J]. Applied Biochemistry and Biotechnology,2010,162(1):62-74.
    242. Sano Y, Nakamura M, Shimamoto S. Pulping of wood at atmospheric pressure II:pulping of hardwoods with aqueous acetic acid containing s small amount of sulfuric acid [J]. Mokuzai Gakkaishi,1990,36(3):207-211.
    243. Sarkanen K. Chemistry of solvent pulping [J]. Tappi Journal,1990,73(10):215-219.
    244. Sarkanen K V, Ludwig C H. Lignins:Occurrence, Formation, Structure and Reactions [B]. Wiley-Interscience:1971, New York.
    245. Scalbert A, Monties B, Guittet E, Lallemand J Y. Comparision of wheat straw lignin preparations I. Chemical and spectroscopie characterizations [J]. Holzforschung,1986,40(2):119-129.
    246. Scalbert A, Monties B, Lallemand J Y, Guittet E, Rolando C. Ether linkage between phenolic acids and lignin fractions from wheat straw [J]. Phytochemistry,1985,24(6):1359-1362.
    247. Schuchardt U, Rodrigues J, Augusto R, Costa J. Liquefaction of hydrolytic eucalyptus lignin with formate in water, using batch and continuous-flow reactors [J]. Bioresource Technology, 1993,44(2):123-129.
    248. Seddon K R, Annegret S, Maria-Jose T. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids [J]. Pure and Applied Chemistry,2000,72(12):2275-2287.
    249. Sette M, Wechselberger R, Crestini C. Elucidation of lignin structure by quantitative 2D NMR [J]. Chemistry-A European Journal,2011,17(34):9529-9535.
    250. Shabtai J S, Zmierczak W W, Chomet E, Johnson D. US.Patent 0115792,2003.
    251. Sharma R, Wooten J B, Baliga V, Lin X, Chan W G, Hajaligol M R. Characterization of chars from pyrolysis of lignin [J]. Fuel,2004,83(11-12):1469-1482.
    252. Shen D K, Gu S, Luo K H, Wang S R, Fang M X. The pyrolytic degradation of wood-derived lignin from pulping process [J]. Bioresource Technology,2010,101(15):6136-6146.
    253. Shill K, Padmanabhan S, Xin Q, Prausnitz J M, Clark D S, Blanch H W. Ionic Liquid Pretreatment of Cellulosic Biomass:Enzymatic Hydrolysis and Ionic Liquid Recycle [J]. Biotechnology and Bioengineering,2011,108(3):511-520.
    254. Shimada M, Fukuzuka T, Higuchi T. Ester linkages of p-coumaric acid in bamboo and grass lignins [J]. Tappi Journal,1971,54(1):72-78.
    255. Singh R, Singh S, Trimukhe K D, Pandare K V, Bastawade K B, Gokhale D V, Varma A J. Lignin-carbohydrate complexes from sugarcane bagasse:preparation, purification, and characterization [J]. Carbohydrte Polymers,2005,62(1):57-66.
    256. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of structural carbohydrates and lignin in biomass LAP-002 NREL Analytical Procedure, National Renewable Energy Laboratory.2008a.
    257. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of ash in biomass LAP-005 NREL Analytical Procedure, National Renewable Energy Laboratory.2008b.
    258. Somerville C. Plant cell wall structure-pretreatment the critical relationship. In:The billion-ton biofuels vision [M]. Science,2006,312:12771.
    259. Spencer R R, Akin D E. Rumen microbial degradation of potassium hydroxide-treated coastal bermudagrass leaf blades examined by electron microscopy [J]. Journal of Animal Science,1980, 51(5):1189-1196.
    260. Spinks G M, Lee C K L, Wallace G G, Kim S I, Kim S J. Swelling behavior of chitosan hydrogels in ionic liquid-water bunary systems [J]. Langmuir,2006,22(22):9375-9379.
    261. Stockburger P. An overview of near commercial and commercial solvent-based pulping process [J]. Tappi Journal,1993,76(6):71-74.
    262. Suchsland O. Hygroscopic thickness swelling and related properties of selected commercial particleboards [J]. Forest Products Journal,1973,26-30.
