用户名: 密码: 验证码:
低速永磁直驱风力发电变流器若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低速永磁直驱风力发电系统不需要齿轮箱、易于维护、可靠性高,且发电机和电网之间解耦,在电网电压跌落时可以快速的向电网提供无功支持,和电网之间具有柔性连接特性。因此永磁直驱变速恒频风力发电技术日益成为研究的热点。
     本文对低速永磁直驱风力发电的若干关键技术进行了理论分析和实验研究,具体研究如下。
     文章对基于载波移相并联的LCL输出滤波器的拓扑结构进行了理论分析和对比研究,包括变流器模块化、体积、环流、滤波性能。并基于LCL滤波器的物理意义分析了LCL滤波器三个元件选取的设计原则,为基于载波移相并联变流器的LCL输出滤波器设计提供了理论基础。
     针对载波移相并联导致的环流问题,分析了环流产生的机理,并对环流进行了数学建模,提出了一种独立设计环流控制环的环流控制策略。控制策略分离环流并独立控制,有效提高了环流控制的稳态精度,环流控制策略在抑制低频环流的同时保持了对基波电流控制的良好动静态性能,具有良好的环流抑制效果。
     实现载波移相并联变流器一个重要技术是PWM发生器的设计,文章基于FPGA开发了可灵活扩展的PWM发生器IP Core,在本系统的载波移相3模块并联应用中取得了良好的效果。
     本文建立了基于载波移相并联的LCL滤波器的数学模型,并和单模块LCL滤波器模型进行了对比,建立了两种滤波器在本质上的等效关系,根据前述LCL滤波器的等效关系及数字控制采样延时的固有特性,提出了一种基于采样延时稳定LCL滤波器网侧和变流器侧电流反馈的控制策略。通过合理选择采样频率,配置系统的闭环零极点,保证系统的稳定性。理论和实验研究深入揭示了采样频率的选择和系统稳定性之间的关系,为载波移相并联LCL滤波器稳定控制奠定了基础。
     风电场一般位于电力网末端,属于弱电网,针对电网电压跌落时风机脱网对电网造成的严重危害。本文提出了一种机电复合储能的控制策略,控制策略在电网电压跌落时能有效利用风力机大转动惯量储能,减弱了电网的动态过程对变流器可靠性运行的影响,同时风机储能的有效利用,和传统单制动电阻方案相比,提高了低电压穿越时系统的发电效率。
     为了提高风电变流器运行的可靠性,基于载波移相并联变流器的容错能力,文章实验研究了载波移相并联单元的某一桥臂故障、故障模块的切除和冗余单元的投入对系统稳定的影响,仿真和实验结果表明,采用适当的保护控制,基于载波移相并联的变流器具有良好的冗余容错能力。
     提出了一种基于电机端电压定向单位功率因数控制策略,该策略利用光电码盘实时准确跟踪电机转子磁场相位,根据转子磁场和电机端电压定向之间的数学关系,得到电机端电压定向的数学模型,使机侧变流器保持单位功率因数运行,提高变流器容量的利用率,并具有良好动静态性能。
     为了验证风力发电系统特性,构建了一个小模型实验平台。根据MPPT最佳功率曲线指令,提出了一种直流电机跟踪最大功率配合永磁发电机跟踪最优转速的MPPT模拟运行控制策略,使系统工作在最佳功率曲线。
The low speed direct-drive permanent magnet synchronous generator system has a myriad of advantages, such as gearless, easy maintenance, high stability, decoupled between generator and grid. Moreover, the wind system could connect with powergrid flexibly and feed reactive power to the grid quickly. Thus, Low speed direct-drive wind generation system gains more and more attention.
     This paper focuses on some key techniques about direct-drive wind generation system in theory and proposes novel methods to the generation system. Simulation and experimental results verify that the feasibility and excellent performances of these methods.
