用户名: 密码: 验证码:
羧甲基纤维素钠、海藻酸钠及壳聚糖磷酸酯复合纳滤膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用具有良好成膜性的羧甲基纤维素钠(CMC)、海藻酸钠(ALG)和壳聚糖的水溶性衍生物-壳聚糖磷酸酯(PCS)为复合纳滤膜表面活性层材料,戊二醛(GA)、环氧氯丙烷(ECH)和CuSO4溶液作为交联剂,聚砜(PSF)超滤膜为支撑层,利用涂敷交联的方法,制备了五种新型荷负电复合纳滤膜。利用衰减全反射红外光谱(ATR-IR)、扫描电子电镜(SEM)和原子力显微镜(AFM)对复合膜结构形貌进行了表征。研究了复合纳滤(NF)膜的最佳制备条件及操作条件对膜截留性能的影响。在铸膜液中添加适量的有机小分子或无机盐小分子,测得其对复合NF膜截留性能的影响。
     以羧甲基纤维素钠(CMC)为表面活性层材料,聚砜(PSF)超滤膜为基膜,戊二醛(GA)水溶液为交联剂,制得一种新型荷负电复合纳滤膜。其最佳制备条件为:羧甲基纤维素钠浓度为1%,戊二醛浓度为0.5%,稀硫酸催化条件下,30℃下交联2h。在室温下,复合膜接触角为57.85°,说明其表面亲水性比聚砜膜有很大提高。溶胀度为44.26%,截留分子量约为520Da。在操作压力为1MPa,料液流量为40L·h~(-1)时,对1000mg·L~(-1)K_2SO_4、Na_2SO_4、KCl、NaCl、MgSO4和MgCl_2溶液的截留率分别为98.3、98.0、62.5、59.1、54.4和24.6%,膜通量分别为10.0、10.1、15.2、15.8、13.7和16.5L·m~(-2)· h~(-1)。CMC/PSF复合膜对几种无机盐的截留顺序为:Na_2SO_4> NaCl> MgSO_4> MgCl_2。
     以羧甲基纤维素钠(CMC)和海藻酸钠(ALG)共混液为表面活性层材料,聚砜(PSF)超滤膜为基膜,环氧氯丙烷(ECH)的乙醇溶液(调节pH=10)为交联剂,制得一种新型共混复合纳滤膜。其最佳制备条件为:ALG/CMC共混比为1:3,交联剂环氧氯丙烷浓度为2%,在温度50℃交联18h。在操作压力为1MPa,料液流量为30L·h~(-1)时,对1000mg·L~(-1)K_2SO_4、Na_2SO_4、KCl、NaCl、MgSO_4和MgCl_2溶液的截留率分别为97.4、97.1、58.9、55.1、51.6和24.6%,膜通量分别为17.1、17.3、16.9、17.2、16.0和16.6L·m~(-2)· h~(-1)。该纳滤膜对不同无机盐的截留性能不同,具有典型的荷负电膜截留特性,这主要决定于荷电膜与电解质离子之间的静电作用力。
     通过对壳聚糖改性制备了水溶性的壳聚糖磷酸酯(PCS)。以PCS水溶液为铸膜液材料,PSF超滤膜为基膜,ECH为交联剂,用涂敷交联的方法制备了PCS/PSF复合纳滤膜,对其结构和形貌进行了表征。研究了活性层铸膜液的组成、交联剂浓度等因素对复合膜截留性能的影响。制备的PCS/PSF复合纳滤膜在操作压力为1MPa,料液流量为40L·h~(-1)时,对1000mg·L~(-1)Na_2SO_4和NaCl溶液的截留率分别为89.2、20.8%,通量分别为6.9、7.4L·m~(-2)· h~(-1)。复合膜对几种无机盐的截留顺序为:Na_2SO_4> MgSO_4> NaCl> MgCl_2。
     以PCS为表面活性层材料,PSF超滤膜为基膜,GA为交联剂,制备了一种新型PCS/PSF复合纳滤膜。其最佳制备条件为:壳聚糖磷酸酯PCS溶液浓度为2%,GA浓度为0.5%,在50℃下交联1.5h。复合膜对1000mg·L~(-1)Na_2SO_4溶液的截留率和通量分别为87.6%和8.3L·m~(-2)· h~(-1)。对无机盐的截留顺序为:Na_2SO_4>MgSO_4> NaCl> MgCl_2。研究了操作条件和有机小分子添加剂对复合膜截留性能的影响。在室温下,复合膜接触角为56.20°,溶胀度为44.07%,截留分子量约为510Da。
     以PCS为表面活性层材料,聚砜(PSF)为支撑层,CuSO4为螯合剂,成功制备了一种新型离子交联PCS/PSF复合纳滤膜。其最佳制备条件为:壳聚糖磷酸酯(PCS)水溶液浓度为1.5%,CuSO_4浓度为4%,在40℃下交联2h。复合膜对1000mg·L~(-1)Na_2SO_4溶液的截留率和通量分别为85.5%和7.4L·m~(-2)· h~(-1)。膜的截留分子量约为580Da,接触角为58.46°。
     用戊二醛交联的壳聚糖磷酸酯(PCS)/聚砜(PSF)复合纳滤膜对某污水处理厂中水进行了深度处理应用研究,对影响纳滤过程的因素,如操作压力、工作流量和运行时间进行了考察。测定在这些条件下,其对膜通量的影响以及对CODCr等的去除率(R)。结果表明,在操作压力为1MPa,进料液流量为40L·h~(-1)时,复合膜对总磷的去除率(R)>85.0%,对CODCr、氨氮及电导率的去除率(R)分别为76.2、69.8和33.2%,对色度的去除率为100%。经过膜法深度处理之后,出水各项指标都可以达到GB18918~(-2)002一级A的排放标准。
Sodium carboxymethyl cellulose (CMC), sodium alginate (ALG) andphosphorylated chitosan (PCS) were explored as the active layer materials forcomposite nanofiltration (NF) membranes in this study. A series of negatively chargedcomposite NF membranes were prepared through coating the casting solution ontoPSF matrix, and then cross-linked with glutaraldehyde (GA), epichlorohydrin (ECH),or CuSO4, repectively. The membranes were characterized by scanning electronmicroscopy (SEM), attenuated total reflection infrared spectroscopy (ATR-IR) andatomic force microscopy (AFM). Effects of membrane making conditions,low-molecular-weight organic additives in the casting solution and operatingconditions on performance of the composite membranes were also investigated.