    263. Sun N, Rahman M, Qin Y, Maxim M L, Rodriguez H, Rogers R D. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate [J]. Green Chemistry,2009,11(5):646-655.
    264. Sun R C, Lawther J M, Banks W B. Fractional isolation and physico-chemical characterization of alkali-soluble lignins from wheat straw [J]. Holzforschung,1997,51(3):244-250.
    265. Sun R C, Lu Q, Sun X F. Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp. [J]. Polymer Degradation and Stability,2001a, 72(2):229-238.
    266. Sun R C, Sun X F, Wen J L. Fractional and structural characterization of lignins isolated by alkali and alkaline peroxide from barley straw [J]. Journal of Agricultural and Food Chemistry,2001b, 49(11):5322-5330.
    267. Sun R C, Sun X F, Zhang S H. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, oil palm frond fiber, and fast-growing poplar wood [J]. Journal of Agricultural and Food Chemistry,2001c,49(11):5122-5129.
    268. Sun R C, Tomkinson J, Jones G L. Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fiber [J]. Polymer Degradation and Stability, 2000,68(1):111-119.
    269. Sun R C, Tomkinson J, Sun X F, Wang N J. Fractional isolation and physic-chemical characterization of alkali-soluble lignins from fast-growing poplar wood [J]. Polymer,2000a, 41(23):8409-8417.
    270. Sun R C, Tomkinson J, Ye J. Physico-chemical and structural characterization of residual lignins isolated with TAED activated peroxide from ultrasound irradiated and alkali pre-treated wheat straw [J]. Polymer Degradation and Stability,2003,79(2):241-251.
    271. Sun R, Tomkinson J, Zhu W, Wang S Q. Delignification of maize stem by peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide.1. Physicochemical and structural characterization of the solubilized lignins [J]. Journal of Agricultural and Food Chemistry,2000b,48(4):1253-1262.
    272. Sun Y C, Wen J L, Xu F, Sun R C. Fractional and structural characterization of organosolv and alkaline lignins from Tamarix austromogoliac [J]. Scientific Research and Essays,2010,5(24): 3850-3864.
    273. Sun Y C, Wen J L, Xu F, Sun R C. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica [J]. Bioresource Technology,2011,102(10):5947-5951.
    274. Sun Y C, Xu J K, Xu F, Sun R C. Structural comparison and enhanced enzymatic hydrolysis of eucalyptus cellulose via pretreatment with different ionic liquids and catalysts [J]. Process Biochemistry,2013,48(5-6):844-852.
    275. Suzuki S, Shintani H, Park S Y, Saito K, Laemsak N, Okuma M, Iiyama K. Preparation of binderless boards from steam exploded pulps of iol palm (Elaeis guneensis Jaxq.) fronds and structural characteristics of lignin and wall polysaccharides in steamexploded pulps to be discussed for self-bonding [J]. Holzforschung,1998,52(4):417-426.
    276. Swatloski R P, Speat S K, Holbrey J D, Rogers R D. Dissolution of cellulose with ionic liquids [J]. Journal of the American Chemical Society,2002,124(18):4974-4975.
    277. Tai D S, Terazawa M, Chen C L, Chang H M. Lignin biodegradation products from birch wood by Phanerochaete chrysosporium [J]. Holzforschung,1990,44(3):185-190.
    278. Tan S S Y, MacFarlane D R, Upfal J, Edye L A, Doherty W O S, Patti A F, Pringle J M, Scott J L. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid [J]. Green Chemistry,2009,11(3):339-345.
    279. Tappi Test method T264 om-88. "Preparation of wood for chemical analysis. In:Tappi Test Methods. Atlanta, GA:Technical Association of the Pulp and Paper Industry.
    280. Tejado A, Pena C, Labidi J, Echeverria J M, Mondragon I. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis [J]. Bioresource Technology,2007,98(8):1655-1663.
    281. Thring R W, Vanderlaan M N, Griffin S L. Fractionation of Alcell(?) lignin by sequential solvent extraction [J]. Journal of Wood Chemistry and Technology,1996,16(2):139-154.