     Comparing two topologies of the LCL filter, this paper studies on the characteristics of the converter based on carrier phase shifting parallel such as modularization, volume, circulating current, filtering performances. Based on the LCL filter physical theory, design principles about the three components are given in detail, which provide carrier phase shifting parallel LCL filter with fundamental theory.
     In order to suppress the circulating current caused by carrier phase shifting parallel, this paper proposes a novel control strategy based on circulating current mathematical model. Experimental results verify that the proposed control strategy could not only suppress circulating current effectively but also aquire good steady state as well as dynamic performances.
     Since many PWM driving signals are required for converters in the system, this paper develops an expandable PWM IP Core, which could conbine the number of PWM driving signals arbitrary. Experimental results verify that the PWM IP Core is flexible and effective in power electronics applications with complicated topologies.
     Due to the complicated structure of carrier phase-shifting parallel LCL filter, the mathematic model needs to be simplified to design controllers properly. This paper builds the LCL filter model based carrier phase shifting parallel and makes comparison with the single LCL filter which contributes to the fundamental theory of carrier phase shifting parallel LCL filter.
     In addition, this paper proposes a new grid side current feedback control method for LCL filters by adopting proper sampling frequency without active or passive damping. This control strategy is proposed based on the poles distribution and root locus diagram of the current feedback control system. By studying the stability trends in different sample frequencies, this paper gives a direction for LCL filter stability. Simulation and experiment results verify that the control method is feasible in practical application.
     To deal with LVRT, this paper proposes a new LVRT control strategy based on the power balance as the grid voltage drops. This control strategy stores part of power into the turbine inertia and smoothes the grid dynamic response. It also improves the system efficiency during LVRT. In addition, this paper studies the redundancy capability and the control method during faulting status, like arm faults, backup unit working, fault unit cutting off etc. Simulation and experiments indicate the converter based on carrier phase shifting parallel has very strong fault tolerant ability.
     In order to improve the utilization ratio of the converter capacity, this paper proposes a new unit power factor control method, which could make use of the converter capacity completely and gain good steady and dynamic state performance.
     The DC motor is adopted to emulate the wind turbine in the system. This paper proposes a MPPT control strategy in which the DC motor and permanent generator aims at tracking the input power and regulating rotation speed respectively. Based the control method, this paper constructs a model platform to verify the wind system performances by emulating various operating conditions, which can save developing time and cost significantly. Simulation and experiment results verify its feasibility.
引文
[1]张立勇,王常路,刘发根.风力发电及风电齿轮箱概述[J].机械传动2008,32(6):1-4.
    [2]韩春福.国内外风力发电发展浅析[J].沈阳工程学院学报,2008,4(4):298-300.
    [3]陈鸣,杨刚.风力发电技术及其发展趋势[J].电力学报,2008,23(4):272-275.
    [4]吴国祥,黄建明,陈国呈,蔚兰,俞俊杰.变速恒频双馈风力发电运行综合控制策略.电机与控制学报,2008,12:435-441
    [5]Blaabjerg, F.; Zhe Chen; Kjaer, S.B. "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans.Power Electron., vol.19, no.5, pp. 1184-1194, Sept.2004.
    [6]Z. Chen and E. Spooner,"Wind turbine power converters:a comparative study," in Proc.1998 IEE Power Electronics and Variable Speed Drives, Seventh International Conference, pp.471-476.
    [7]赵定远,赵莉华.现代电力电子器件的发展.成都大学学报,2007,26(3):210-214
    [8]李建林高志刚胡书举付勋波许洪华并联背靠背PWM变流器在直驱型风力发电系统的应用[J]. 电力系统自动化,2008,32:59-62.
    [9]卓放周新李可雷万均 王兆安.模块化PWM主电路实现的大容量有源电力滤波器.电力系统自动化,2002,26:45-48.
    [10]张宇 逆变器并联系统中谐波环流的抑制[J].中国电机工程学报,2006,26:67-72.