     A negatively charged composite NF membrane was prepared using CMC assurface active layer, PSF matrix as support layer, cross-linked with GA. The resultsindicated that the composite membrane with excellent rejection performance shouldbe prepared while CMC concentration1%, GA concentration0.5%, cross-linking time2h at30℃. At room temperature, the contact angle is57.85°, degree of swelling44.26%, and its molecular weight cut-off is520Da. At1MPa and40L·h~(-1)feed flow,the rejections of the composite membrane to1000mg·L~(-1)K_2SO_4, Na_2SO_4, KCl, NaCl,MgSO4and MgCl_2were98.3,98.0,62.5,59.1,54.4and24.6%, with a flux of10.0,10.1,15.2,15.8,13.7and16.5L· m~(-2)· h~(-1), respectively. The rejection rate of themembrane to different electrolyte solutions decreased in the order of Na_2SO_4, NaCl,MgSO4and MgCl_2.
     A blend composite NF membrane was prepared using CMC and ALG blend assurface active layer, PSF as support layer, cross-linked with ECH at pH=10. Thecomposite membrane with excellent rejection performance should be prepared whileALG/CMC proportion1:3, ECH concentration2%, cross-linking time18h at50℃. At1MPa and30L·h~(-1)feed flow, the rejections of the composite membrane to1000mg·L~(-1) K_2SO_4, Na_2SO_4, KCl, NaCl, MgSO4and MgCl_2were97.4,97.1,58.9,55.1,51.6and24.6%, with a flux of17.1,17.3,16.9,17.2,16.0and16.6L· m~(-2)· h~(-1), respectively. Theresults indicate that the composite NF membrane has different rejection ratio todifferent kinds of inorganic salts. Similar to other negative charged membranes, therejection performance of the composite membrane depends on the electrostatic forcebetween the charged membrane and ions of electrolyte.
     The water soluble PCS with D.C. of0.78was prepared through a modified andhomogeneous method. A novel kind of composite NF membrane was prepared usingPCS as surface active layer, PSF as support layer, cross-linked with ECH. Themembrane preparation techniques on the performance of the composite membranewere investigated. The results suggest that the composite membrane with excellentrejection performance should be prepared while PCS concentration1.5%, ECHconcentration1%, cross-linking time22h at60℃. The structure and morphology ofthe resulting membrane were characterized by ATR-IR, SEM, and AFM. At1MPa and40L·h~(-1)feed flow, the rejections of the NF membrane to1000mg·L~(-1)Na_2SO_4andNaCl were89.2and20.8%, respectively. The flux were6.9and7.4L· m~(-2)· h~(-1). Therejections of the membrane to different electrolyte solutions decreased in the order ofNa_2SO_4, MgSO4, NaCl and MgCl_2.
