用户名: 密码: 验证码:
管道周向励磁漏磁内检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道运输是油气资源运输的主要方式,油气管道安全已经成为关系国计民生的重大问题。定期进行管道检测是防止管道事故、保证管道安全的主要方法。在多种油气输送管道内检测技术中,漏磁内检测技术应用最为广泛。论文针对管道漏磁内检测技术的有关难题,紧密结合检测实际需要,通过理论分析和实验系统分析,总结了管道漏磁内检测技术,对轴向励磁和周向励磁漏磁检测技术进行了深入研究。
     分析了缺陷漏磁场的形成机理,引出磁偶极子模型近似分析常见缺陷漏磁场,针对磁偶极子模型的不足,将有限元方法应用到缺陷漏磁场分析,实现了典型管道缺陷漏磁场的仿真。
     分析了管道轴向励磁漏磁检测原理,对漏磁检测信号的特性进行了分析,研究了缺陷的外形尺寸(长度、宽度和深度)和延伸方向等主要缺陷特征对漏磁信号的影响规律;设计了管道轴向励磁漏磁检测实验平台,进行管道牵拉实验,采集并分析了缺陷信号样本,实验结果验证了管道轴向励磁漏磁检测方法可以检测周向分布缺陷,对管道螺旋焊缝、圆孔、周向凹槽等缺陷反应明显,各路信号具有很好的一致性、稳定性和比较高的检测精度,可识别缺陷的最小深度为10%壁厚,最小面积为直径2mm的圆孔。但管道轴向励磁漏磁检测方法不能检测轴向分布缺陷(例如狭窄裂纹)。
     研究了管道周向励磁漏磁检测原理,通过有限元仿真分析对比,提出了符合工程设计要求的四磁极分离环型磁化器结构,应用磁路理论,建立了磁化器磁路数学建模,开发了磁路计算程序,并研究了磁化器永磁体参数对漏磁信号的影响规律,为磁化器参数设计提供依据;对漏磁检测信号的特性进行了分析,提出了缺陷漏磁信号及缺陷外形尺寸的特征量;环形磁路结构使得管壁在周向难以达到磁饱和,磁极附近区域的磁场最强,磁极中心区域的磁场最弱,非均匀磁场造成缺陷测量与评价困难,为此提出了缺陷漏磁信号补偿方法,以消除非均匀磁场的影响;研究了缺陷距磁极的距离、外形尺寸(长、宽、深)等因素对漏磁信号的影响规律,为缺陷评价和相关补偿提供了理论指导;采用多元线性回归原理,确定了缺陷参数与漏磁信号特征量的回归拟合方程,实现了缺陷参数的定量识别。
     周向励磁检测利用平行安装在磁极之间的传感器测量缺陷漏磁信号,采用霍尔元件作为缺陷漏磁检测传感器,设计了小间距传感器阵列结构,制作了高密度测量探头,实现了对窄小裂纹的全覆盖,提高了检测精度;开发了模块化结构的数据采集系统软件,实现了对信号的实时采集与处理;提出了管道周向励磁漏磁检测信号后处理和补偿方法,包括检测信号插值平滑方法、测量奇异点的修正方法、无缺陷漏磁信号的补偿方法以及漏磁信号微分处理方法,解决了由于传感器数量不足带来的缺陷漏磁信号空间采样点过少的缺点,克服了由于周向励磁管壁磁化不均匀,磁极附近的背底磁场过强等对检测造成的不良影响。
     设计了管道周向励磁漏磁检测实验样机和实验平台,进行管道牵拉实验,分析了牵拉实验采集的缺陷信号样本。实验结果验证了缺陷特征与信号特征的关系。实验结果表明管道周向励磁漏磁检测方法可以检测轴向分布缺陷(例如轴向矩形槽),可识别缺陷的最小深度为10%壁厚,最小周向宽度为3mm。管道周向励磁漏磁检测实验样机和实验平台的成功研制,解决了国内管道漏磁检测无法检测轴向分布缺陷的难题,为管道周向励磁漏磁检测设备的研制确定了技术基础。
Pipeline transportation is the primary way of transporting oil-gas resource, and the safety of oil-gas pipeline has become a very important problem related to the national economy and the people's life. Regular pipeline inspection is the main method to avoid the pipeline accident and ensure the pipeline safety. Magnetic flux leakage (MFL) internal inspection technology is most widely used in many on-line oil-gas pipeline inspections. Concerning the difficult problems of MFL internal inspection combining with the practical inspection demand, after theoretical analysis and analysis on the experiment systems, this dissertation has summarizes the MFL internal inspection technology of pipeline, and has done thorough research into axial MFL and circumferential MFL.