    [11]段善旭陈坚冯锋陈君杰.基于电力线通信的并联UPS逆变器的均流控制. 电力系统自动化,2003,27:28-31.
    [12]林新春,段善旭,康勇,等.UPS无互联线并联中基于解耦控制的下垂特性控制方案[J].中国电机工程学报,2004,24(2):117-122.
    [13]何中一 邢岩 付大丰.模数混合分布式逆变器并联控制方法[J].中国电机工程学报,2007,27(4):113-117.
    [14]邝乃兴钱照明童立青宋延涛彭方正.一种高性能的谐波检测数字低通滤波器.电力系统自动化,2006,30(20):64-67.
    [15]肖岚刘爱忠方天治阮新波.使用平均电流控制的逆变器并联系统[J]中国电机 工程学报,2008,28(3):77-82.
    [16]谢孟蔡昆胜晓松王平李耀华.400Hz中频单相电压源逆变器的输出控制及其并联运行控制[J].中国电机工程学报,2006,26(6):78-82.
    [17]陈良亮肖岚龚春英严仰光.逆变器并联系统直流环流产生原因及其检测与抑方法[J].中国电机工程学报,2004,24(9):56-61.
    [18]陈宏胡育文.逆变电源并联技术[J].电工技术学报,2002,17(5)55-59.
    [19]张宇,陈息坤,康勇,陈坚.逆变器并联系统中死区的环流效应[J].电力电子技术,2005,10:99-100.
    [20]肖岚李睿.电压电流双闭环控制逆变器并联系统的建模和环流特性分析[J].电工技术学报,2006,21(2)51-56.
    [21]唐任远,《永磁电机》,机械工业出版社,1997
    [22]E.ON Netz GmbH:Rules for grid-connection (High-voltage and Extra-high-voltage) Netzanschlussregeln (Hoch-und Hoechstspannung).April 2006.
    [23]Vattenfall Europe Transmission GmbH:Rules for grid-connection and grid-operation (Netzanschluss-und Netznutzungsregeln), January 2004.
    [24]Germanischer Lloyd Windenergie GmbH:Grid-connection of wind turbines (Netzanschlusseigenschaften von Windenergieanlagen nach Netzanschlussregeln), GL Guideline 065, May 2005.
    [25]Energinet, Danmark:Technical rules TF 3.2.5 and TF 3.2.6, December 2004.
    [26]Western Electricity Coordinating Council (WECC):Generator Electrical Grid Fault Ride Through Capability. Kalifornia, USA, June 2004.
    [27]Canadian Wind Energy Association (CanWEA):Basic Grid Code, Kanada, October 2005.
    [28]蒋雪冬,赵舫.应对电网电压骤降的双馈感应风力发电机Crowbar控制策略.电网技术,2008,32:84-89.
    [29]张学广徐殿国.电网对称故障下基于active crowbar双馈发电机控制.电机与控制学报,2009,13(1):99-103.
    [30]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析.电力系统自动化,,2007,23.
    [31]关宏亮,赵海翔,王伟胜,戴慧珠,杨以涵.风电机组低电压穿越功能及其应用. 电工技术学报.2007,22(10):173-177.
    [32]张兴,张龙云,杨淑英,余勇,曹仁贤.风力发电低电压穿越技术综述.电力系统及其自动化学报.2008,20(2):1-8.
    [33]李建林,胡书举,孔德国,许洪华.全功率变流器永磁直驱风电系统低电压穿越特性研究.电力系统自动化,2008,32(19):92-95
    [34]杨淑英,张兴,张崇巍,谢震,曹仁贤.电压跌落激起的双馈型风力发电机电磁过渡过程.电力系统自动化,2008,32(19):85-91.
    [35]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略.电力系统自动化,2005,29(24):32-38.
    [361 胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化.2006,30(8):21-26
    [37]Molinas, M, Jon Are Suul, Undeland, T. "Low Voltage Ride Through of Wind Farms With Cage Generators:STATCOM Versus SVC," IEEE Trans. Power Electron., vol.23, No,3 March 2008.