     The PCS/PSF composite NF membrane was prepared using PCS as surfaceactive layer, PSF as support layer, cross-linked with GA. The results suggest that thecomposite membrane with excellent rejection performance should be prepared whilePCS concentration2%, GA concentration0.5%, cross-linking time1.5h at50℃.At1MPa and40L·h~(-1)feed flow, the rejection and flux of the NF membrane to1000mg·L~(-1)Na_2SO_4was87.6%and8.3L· m~(-2)· h~(-1), respectively. The rejections of thiskind of membrane to the electrolyte solutions decreased in the order of Na_2SO_4,MgSO4, NaCl and MgCl_2. The preparation techniques on the performance of thecomposite membrane were investigated. At room temperature, the contact angle is56.20°, degree of swelling44.07%, and its molecular weight cut-off510Da.
     A novel PCS/PSF composite membrane was prepared using PCS as surfaceactive layer, PSF as support layer, cross-linked with CuSO4. The composite membranewith excellent rejection performance should be prepared while PCS concentration1.5%, CuSO4concentration4%, cross-linking time2h at40℃. At1MPa and40L·h~(-1)feed flow, the rejection and flux of the NF membrane to1000mg·L~(-1)Na_2SO_4was85.5%and7.4L· m~(-2)· h~(-1), respectively. The contact angle is58.46°and molecular weight cut-off580Da.
     The GA cross-linked PCS/PSF composite membrane was used in reclaimedwater treatment of a waste water plant. The permeate flux and the removalefficiencies in color, CODCr, TP, NH3and conductivity were investigated in relationto the driving pressure, the feed flow, and the operation time. At the pressure of1MPaand40L·h~(-1)feed flow, the removal efficiencies for color, CODCr, TP, NH3andconductivity were100,76.2,85.2,69.8and33.2%, respectively. After membraneprocess treatment, all the indexes of permeate reached A level standard ofGB18918~(-2)002.
引文
[1]冯厚军,谢春刚.中国海水淡化技术研究现状与展望.化学工业与工程.2010,27(2):103-109.
    [2]谭平华,林金清,肖春妹,等.膜技术在废水处理中的应用.江西化工,2003(4):33-37.
    [3]高以烜,叶凌碧.膜分离技术基础.北京:科学出版社,1989:106.
    [4] H. Mehdizadeh, K. H. Molaiee-Nejad. Modeling of mass transport of aqueous solutions ofmulti-solute organics through reverse osmosis membranes in case of solute-membrane affinity. J.Membr. Sci.,2005,267:27-40.
    [5] Paul D. R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci.,2004,241:371-386.
    [6] Sarit B., Adi B. D.. Characterization of ion transport in the active layer of RO and NFpolyamide membrane. Desalination,2006,199:31-33.
    [7] Smit J. A. M. Reverse osmosis in charged membranes. Analytical predictions from thespace-charged model. J. Collid. Interf. Sci.,1989,132(2):413-424.
    [8] Ruckenstein E., Sasidhar V. Anomalous effects during electrolyte osmosis across chargedporous membran. J. Collid. Interf. Sci.,1982(2):332-362.
    [9] Shang W. J., Wang H. L., Tu C. H., et al. Membrane potential of charged porous membranes insingle lectrolyte solutions. Acta. Chim. Sin.,2009,67(9):969-973.
    [10] Hijnen H. J. M., Van D. J., Smit J. A. M. The application of the space-charge model to thepermeability properties of charged microporous membranes. J. Collid. Interf. Sci.,1985,107(2):525-539.
    [11] Tsuru T., Nakao S., Kimura S. Calculation of ion rejection by extended Nernst-Plank equationwith charged reverse osmosos membranes for single and mixed electrolytr solution. J. Chem. Eng.Japan.,1991,24:511-517.
    [12] Kobatake Y., Kamo N. Transport processes in charged membranes. Prog. Poly. Sci. Japan,1973,5:257-301.
    [13] Tsuru T., Urairi M., Nakao S., et al. Reserve osmosis of single and mixed electrolytes withcharged membanes: experiment and analysis. J. Chem. Eng. Japan,1991,24:518-523.
    [14] Hoffer E., Kedem O. Hyperfiltration in charged membranes: the fixed charge model.Desalination,1976,2:25-39.