     After the detailed analysis on the formation mechanism of defect MFL, the theory models of defect MFL field are established. In accordance with the drawbacks in the magnetic dipole model, the finite element model is applied to the analysis on defect MFL.
     The dissertation analyzes principle of axial MFL inspection in pipelinend MFL signal features. It studies the law for the effect of such affecting factors of MFL signal features as defect geometry parameters (length, width and depth) and the extension direction of the main characteristics of defects. The experimental platform of axial MFL inspection in pipeline is designed, pipeline traction test is implemented, and MFL signal samples are collected and analyzed. The experimental results verify that the axial MFL inspection method can detect the circumferentially orientated defects with good confidence. The circumferentially orientated defects, such as spiral weld, hole, circumferential groove, produce clear MFL signal. Each channel signal measured from different sensors has a very good consistency, stability and relatively high detection accuracy. The axial MFL inspection can identify a minimum depth of defects in 10% of wall thickness, and minimum size of defects in the hole of 2mm diameter. However, the axial MFL inspection method is not ideal for detecting axially aligned defects(such as narrow crack).
     The dissertation studies principle of circumferential MFL inspection in pipeline, and comparison of the finite element simulation, the magnetizer structure that has the circular geometry of quadrupole separation is proposed which meets engineering design requirements. After the application of magnetic circuit theory, a mathematical modeling of magnetic circuit of magnetizer is established, a magnetic circuit calculation program is developed, the influence of the geometric size of permanent magnets on MFL signal is determined, these provide a method for the magnetizer design. MFL signal features are analyzed, the features of signals are extracted from the recorded flux leakage response and characterizing definition is introduced as well; It is much more difficult to saturate the pipe material in the circumferential direction, which is caused by the circular geometry providing alternative flux paths. The strength of the magnetic field is greatest near the magnetizer poles and smallest at the center, and this non-uniform field makes defect sizing more difficult, for these problems, compensation methods of MFL signal are proposed to eliminate the non-uniform magnetic field. The affecting factors of MFL signal features, such as the distance between the defect and magnetic pole, and defect geometry parameters(length, width and depth), are researched, then get some important law and offer theoretical direction for defect evaluation and defect signal compenstation. By adopting the multiple linear regression theory, the regression equation is established between the defect geometry parameters and the features of MFL signals to implement the quantitative identification of the defect parameters.
     The circumferential tool measures the MFL signal by using the sensors which are installed between the magnets in parallel, by selected Hall element as the sensor to measure the MFL signal, sensor arrays made up of multiple sensors with samller spacing intervals are constructed, and high-density measurement probe is produced which completely covers the narrow crack thus improves the inspection precision need to ensure axially oriented anomalies were detected efficiently. The data acquisition system software with modular structure is developed so that real-time signal acquisition and processing are achieved. MFL signal processing and compensation methods are implemented, such as detection signal interpolation smoothing method, measuring method of singular points of the amendment, defect-free magnetic flux leakage signal compensation method, as well as differential magnetic flux leakage signal processing method, the disadvantage of too few spatial sampling points caused by insufficient number of sensors is eliminated, the adverse effects on the detection caused by the non-uniform magnetic field in wall and the background magnetic field near the magnetic poles too strong are overcome.
     It has design the experimental platform of circumferential MFL inspection in pipeline, and has conductsed pipeline traction test, MFL signal samples collected by pipeline traction test are analyzed. The experimental results verify the relationship between the defect geometry parameters and the signal characteristics. The experimental results show that the circumferential MFL inspection method can detect axially aligned defects (such as axially oriented groove). The circumferential MFL inspection can identify a minimum depth of defects in 10% of wall thickness and a minimum width of defects in 3mm. These results and conclusions solve some difficult problems of not detecting axially aligned defects in the field of pipeline MFL inspection, and determine the technical foundation for the development of circumferential MFL inspecting equipment in pipeline.