    [38]A. Perdana, O. Carlson, and J. Persson, "Dynamic response of gridconnected wind turbine with doubly fed induction generator during disturbances,"presented at the NordicWorkshop Power Industrial Electron.,Trondheim, Norway,2004.
    [39]T. Sun, Z. Chen, and F. Blaabjerg, "Transient analysis of grid-connected wind turbines with DFIG after an external short-circuit fault," presentedat the Nordic Wind Power Conf.,Chalmers Univ. Technol., Gothenburg, Sweden, Mar.2004.
    [40]J. B. Ekanayake, L. Holdsworth, X. G. Wu, and N. Jenkins, "Dynamic modeling of doubly fed induction generator wind turbines," IEEE Trans. Power Electron., vol.18, no.2, pp.803-809, May 2003.
    [41]J. Morren and S. W. H. de Haan, "Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip," IEEE Trans. Energy Convers., vol.20, no.2, pp.435-441, Jun.2005.
    [42]Johan Morren, and Sjoerd W.H.de Haan., "Ride through of wind turbines with doubly-fed induction generator during a voltage dip," IEEE Trans.Energy Convers, vol.20, no. 2, pp.435-441, Jun.2005.
    [43]Miguel Rodriguez, Gonzalo Abad, Izaskun Sarasola and Alex Gilabert,"Crowbar control algorithms for doubly fed induction generator duringvoltage dips," in Power Electronics and Applications,2005 European Conference, Sep.2005.
    [44]Johan Morren, and Sjoerd W.H.de Haan., "Short-circuit current of wind turbines with doubly fed induction generator," IEEE Trans. Energy Convers, vol.22, no.1, pp. 174-180, Mar.2007.
    [45]Dawei Xiang, Li Ran, Tavner, P.J. and Yang, S., "Control of a doubly fed induction generator in a wind turbine during grid fault ride-through," IEEE Trans. Energy Convers., vol.21, no.3, pp.652-662, Sep.2006.
    [46]Sun, T., Chen, Z.and Blaabjerg, F, "Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault," in Power Electronics Specialists Conference, PESC 04,2004 IEEE 35th Annual, vol.3, no.3, pp.1991-1997, Jun.2004.
    [47]严干贵,王茂春,穆钢,崔杨,周志强,戴武昌.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究.电工技术学报,2008,23:98-104
    [48]曹海翔,吕川,姜建国,玉井伸三.PWM逆变器—交流电机过电压抑制滤波器的功率损耗分析与参数选择.电工技术学报,2003,5:74-78.
    [49]周令琛.降低变频器输出电压变化率的LC滤波器设计.电力电子技术,2003,5:59-61.
    [50]Peeran, S.M.; Cascadden, C.W.P. "Application, design, and specification of harmonic filters for variable frequency drives," IEEE Trans.Industry Applications., Volume 31, Issue 4, July-Aug.1995 Page(s):841-847
    [51]Von Jouanne, A.; Rendusara, D.A.; Enjeti, P.N.; Gray, J.W. "Filtering techniques to minimize the effect of long motor leads on PWM inverter-fed AC motor drive systems, "IEEE Trans.Industry Applications. Volume 32, Issue 4, July-Aug.1996 Page(s):919-926.
    [52]von Jouanne, A.; Enjeti, P.N. "Design considerations for an inverter output filter to mitigate the effects of long motor leads in ASD applications" IEEE Trans.Industry Applications. Volume 33, Issue 5, Sept.-Oct.1997 Page(s):1138-1145
    [53]Rendusara, D.A.; Enjeti, P.N. "An improved inverter output filter configuration reduces common and differential modes dv/dt at the motor terminals in PWM drive systems" IEEE Trans.Power Electron., Volume 13, Issue 6, Nov.1998 Page(s):1135-1143.