    [15]张林生,沈剑斌.纳滤膜的分离机理及其在染料废水处理中应用.工业水处理,2003,23(12):1-2.
    [16] Bertrand T., Christelle H. S. Contribution of electrostatic interactions during fractionation ofsmall peptides complex mixtures by UF/NF membranes. Desalination,2006,200:333-334.
    [17] Wang X. L., Tsuru T. Nakao S, et al. The electrostatic and steric hindrance model for thetransport of charged solutes through nanofiltration membrane. J. Membr. Sci.,1997,126(1):91-105.
    [18] Wang X. L., Tsuru T., Kimura S. Electrolyte transport through nanofiltration membranes byspace-charge model and the comparison with Teorell-Meyer-Sievers model. J. Membr. Sci.,1995,103:117-133.
    [19]夏冰,董声华,金秀龙,等.荷电纳滤膜的研制.水处理技术,1992,18(2):75-83.
    [20]刘淑秀,姚仕仁,郑大威,等.纳滤膜及其表面活性剂分离特性的研究.膜科学与技术,1997,17(2):20-23.
    [21]鲁学仁,高从堦,张建飞,等. PVDF荷电膜制备与性能的研究.膜科学与技术,1994,14(2):22-25.
    [22]俞三传,高从堦,鲁学仁,等.磺化聚醚砜复合半渗透膜的研制.膜科学与技术,1995,15(2):31-38.
    [23]邢丹敏,张伟,孙同升,等.复合纳滤膜的性能研究.第二届全国膜与膜过程学术报告会,杭州,1996.
    [24]鲁学仁,高从堦.丙烯酸-丙烯腈共聚物盐荷电膜的制备和性能研究.水处理技术,1997,23(1):1-5.
    [25]孙志猛、任晓晶、赵可卉,等.耐污染聚酰胺复合纳滤膜的制备及性能.化工进展,2012,5:1088-1095.
    [26] Jian X., Dai Y., He G., et al. Preparation of UF and NF poly (phthalazine ether sulfone ketone)membranes for high temperature application. J. Membr. Sci.,1999,161(1-2):185-191.
    [27] Hvid K. B., Nielson P. S., Steengaard F. Preparation and characterization of newultrafiltration membrane. J. Membr. Sci.,1990,53:189-202.
    [28] Zhao Z. P., Li J., Zhang D. X., et al. Nanofiltration membrane prepared from polyacrylonitrileultrafiltration membrane by low-temperature plasma I. Graft of acrylic acid in gas. J. Membr. Sci.,2004,232(1-2):1-8.
    [29] Kaeselev B., Pieracci J., Belfort G. Photoinduced grafting of ultrafiltration membranes:comparison of poly(ether sulfone) and poly(sulfone). J. Membr. Sci.,2001,194(2):245-261.
    [30] Ulbricht M., Belfort G. Surface modification of ultrafiltration membranes by low temperatureplasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J.Membr. Sci.,1996,111(2):193-215.
    [31]周金盛,陈观文. CA/CTA共混不对称纳滤膜分离特性的研究.膜科学与技术,1999,19(1):34-39.
    [32] Y. L. Ji, Q. f. An, C. J. Gao, et al. Preparation of novel positively charged copolymermembranes for nanofiltration Original Research Article. J. Membr. Sci.,2011,376(1):254-265.
    [33]王春龙,吴礼光,高从堦.荷电高分子分离膜研究进展.水处理技术,2006,32(6):1-4.
    [34]陆晓峰,施柳青,卞晓锴. NF系列复合膜的制备及结构性能的研究.膜科学与技术,2001,21(3):11-15.
    [35] Dai Y., Jian X., Zhang S., et al. Thin film composite (TFC) membranes with improvedthermal stability from sulfonated poly (phthalazinone ether sulfone ketone)(SPPESK). J. Membr.Sci.,2002,207(2):189-197.
    [36] Zhang W., He G., Gao P., et al. Development and characterization of composite nanofiltrationmembranes and their application in concentration of antibiotics. Sep. Purif. Technol.,2003,30:27-35.
    [37]翟晓东,陆晓峰,梁国明,等.界面缩聚法制备聚酰胺复合纳滤膜I.复合纳滤膜的制备及其结构,华东理工大学学报,2001,27(6):643-647.
    [38] Petersen R. J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci.,1993,83(1):81-150.
    [39] Miao J., Chen G. H., Gao C. J. A novel kind amphoteric composite nanofiltration membraneprepared from sulfated chitosan(SCS). Desalination,2005,181(1-3):173-183.