    282. Timell T E. Studies on opposite wood in conifers III. Distribution of lignin [J]. Wood Science and Technology,1973,7(3):163-172.
    283. Toledano A, Garcia A, Mondragon I, Labidi J. Lignin separation and fractionation by ultrafiltration [J]. Separation and Purification Technology,2010,71(1):38-43.
    284. Tshabalala M A. Determinatioon of the acid-base characteristics of lignocellulosic surfaces by inverse gas chromatography [J]. Journal of Applied Polymer Science,1997,65:1013-1020.
    285. Uraki Y, Kubo S, Kurakami H, Sano Y. Activated carbonfibers from acetic acid lignin [J]. Holzforschung,1997,51(2):188-192.
    286. Uraki Y, Kubo S, Nigo Y, Sasaya T. Preparation of carbonfibers from organosolv lignin obtained by aqueous acetic acid pulping [J]. Holzforschung,1995,49(4):343-350.
    287. Vail J G Soluble Silicates:Their Properties and Uses [B]. Rheinhold,1952, New York.
    288. Vanerlaan M N, Thring R W. Polyuethanes from Alcell(?) lignin fractions obtained by sequential slvent extraction [J]. Biomass and Bioenergy,1998,14(5-6):525-531.
    289. Varanasi P, Singh P, Arora R, Adams P D, Auer M, Simmons B A, Singh S. Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment [J]. Bioresource Technology,2012,126:156-161.
    290. Vasile C, Gosselink R, Quintus P, E. Koukios G, D. Koullas P, Avgerinos E, Abacherli D A. Analytical methods for lignin characterization. I. Thermogravimetry [J]. Cellulose Chemistry and Technology,2006,40(6):421-429.
    291. Villaverde J J, Li J B, Ek M, Ligero P, de Vega A. Native Lignin Structure of Miscanthus x giganteus and Its Changes during Acetic and Formic Acid Fractionation [J]. Journal of Agricultural and Food Chemistry,2009,57(14):6262-6270.
    292. Vitz J, Erdmenger T, Haensch C, Schubert U S. Extended dissolution studies of cellulose in imidazolium based ionic liquids [J]. Green Chemistry,2007,11(3):417-424.
    293. Walden P. Molecular weights and electrical conductivity of several fused salts [J]. Bull Acad Imper Sci, (St. Petersburg),1914,1800:405-422.
    294. Wang H, Gurau G, Rogers R D. Ionic liquid processing of cellulose [J]. Chemical Society Reviews,2012,41(4):1519-1537.
    295. Wasserscheid P, Welton T. Ionic Liquids in Synthesis [B]. WileyVCH, Weinheim,2003.
    296. Wedyorini R, Xu J Y, Watanabe T, Kawais S. Chemical changes in steam-pressed kenaf core binderless particleboard [J]. Journal of Wood Science,2005a,51(1):26-32.
    297. Wedyorini R, Xu J Y, Watanabe T. Kawais S. Self-bongding characteristics of binerless kenaf core composites [J]. Journal of Wood Science,2005b,39(8):651-662.
    298. Wei S, Kumar V, Banker G S. Phosphoric acid mediated depolymerization and decrystallization of cellulose:Preparation of low crystallinity cellulose—A new pharmaceutical excipient [J]. International Journal of Pharmaceutics,1996,142(2):175-181.
    299. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chemical Reviews,1999,99(8):2071-2083.
    300. Whiting P, Goring D A I. Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids [J]. Wood Science and Technology,1982,16(4): 261-267.
    301. Whiting P, Goring D A I. The morphological origin of milled wood lignin [J]. Svensk Papperstidning Nordisk Cellulosa,1981,84:R120-R122.
    302. Whitmore F W. Lignin-carbohydrate complex formed in isolated cell walls of callus [J]. Phytochemistry,1978,17(3):421-425.
    303. Widyorini R, Xu J Y, Watanabe T, Kawai S. Chemical changes in steam-pressed kenaf core binderless particleboard [J]. Journal of Wood Science,2005,51(1):26-32.
    304. Wilkes J S, Levisky J A, Wilson R A, Hussey C L. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis [J]. Inorganic Chemistry,1982,21(3):1263-1264.