    [54]McGranaghan, M.F.; Mueller, D.R. "Designing harmonic filters for adjustable-speed drives to comply with IEEE-519 harmonic limits"IEEE Trans.Industry Applications. Volume 35, Issue 2, March-April 1999 Page(s):312-318
    [55]Habetler, T.G.; Naik, R.; Nondahl, T.A. "Design and implementation of an inverter output LC filter used for dv/dt reduction," IEEE Trans.Power Electron., Volume 17, Issue 3, May 2002 Page(s):327-331
    [56]Hanigovszki, N.; Poulsen, J.; Blaabjerg, F. "A novel output filter topology to reduce motor overvoltage," IEEE Trans.Industry Applications. Volume 40, Issue 3, May-June 2004 Page(s):845-852
    [57]张兴张显立谢震吴玉杨.双馈风力发电变流器长缆驱动及其过电压抑制.电力系统自动化,21:44-48
    [58]仇志凌,陈国柱.2MW风力发电并网逆变器研究与设计[C].全国电源技术年会,合肥,2007,10:351-354
    [59]Pan. Ching-Tsai, Liao Yi-Hung, "Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers," IEEE Trans.Power Electron., vol.54 no.2, pp.825-839, Sep.2007.
    [60]关宏亮赵海翔王伟胜戴慧珠杨以涵.风电机组低电压穿越功能及其应用.电工技术学报,2007,22(10):173-177.
    [61]K. Xing, F. C. Lee, D. Boroyevich, Z. Ye, and S. K. Mazumder, Interleaved PWM with discontinuous space-vector modulation[J]. IEEE Trans.Power Electron., vol.14, no.5, pp.906-917, Sep.1999.
    [62]Miller, S.K.T.; Beechner, T.; Jian Sun. A Comprehensive Study of Harmonic Cancellation Effects in Interleaved Three-Phase VSCs[C]. Power Electronics Specialists Conference,2007. PESC 2007. IEEE 17-21 June 2007 Page(s):29-35
    [63]Di Zhang; Wang, F.; Burgos, R.; Rixin Lai; Thacker, T.; Boroyevich, D. Interleaving impact on harmonic current in DC and AC passive components of paralleled three-phase voltage-source converters[C]. Applied Power Electronics Conference and Exposition,2008. APEC 2008. Twenty-Third Annual IEEE 24-28 Feb.2008 Page(s):219-225
    [64]J. W. Dixon and B. T. Ooi, "Series and parallel operation of hysteresis current controlled PWM rectifiers," [J] IEEE Trans. Ind. Applicat., vol.25,no.4, pp.644-651, 1989.
    [65]T. Kawabata and S. Higashino. Parallel operation of voltage source inverters [J]. IEEE Trans. Ind. Applicat., vol.24, no.2, pp.281-287,1988.
    [66]T. G. Habetler. A space vector-based rectifier regulator for ac/dc/ac converters[J]. in EPE'91,vol.2, pp.101-107.
    [67]H. Mao, D. Borojevic, A. Ravindra, and F. C. Lee, "Analysis and design of high frequency three-phase boost rectifier," [J] in VPEC SeminarProc.'95, pp.195-203.
    [68]Pollanen, R.; Tarkiainen, A.; Niemela, M.; Pyrhonen, J. Control of zero-sequence current in parallel connected voltage source PWM rectifiers using converter flux-based control[C]. Power Electronics and Applications,2005 European Conference on 11-14 Sept.2005 Page(s):10 pp.
    [69]Alejandro Montenegro Leon. Advanced power electronic for wind-power generation bufferring. University of Florida,2005.
    [70]Ye Zhihong. Modeling and control of parallel three-phase PWM converters. Virginia Polytechnic Institute and State University.2000.
    [71]陈远华刘文华宋强.基于FPGA的级联逆变器直接PWM发生器.电力系统自动化,2006,30:61-63.