    [40]王薇,杜启云.聚甲基丙烯N,N-二甲氨基乙酯复合纳滤膜的制备.膜科学与技术,2005,25(3):45-49.
    [41] D. Wu, X. Liu, C. J. Gao, et al. Modification of aromatic polyamide thin-film compositereverse osmosis membranes by surface coating of thermo-responsive copolymersP(NIPAM-co-Am). I: preparation and characterization. J. Membr. Sci.,2010,352:76-85.
    [42] M. Khayet, M. N. Seman, N. Hilal. Response surface modeling and optimization ofcomposite nanofiltration modified membranes. J. Membr. Sci.,2010,349,113-122.
    [43] A. B. David, R. Bernstein, Y. Oren, et al. Facile surface modification of nanofiltrationmembranes to target the removal of endocrinedisrupting compounds. J. Membr. Sci.,2010,357:152-159.
    [44] M. M. Kim, N. H. Lin, G. T. Lewis, et al. Surface nano-structuring of reverse osmosismembranes via atmospheric pressure plasma-induced graft polymerization for reduction ofmineral scaling propensity. J. Membr. Sci.,2010,354:142-149.
    [45] M. P. G. Mu oz, R. Navarro, I. Saucedo, et al. Hydrofluoric acid treatment for improvedperformance of a nanofiltration membrane. Desalination,2006,191:273-278.
    [46] P. Mukherjee, K. L. Jones, J. O. Abitoye. Surface modification of nanofiltration membranesby ion implantation. J. Membr. Sci.,2005,254:303-310.
    [47] Tang C., Chen V. Nanofiltration of textile wastewater for water reuse. Desalination,2002,143(1):11-20.
    [48]高从堦,张建飞,俞三传,等.纳滤纯化和浓缩染料实验.水处理技术,1996,22(3):147-150.
    [49]刘梅红.膜技术在纺织印染工业中的应用.水处理技术,2001,27(5):308-310.
    [50]耿锋,戴海平.膜技术在纺织印染工业清洁生产中的应用.水处理技术,2005,31(11):1-4.
    [51] Martin O. C., Bouhallab S., Garem A. Nanofiltration of amino and peptide solutionmechanics of separation. J. Membr. Sci., l998,142:225-233.
    [52]姚国英.纳滤膜材料及其应用.上海应用技术学院学报,2003,3(4):55-59.
    [53]凤权,汤斌.粘杆菌素发酵液微滤膜分离处理过程研究.生物学杂志,2010,27(1):43-45.
    [54] Garem A., Daufin G, Maubois J. L., et a1. Ionic interactions in nanofiltration of caseinpepides. Biotech and Bioeng, l998,57(1):109-117.
    [55] Nabetani H. Effects forling layer and somotic pressure on the performance of membraneseparation system. Membrane,1997,22(5):249-256.
    [56] M. Minhalma, M. N. Pinho. Development of nanofiltration/steam stripping sequence for cokeplant wastewater treatment. Desalination,2002,149:95-100.
    [57] J. Schaep, B. V. Bruggen, S. Uytterhoeven, et al. Removal of hardness from groundwater bynanofiltration. Desalination,1998,119:295-302.
    [58] I. C. Escobar, S. Hung. A. Randall. Removal of assimilable and biodegradable dissolvedorganic carbon by reverse osmosis and nanofiltration membranes. J. Membr. Sci.,2000,175:1-17.
    [59] A.G. Pervov, E. V. Dudkin, O. A. Sidorenko, et al. RO and NF membrane systems fordrinking water production and their maintenance techniques. Desalination,2000,132:315-321.
    [60] H. D. M. Sombekke, D. K.Voorhoev, P. Hiemstra. Environmental impact assessment ofgroundwater treatment with nanofiltration. Desalination,1997,113:293-296.
    [61] W. R. Everest, S. A. Malloy. Design/build approach to deep aquifer membrane treatment inSouthern Califomia. Desalination,2000,132:41-45.
    [62] A. Khalik, V. S. Prapto. Nanofiltration for drinking water production from deep well water.Desalination,2000,132:287-292.
    [63] M. Alborzfar, K. Escande and S. J. Allen. Removal of natural organic matter from two typesof humic ground waters by nanofiltration. Water Res.,1998,32:2970-2983.
    [64] J. G. Jacangelo, R. R. Trussell, M. Watson. Role of membrane technology in drinking watertreatment in the United States. Desalination,1997,113:119-127.