引文
[1]王功礼,王莉.油气管道技术现状与发展趋势,石油规划设计,2004,15(4):1~7.
    [2]黄志潜.管道完整性及其管理,焊管,2004,27(3):1~9.
    [3]宋艾玲,梁光川,王文耀.世界油气管道现状与发展趋势,油气储运,2006,25(10):1~6.
    [4]梅云新.中国管道运输的发展与建设,交通运输系统工程与信息,2005,5(2):108~111.
    [5]李世荣,宋艾玲等.我国油气管道现状与发展趋势,油气田地面上程,2006,25(6):7~8.
    [6]余洋.中国油气管道发展现状及前景展望,国际石油经济,2007,3:27~29.
    [7]余洋.2007年中国油气管道发展综述,国际石油经济,2008,3:45~51.
    [8]高福庆.管道内检测技术应用与发展,石油规划设计,2000,11(1):40~41.
    [9]郭新庆.关于石油天然气管道安全问题,国家安全生产监督管理总局调查研究2006,17:1~11.
    [10]路民旭,白真权,赵新伟.油气采集储运中的腐蚀现状及典型案例,腐蚀与防护,2002,23(3):105~113.
    [11]杨筱蘅,严大凡.逐步实施我国油气管道的完整性管理,天然气工业,2004,24(11):120~123.
    [12]中国石油天然气总公司.SY6186-1996石油天然气管道安全规程.北京:石油工业出版社,2004.
    [13]李东升,王昌明,施祖康等.管道壁缺陷超声波在役检测的量化分析研究,仪器仪表学报,2002,23(2):131~134.
    [14]钟家维,沈建新,贺志刚等.管道内腐蚀检测新技术和新方法,化工设备与防腐蚀,2003,(4):31~35.
    [15]戴波,赵晶,周炎.超声波管道内检测腐蚀缺陷分类识别研究,机床与液压,2008,36(7):194~198.
    [16]魏茂安.油气管道MFL检测信号处理与管道缺陷评估技术研究:(博士学位论文).天津:天津大学,2004.
    [17]王玉忠,陈建兰.漏磁检测技术在我国管道中的应用,化学清洗,1998,41(5):24~27.
    [18]余浩然,吴斌,陈丽萍.漏磁通法油气管道在役检测技术,实用测试技术,1997,(5):1~9.
    [19]林俊明.漏磁检测技术及发展现状研究,无损探伤,2006,30(1):1~5.
    [20]陈文明,何辅云,陈琨等.石油管道检测中缺陷类型判别方法的研究,合肥工业大学学报(自然科学版),2008,31(12):1929~1932.
    [21]刘慧芳,张鹏,周俊杰等.油气管道内腐蚀检测技术的现状与发展趋势,管道技术与设备,2008,(5):46~48.
    [22]宋生奎.油气管道内检测技术研究进展.石油工程建设,2005,31(2):10~15.
    [23]邱姝娟,闵希华,吴明等.穿越河流油气管道检测技术研究进展,管道技术与设备,2009,(3):21~23.
    [24] N. N. Zatsepin,V. E. Shcherbinin.Calculation of the magnetostatic field of surface defects. I. Field topography of defect models,Defectospiya,1966,(5):50~59.
    [25] V. E. Shcherbinin,N. N. Zatsepin. Calculation of the magnetostatic field of surface defects. II. Experimental verification of the principal theoretical relationships,Defectospiya,1966,(5):59~65.
    [26] Shcherbinin V E,Pashagin,A I.Influence of the extension of a defect on the magnitude of its magnetic field,Soviet Journal of Nondestructive Testing,1972,8(4):441~447.
    [27] Shcherbinin V E,Pashagin,A I.Fields of defects on the inner and outer surfaces of a tube during circular magnetization,Soviet Journal of Nondesturctive Testing,1972,8(2):134~138.
    [28] Edwards D M,Some current Problems in itinerant electron magnetism,Journal of Magnetism and Magnetic Materials,1979,15-18(ptl):262~268.