    [72]胡海兵, 电力电子集成系统中的数字控制平台研究, 浙江大学博士学位论文,2007
    [73]叶剑利,CPLD在电力电子变换技术中的应用,浙江大学硕士学位论文2004
    [74]顾亦磊,汤建新,吕征宇等, 电力电子系统集成技术发展的若干新思路,电力电子技术,2005, Vol.39(6), pp.141-144.
    [75]Zhichao LIU, Pengju Kong, Xuezhi WU, Lipei Huang. Implementation of DSP-based Three-level Inverter with dead time compensation. IPEMC2004,pp.782-787.
    [76]蒋静坪, 《计算机实时控制系统》,1991
    [77]张崇巍、张兴,《PWM整流器及其控制》,2003.
    [78]Liserre, M.; Dell'Aquila, A.; Blaabjerg, F. "Stability improvements of an LCL-filter based three-phase active rectifier," in Power Electronics Specialists Conference,2002. PESC'02.33th IEEE:IEEE,2002, pp.1195-1201
    [79]Malinowski, M.; Kazmierkowski, M.P.; Szczygiel, W.; Bernet, S. "Simple sensorless active damping solution for three-phase PWM rectifier with LCL filter," in Industrial Electronics Society,2005. IECON'05.31st IEEE:IEEE,2005,pp.1-5
    [80]Eric Wu and Peter W. Lehn, "Digital Current Control of a Voltage Source Converter With Active Damping of LCL Resonance," IEEE Trans. on Power Electronics, Vol. 21, Issue.5,2006, pp.1364-1373.
    [81]S B Kjar, G K Andersen, etc., "Control Aspects of a LCL Grid-Connected Green Power Inverter", Nordic Workshop on Power and Industrial Electronics,12-14 August 2002.
    [82]Liserre M., Dell'Aquila A., Blaabjerg F., "Genetic Algorithm Based Design of the Active Damping for a LCL-filter Three-Phase Active Rectifier", IEEE Trans. on Power Electronics, Vol.19, Issue 1,2004, pp.76-86.
    [83]P. A. Dahono, "A control method to damp oscillation in the input LC filter of AC-DC PWM converters," Proc. of PESC 2002, pp.1630-.1635, June 2002.
    [84]陈瑶,金新民,童亦斌,三相电压型PWM整流器网侧LCL滤波器,电工技术学报,2007,22(9),124-129.
    [85]张承慧,叶颖,陈阿莲,杜春水,基于输出电流控制的光伏并网逆变电源,电工技术学报,2007,22(8),41-45.
    [86]张宪平,林资旭,李亚西,许洪华,LCL滤波的PWM整流器新型控制策略,电工技术学报,2007,22(2),74-77.
    [87]武健,徐殿国,何娜,并联有源滤波器输出LCL滤波器研究,电力自动化设备,2007,27(1),17-35.
    [88]A. E. Fitzgerald, Charles Kingsley, Jr, Stephen D. Umans等著,刘新正,苏少平,高琳等译, 《电机学》(第六版),电子工业出版社,2003
    [89]许大中、贺益康, 《电机控制》,浙江大学出版社,2002
    [90]王东, 《电机学》,浙江大学出版社,1990
    [91]S. Song, S. Kang, and N. Hahm, "Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion system," in Proc.2003 IEEE Applied Power Electronics Conference and Exposition, pp.154-158 vol.1
    [92]E. Muljada, C.P. Butterfield, Y. Wan, "Axial-flux modular permanent magnet generator with a toroidal winding for wind-turbine applications," IEEE Trans.on Industry Applications, Vol.35, No.4,July/August 1999 pp831-836.
    [93]Aliprantis D., Papathanassiou S., Papadopoulos M., Kladas A., "Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator", ICEM'2000, Helsinki, Finland, August 2000, pp.558-562.
    [94]L. J. Borle and C. V. Nayar, "Zero average current error control power flow for AC-DC power converter," IEEE Trans. Power Electron., vol.10, pp.725-732, Nov. 1995.