    [65] Raman P. L., cheryan M., Rajagopalan N. Consider nanofiltration for membranes separation.Chemical Engineering Progress,1994,3:68-74.
    [66] M. Minhalma, M. N. Pinho. Development of nanofiltration/steam stripping sequence for cokeplant wastewater treatment. Desalination,2002,149:95-100.
    [67] Martin O. C., Bouhallab S., Garem A. Nanofiltration of amino and peptide solutionmechanics of separation. J. Membr. Sci., l998,142:225-233.
    [68] Garem A., Daufin G., M aubois J. L., et a1. Ionic interactions in nanofiltration of caseinpepides. Biotech and Bioeng, l998,57(1): l09-ll7.
    [69]李友明,陈中豪,贾凤莲,等.荷电纳滤膜对化机浆废水的纳滤效果.膜科学与技术,2002,22(1):9-11.
    [70]李然,张玉忠,李泓,等.膜法处理退浆废水.水处理技术,2003,29(1):50-52.
    [71]环国兰,张宇风,杜启云,等.纳滤膜及其应用.天津工业大学学报,2003,2(1):47-50.
    [72]高勃,汤烈贵.纤维素科学.北京科学出版社,1996,154-158.
    [73]隋卫平,姜秋.甜菜碱与羧甲基纤维素钠相互作用的研究.济南大学学报,1994,3:90-92.
    [74]刘国辉,李有柱,赵军.羧甲基纤维素钠在预防术后腹膜粘连中的作用.吉林大学学报:医学版,2002(2):163-165.
    [75]李华,牛生洋,王华.羧甲基纤维素钠(CMC)对葡萄酒酒石稳定的研究.中国食品添加剂,2003,6:34-38.
    [76]李明秋.沐浴露之发展和配方特点.中国洗涤用品工业,2004,2:43-44.
    [77]黄华来,胡永志.非离子型水溶性纤维素在牙膏中的应用.牙膏工业,2003,4:21-24.
    [78]白立峰,齐鲁,刘小杰.羧甲基壳聚糖与明胶共混膜的制备及其性能的研究.合成纤维,2005,10:1-5.
    [79]马芳,朱良均,邹凤竹.丝素/明胶共混膜的结构与溶解性能的初探.蚕业科学,2005,31(3):206-210.
    [80]曹雪琴,孙东豪,陈国强.丝素/聚氨酯共混膜的性能研究.江苏丝绸,2005,6:5-9.
    [81] Childress A. E., Elimelech M. Relating nanofiltration membrane performance to membranecharge (electrokinetic) characteristics. Environ. Sci. Technol.,2000,34:3710-3716.
    [82] Bowen W. R., Mohammad A. W., Hilal N. Characterization of nanofiltration membranes forpredictive purposes-use of salts, uncharged solutes and atomic force microscopy. J. Membr. Sci.,1997,126(1):91-105.
    [83]苏萌,王大新,王晓琳,等.双组分无机电解质溶液的纳滤膜分离性能.化工学报,2005,56(12):2357-2360.
    [84]姬朝青,陈浩.反渗透、纳滤过程的物理化学研究(Ⅰ)多孔膜的溶质脱除率方程和膜渗透通量方程.化工学报,2006,57(3):601-606.
    [85] Falamaki C., Naimi M., Aghaie A. Dip-coating technique for the manufacture of aluminamicrofilters using PVA and Na-CMC as binders: a comparative study. J. Eur. Ceram. Soc.,2006,26(6):949-956.
    [86] Mohamed M. A. Swelling characteristics and application of gamma-radiation on irradiatedSBR-carboxymethylcellulose (CMC) blends. Arab. J. of Chem.,2012.5(2):207-211.
    [87]李俊华,李俊莉,杨乃旺.羧甲基纤维素钠水溶胶液粘度影响实验研究.应用化工,2011,3(40):479-485.
    [88] Choy A, L,, Bee K. The effects of acetylated potato starch and sodium carboxymethylcellulose on the quality of instant fried noodles. Food Hydrocolloids,2012,26(1):2-8.
    [89]王柳,张传杰,朱平.海藻酸钠-羧甲基纤维素钠共混纤维的制备及其吸湿性能.功能高分子学报,2010,23(1):12-16.
    [90]苏克曼,潘铁英,张玉兰.光谱分析法.上海:华东理工大学出版社,2002:106-107.
    [91]李美超,鲍丹丹,马淳安.邻溴苯甲酸电化学脱溴反应的原位红外光谱研究.高等学校化学学报,2011,32(1):129-133.