    305. Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquid [J]. Journal of the Chemical Society, Chemical Communications,1992,13:965-967.
    306. Wu B, Liu W W, Zhang Y M, Wang H P. Do we understand the recucling of ionic lqiuds? [J]. Chemistry-A European Journal,2009,15(8):1804-1810.
    307. Wu S, Argyropoulos D. An improved method for isolating lignin in high yield and purity [J]. Journal of Pulp and Paper Science,2003,29(7):235-240.
    308. Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw [J]. Polymer Degradation and Stability,2001,74(2):307-319.
    309. Xu F, Geng Z C, Sun J X, Liu C F, Ren J L, Sun R C, Fowler P, Baird M S. Fractional and structural characterization of hemicelluloses from perennial ryegrass (Lolium perenne) and cocksfoot grass (Dactylis glomerata) [J]. Carbohydrate Research,2006,341(12):2073-2082.
    310. Xu F, Sun J X, Sun R C, Fowler P, Baird M S. Comparative study of organosolv lignins from wheat straw [J]. Industrial Crops and Products,2006,23(2):180-193.
    311. Yang B, Wyman C E. Pretreatment:the key to unlocking low-cost cellulosic ethanol [J]. Biofuels, Bioproducts and Biorefining,2008,2(1):26-40.
    312. Yang H P, Yan R, Chen H P, Zheng C G, Lee D H, Liang D T. In-depth investigation of biomass pyrolysis based on three major components:hemicellulose, cellulose and lignin [J]. Energy and Fuels,2006,20(1):388-393.
    313. Yong G, Zhang Y G, Ying J Y. Effieient Catalytie System for the Seleetive Production of 5-Hydroxymethylfurfural from Glueose and Fruetose [J]. Angewandte Chemie International Edition,2008,120(48):9485-9488.
    314. Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. The catalytic valorization of lignin for the production of renewable chemicals [J]. Chemical Review,2010,110(6): 3552-3599.
    315. Zakzeski J, Jonqerius A, Weckhuysen B M. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids [J], Green Chemistry,2010,12(7): 1225-1236.
    316. Zamudio M A M, Alfaro A, de Alva H E, Garcia J C, Garcia-Morales M, L6pez F. Biorefinery of paulownia by autohydrolysis and soda-anthraquinone delignification process:Characterizaion and application of lignin [J]. Journal of Chemical Technology and Biotechnology,2014, DOI: 10.1002/jctb.4345.
    317. Zavrel M, Bross D, Funke M, Buchs J, Spiess A C. High-throughput screening for inonic liquids dissolving (ligo-) cellulose [J]. Bioresource Technology,2009,100(9):2580-2587.
    318. Zhang K B, Zhao K G Afforestation for sand fixation in China [J]. Journal of Arid Environments, 1989,16(1):3-10.
    319. Zhang L, Gellerstedt G NMR observation of a new lignin structure, a spirodienone [J]. Chemical Communations,2001,24(47):2744-2745.
    320. Zhang L M, Gellerstedt G, Ralph J, Lu F C. NMR studies on the occurrence of spirodienone structures in lignins [J]. Journal of Wood Chemistry and Technology,2006,26(1):65-79.
    321. Zhang Y, Du H, Qian X, Chen Y.-X. Ionic liquid-water mixtures:enhanced Kw, for efficient cellulosic biomass conversion [J]. Energy & Fuels,2010,24(4):2410-2417.
    322. Zhao H, Baker G A, Song Z Y, Olubajo O, Crittle T, Peters D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates [J]. Green Chemistry,2008,10(6):696-705.
    323. Zhao X Q, Zi L H, Bai F W, Lin H L, Hao X M, Yue G J, Ho N W Y. Bioethanol from lignocellulosic biomass [J]. Biotechnology in China III:Biofuels and Bioenergy,2012,128: 25-51.
    324. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G Dissolution of cellulose with ionic liquids and its application:a mini-review [J]. Green Chemistry,2006,8(4):325-327.
    325. Zumman P, Rupp E. Lignin-the raw material for industry in the future [J]. Biomass, Proc. Biomass Co & Am.,1999,1:555-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700