    [95]Kelvin Tan, Syed Islam, "Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors", IEEE Trans. Power Electron., vol.19, No.2 June
    [96]陈荣,永磁同步电机伺服系统研究,南京航空航天大学博士学位论文,2005
    [97]M'onica Chinchilla, Santiago Arnaltes, "Control of Permanent-Magnet Generators Applied to Variable Speed Wind-Energy Systems Connected to the Grid", IEEE Trans. Power Electron., vol.21,No,1 March 2006.
    [98]Z. Chen and E. Spooner, "Wind turbine power converters:a comparative study," in Proc.1998 IEE Power Electronics and Variable Speed Drives, Seventh International Conference, pp.471-476.
    [99]K. Amei, Y. Takayasu, T. Ohji, M. Sakui, "A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit," in Proceedings of the Power Conversion Conference,2002, pp. 1447-1452 vol.3
    [100]Li Jianlin, Gao Zhigang, Hu Shuju, Fu Xunbo, Xu Honghua, "Application of Parallel Back-to-back PWM Converter on the Direct-drive Wind Power System,"Automation of Electric Power System, vol.32, no.5, pp.59-62,2008 (in Chinese)
    [101]J.F Conroy, R. Watson, "Low-voltage ride-through of a full converter wind turbine with permanent magnet generator," IET. Renewable Power Generation, vol.1, no.3, pp.182-189
    [102]姚骏廖勇庄凯.永磁直驱风电机组的双PwM变换器协调控制策略.电力系统 自动化,2006,30:61-63.
    [103]徐科胡敏强杜炎森杨晓静.直流母线电压控制实现并网与最大风能跟踪.电力系统自动化,2007,31(11):53-58.
    [104]Inoue, Y.; Morimoto, S.; Sanada, M. "Output maximization using direct torque control for sensorless variable wind generation system employing IPMSG," in Power Electronics and Motion Control Conference,2008. EPE-PEMC 2008.13th. Pp. 1859-1865
    [105]Li Jian-lin; Hu Shu-ju; Li Mei; Zhu Ying; Kong De-guo; Xu Hong-hua. "Research on the application of parallel back-to-back PWM converter on direct-drive wind power system," in Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008.3th. Pp.2504-2508.
    [106]Srighakollapu, N.; Sensarma, P.S. "Sensorless maximum power point tracking control in wind energy generation using permanent magnet synchronous generator," in Industrial Electronics,2008. IECON 2008.34th IEEE:IEEE,2002,pp.1195-1201
    [107]Haque, M.E.; Negnevitsky, M.; Muttaqi, K.M. "A Novel Control Strategy for a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator," in Industry Applications Society Annual Meeting,2008. IAS'08. IEEE. pp.1-8
    [108]贺益康,胡家兵.风力特性的直流电动机模拟及其变速恒频风力发电中的应用[J].太阳能学报,2006,10:1006-1012.
    [109]卞松江,潘再平,贺益康.风力机特性的直流电机模拟[J].太阳能学报,2003,6:360-364.
    [110]卞松江,变速恒频风力发电关键技术研究,浙江大学博士学位论文,2003
    [111]刘其辉,变速恒频风力发电系统运行与控制研究,浙江大学博士学位论文,2005
    [112]赵仁得,变速恒频双馈风力发电机交流励磁电源研究,浙江大学博士学位论文,2005.
    [113]林勇刚,大型风力机变浆距控制技术研究,浙江大学博士学位论文,2005
    [114]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2006.
    [115]凌禹,张同庄,邱雪峰.直驱式风力发电系统最大风能追踪侧率研究[J].电力电子技术,2007,7:1-5.
    [116]Q Wang, L Chang.An Intelligent Maximum Power Extraction Algorithm for inverter-based Variable Speed Wind turbine systems[J]. IEEE Trans. On Power Electronics,2004,19(5):1242-1249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700