    [29] Palmer R B.Interaction of relativistic Particles and free electromagnetic waves in the Presence of a static helical magnet,Journal of Applied Physics,1972,43(7):3014~3023.
    [30] Rafi G Z,Moini-Mazandaran R,Faraji-Dana R.A new time domain approach for analysis of vertical magnetic dipole radiation in front of lossy half-space,Jounral of Electromagnetic Waves and Applications,2000,14(6):831~832.
    [31] Zhong W C.Theoretical fundamentals of magnetic dipole for longitudinal magnetization of a square steel component,Materials Evaluation,1999,57(9):937~939.
    [32] Minkov D,Tkeda Y,Shoji T,etc.Estimating the sizes of surface cracks based on hall element measurements of the leakage magnetic field and a dipole model of a crack,Applied physics a-Materials Science & Processing,2002,74(2):169~176.
    [33] Yarotskii V A.Estimation of magnetic dipole detection parameters,Measurement Techniques,1997,40(7):684~688.
    [34] Hwang J H,Lord,W.Finite element analysis of the magnetic field distribution inside a rotating ferromagnetic bar,IEEE Transactions on Magnetics,1974,10(4):1113~1118.
    [35] Hwang J H,Lord W,Finite element modeling of magnetic field/defect interaction,Journal of Testing & Evaluation,1975,3(l):21~25.
    [36] Silk M G,Williams N R,Bainton K F.Potential role of NDT techniques in the monitoring of fixed offshore structures,British Journal of Non-Destructive Testing,1975,17(3):83~87.
    [37] Lord W,Bridges J M,Yen W.Residual and active leakage fields around defects in ferromagnetic materials,Materials Evaluation,1978,36(8):47~54.
    [38] Foerster F.Nondestructive inspection by the method of magnetic leakage fields,Theoretical and experimental foundations of the detection of surface cracks of finite and infinite depth,Soviet Journal of Nondestructive Testing,1982,18(11):841~859.
    [39] McMillan N.Insitu pipeline inspection using the magnetic flux leakage technique,International Pipeline Technology Exhibition & Conference,1984,79~88.
    [40] Uetake I,Ito H.Magnetic leakage flux studied as a function of relative orientation between longitudinal direction of defect and magnetic field direction,Transactions of National Research Institute for Metals,1984,26(l):63~72.
    [41] Uetake I,Ito H.Lift-off effect and its application to the defect size estimation in the magnetic leakage flux method,Transactions of National Research Institute for Metals,1986,28(2):177~187.
    [42] D. L. Autherton.Finite element calculations on the effects of permeability variation on magnetic flux leakage signals,NDT International,1987,20 (4):239.
    [43] D. L. Autherton.Finite element calculations and computer measurements of magnetic flux leakage patterns for pits,British Journal of NDT,May 1988,P159.
    [44] Eduardo Altschuler.Nonlinear model of flaw detection in steel popes by magnetic flux leakage,NDT & E International,1995,28(l):35~39.
    [45] K. Krzywosz . Comparison of Electromagnetic Techniques for Nondestructive Inspection of Ferromagnetic Tubing,Materials Evaluation,1990,(l):42~48.
    [46] C. N. Owston.The Manetic Flux Leakage Technique of Non-Destructive Testing,British Journal of NDT,1974,(l1):164.
    [47] E. Lalwa and L. Pielarski.Design of Hall-effect sensors for magnetic testing of steel ropes,NDT International,1987,20 (5):295.
    [48] E. Kalwa,K. Pielarski.Design of inductive sensors for magnetic testing of steel ropes,NDT International,1987,20(6):347.
    [49] R. Bames,D. L. Atherton.Effects of Bending Stresses on magnetic flux leakage patterns,NDT & E International,1993,26(1):3.
    [50] W. R. Tweddell.Frequency Spectral Analysis of Rayleigh waves to size Surface-Breaking Cracks, Materials Evaluation,1990,48:1348.
    [51] K Mandal,D. L. Ahterton,J. Phys. D.A study of magnetic flux-leakage signals,Appl. Phys.,1998,31(22):3211~3217.
    [52] L. Clapham.A neutron diffraction study of local stress concentrations surrounding defects in pipeline steel,Physica B,1998,(24):1240~1243.