    [92] Musale D. A, Kumar A. Effects of surface crosslinking on sieving characteristics of chitosan/poly(acrylonitrile) composite nanofiltrtion membranes. Sep. Purif. Technol.,2000,21:27-37.
    [93]武少华,何宏,袁淑琴,等.氯化钡法及其在聚砜超滤膜性能测定中的应用.水处理技术,1995,21(4):193-197.
    [94] Peeters J. M. M., Boom J. P., Mulder M H V.Strathmann H. Retention measurements ofnanofiltration membranes with electrolyte solutions. J. Membr. Sci.,1998,145(2):199-209.
    [95] Miao J., Chen G. H., Gao C. J., et al. Preparation and Characterization of SulfatedChitosan(SCS)/Polysulfone(PSF) Composite Nanofiltration Membrane Cross-linked byGlutaraldehyde. J. Chem. Eng. of Chinese Univ.,2007,21(2):227-232.
    [96] E. S. Tarleton, J. P. Robinson, J. S. Low. Nanofiltration: a technology for selective soluteremoval from fuels and solvents. Chem. Eng. Res. Des.,87(2009),271-279.
    [97]李晓明,王铎,柴涛,等.纳滤海水软化的实验研究.高校化学工程学报,2009,23(4):582-586.
    [98] E. Sahinkaya, N. Uzal, U. Yetis, et al. Biological treatment and nanofiltration of denim textilewastewater for reuse. J. Hazardous Mater.,2008,153(3):1142-1148.
    [99] Maya A. L., Baun A., Angelidaki I., et al. Influence of Wastewater Characteristics onMethane Potential in Food-processing Industry Wastewaters. Water Res.,2008,42(8-9):2195-2203.
    [100]王钦,南碎飞,窦梅.纳滤法处理低浓度全氟辛酸铵废水的研究.高校化学工程学报,2008,22(4):684-689.
    [101] Liu P. F., Peng J., li J. Q., et al. Radiation crosslinking of CMC-Na at low dose and itsapplication as substitute for hydrogel. Radiation Physics and Chemistry,2005,72(5):635-638.
    [102]展义臻,王炳,郭肖青,等.羧甲基纤维素钠/海藻酸钠共混纤维的制备与性能测试.合成纤维,2006,12:6-10.
    [103]汪伟宁,王大新,王晓琳,等.无机盐水溶液体系的纳滤膜分离实验研究.高校化学工程学报,2002,16(3):257-262.
    [104]高从堦,陈益棠.纳滤膜及其应用.中国有色金属学报,2004,14(1):310-316.
    [105] Chen X. L., Wang D., Wang W. W., et al. A novel composite nanofiltration (NF) membraneprepared from sodium alginate/polysulfone by epichlorohydrin cross-linking. Desalination andWater Treatment,2011,30:146-153.
    [106]赵铁,杜予民,唐汝培.壳聚糖水杨酸盐-明胶共混膜结构表征及其抗菌性.分析科学学报,2002,18(2):100-104.
    [107] A. Shanmugapriya, R. Ramya, S. Ramasubramaniam. Studies on removal of Cr(VI) andCu(II) ions using Chitosangrafted-polyacrylonitrile. Archives of Applied Science Research,2011,3(3):424-435.
    [108] R. Jayakumar, R.L. Reis, J.F. Mano. Synthesis and Characterization of pH-SensitiveThiol-Containing Chitosan Beads for Controlled Drug Delivery Applications. Drug Deliv.,2007,14(1):9-17.
    [109] R. Jayakumar, N. Nwe, S. Tokura, et al. Ulfated chitin and chitosan as novel biomaterials.Int. J. Biol. Macromol.,2007,40(3):175-181.
    [110] R. Jayakumar, M. Prabaharan, R.L. Reis, et al. Graft copolymerized chitosan-present statusand applications. Carbohydr. Polym.,2005,62(2):142-158.
    [111] I. F. Amaral, P.L. Granja, M. A. Barbosa. Chemical modification of chitosan byphosphorylation: an XPS, FT-IR and SEM study. J. Biomater. Sci. Polym. Ed.,2005,16(12):1575-1593.
    [112] Win P. P., Yoshitsune S. Y., Hong K. J., et al. Effect of proteolytic enzymes ingastrointestinal fluids on drug release from polyelectrolyte complex microspheres based onpartially phosphorylated chitosan. Polym. Int.,2005,54:533-536.
    [113] Jayakumar R., Selvamurugan N., Nair S. V., et al. Preparative methods of phosphorylatedchitin and chitosan-An overview. Int. J. Biol. Macromol.,2008,43:221-225.
    [114] N. Nishi, A. Ebina, S. Nishimura, et al. Higyly phosphorylated derivative o f chitin, partiallydeacetylated chitin an chitosan as new functional polymers: preparation and charac terization. Int.J. Biol. Macromol.,1986,8:311-317.
    [115] Nishi N, Maekita Y, Nishimura SI, Hasegawa O, et al. Highly phosphorylated derivatives ofchitin, partially deacetylated chitin and chitosan as new functional polymers: metal bindingproperty of the insolubilized materials. J. Biol. Macromol.,1987,9:109-114.
    [116]郑化,杜予民,余家会,等.交联壳聚糖膜的制备及其性能的研究.高等学校化学学报,2000,21(5):809-812.
    [117] Afonso M. D., Pinho M. N. Transport of MgSO4, MgCl and Na2SO4across an amphotericnanofiltration membrane. J. Membr. Sci.,2000,179:137-154.
    [118] Musale D. A., Kumar A. Solvent and pH resistance of surface crosslinkedchitosan/poly(acrylonitrile) composite nanofiltration membranes. J. Membr. Sci.,2000,77(8):1782-1793.
    [119] Jegal J., Lee K.H. Nanofiltration membranes based on poly(vinylalcohol) and ionicpolymers. Journal of Applied Polymer Science,1999,150:11-16.
    [120]松本丰,高以烜,芩运华.日本NF膜、低压超低压RO膜及应用技术的发展.膜科学与技术,1998,18(5):11-18.
    [121] M. W. Wan, C. C. Kan, B. D. Rogel, et al. Adsorption of copper (II) and lead (II) ions fromaqueous solution on chitosan-coated sand. Carbohydrate Polymers,80(2010):891-899.
    [122] F. Brunel, N. E. Gueddari, B. M. Moerschbacher. Complexation of copper(II) with chitosannanogels: Toward control of microbial growth. Carbohydrate Polymers,2013,92:1348-1356.
    [123]Jayakumar R., Rajkumar M., Freitas H., et al. Preparation, characterization, bioactive andmetal uptake studies of alginate/phosphorylated chitin blend filmsInt. J. Biol. Macromol.,2009,44:107-111.
    [124]宣瑶芳,吕振华,俞三传,等.荷电中空纤维复合膜及其正渗透性能研究.水处理技术,2012,38(11):65-68.
    [125] E. Guibal. Interactions of metal ions with chitosan-based sorbents: a review. Sep. Purif.Technol.,2004,38(1):43-74.
    [126] R. Schmuhl, H. M. Krieg, K. Keizer. Adsorption of Cu(II) and Cr(VI) ions by chitosan:Kinetics and equilibrium studies. Water S.A.,2001,27(1):1-7.
    [127] F. Zhao, B. Y. Yu, Z. R. Yue. Preparation of porous chitosan gel beads for copper(II) ionadsorption. J. Hazardous Mater.,2007,147:67-73.
    [128] Mekahlia, S., Bouzid, B. Chitosan-copper (II) complex as antibacterial agent: Synthesis,characterization and coordinating bond-activity correlation study. Physics Procedia,2009,2:1045-1053.
    [129] Gueddari, Bruno M. Moerschbacher. Complexation of copper(II) with chitosan nanogels:Toward control of microbial growth. Carbohydrate Polymers,2013,92:1348-1356.
    [130] A. Ghaeea, M. Shariaty-Niassar, J. Barzinc, et al. Adsorption of copper and nickel ions onmacroporous chitosan membrane: Equilibrium study. Appl. Surf. Sci.,2012,258(19):7732-7743.
    [131]聂锦旭,肖贤明.纳滤膜分离技术在矿井水处理中的研究.膜科学与技术,2007,27(2):53-56.
    [132] Sahinkaya E., Uzal N., Yetis U.,et al. Biological treatment and nanofiltration of denimtextile wastewater for reuse. J. Hazardous Mater.,2008,153:1142-1148.
    [133] Dhale A. D., Mahajani V. Studies in treatment of disperse dye waste:membrane-wetoxidation process. Waste Management,2000,20(1):85-92.
    [134] Chakraborty S. Treatment of a textile effluent: application of a combination methodinvolving adsorption and nanofiltration. Desalination,2005,74:3-85.
    [135] Koyuncu I. Reuse of reactive dyehouse wastewater by nanofiltration: process water qualityand economical implications. Sep. Purif. Technol.,2004,36:77-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700