    [53] S. MukhoPadhyay,G. P. Srivastava.Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform,NDT&E International,2000,(33):57~65.
    [54] K. Mandal.Investigations of magnetic flux leakage and magnetic Bakrhausen noise signals from pipeline steel,Phys. D: Appl. Phys,1997,30(6):962~973.
    [55] K. Hwang,S. Mandyaam,S,S,UdPa,etc.A Application of wavelet basis function neural networks to NDE,IEEE Trans. On magnets,1997,38(6):3633~3642.
    [56] Song Xiangyu,Qi Feihu.Fast Convegrence Algorithm for Wavelet neural network used for signal or function approximation,Proceedings of ICSP’96,1401~1404.
    [57] Shen-Tun Li,Shu-ching Chen.Function approximation using robust wavelet neural networks,ICTAI’02,1998,49~53.
    [58] Emilio Ribes-Gomez,Sean Mcloone,Geogre W. Irwin.Orthogonal wavelet network construction using local regularization,2002 First International IEEE Symposium,2002,271~276.
    [59] Hwang Kyungtae.3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural network,phD Dissertation,Iowa State University,2000.
    [60] Jaein Lim. Data Fusion for NDE Signal Characterization,phD Dissertation,Iowa State University,2001.
    [61] Sunho Yang. Finite element modeling of current perturbation method of nondestructive evaluation application,phD Dissertation,Iowa State University,Iowa,2002.
    [62] Gwan Soo Park,Sang Ho Park. Analysis of the Velocity-Induced Eddy Current in MFL Type NDT,IEEE TRANSACTIONS ON MAGNETICS,2004,40(2):663~666.
    [63] Yong Li,Gui Yun Tian,Steve Ward. Numerical simulation on magnetic flux leakage evaluation at high speed,NDT&E International,2006,(39):367~373.
    [64] Jens Haueisen,Ralf Unger,Thomas Beuker,etc. Evaluation of Inverse Algorithms in the Analysis of Magnetic Flux Leakage Data,IEEE TRANSACTIONS ON MAGNETICS,2002,38(6):1481~1488.
    [65] Pradeep Ramuhalli,Lalita Udpa,Satish S. Udpa. Electromagnetic NDE Signal Inversion by Function-Approximation Neural Networks,IEEE TRANSACTIONS ON MAGNETICS,2002,38(6):3633~3642.
    [66] Ameet Joshi,Lalita Udpa,Satish Udpa1,etc. Adaptive Wavelets for Characterizing Magnetic Flux Leakage Signals From Pipeline Inspection,IEEE TRANSACTIONS ON MAGNETICS,2006,42(10):3168~3170.
    [67] R. Christen,A. Bergamini. Automatic flaw detection in NDE signals using a panel of neural networks,NDT&E International,2006,(39):547~553.
    [68] K. REBER,A. BELANGER. Reliability of Flaw Size Calculation based on Magnetic Flux Leakage Inspection of Pipelines,ECNDT 2006,Tu.3.1.1:1~11.
    [69] K.C. Hari,M. Nabi,S.V. Kulkarni. Improved FEM model for defect-shape construction from MFLsignal by using genetic algorithm,IET Sci. Meas. Technol.,2007,1 (4):196~200.
    [70] Reza Khalaj Amineh,Natalia K. Nikolova,James P. Reilly,etc. Characterization of Surface-Breaking Cracks Using One Tangential Component of Magnetic Leakage Field Measurements,IEEE TRANSACTIONS ON MAGNETICS,2008,44(4):516~524.
    [71]李路明,张家骏,李振星等.用有限元方法优化漏磁检测,无损检测,1997,19(6):154~158.
    [72]李路明,郑鹏,黄松岭等.表面裂纹宽度对漏磁场Y分量的影响,清华大学学报(自然科学版),1999,39(2):43~45.
    [73]黄松岭,李路明,鲍晓宇等.管道漏磁检测中的信号处理,无损检测,2000,22(2):55~57.
    [74]李路明,黄松岭,杨海青等.缺陷长度对漏磁场的影响,科学技术与工程,2002,2(4):52~53.
    [75] LI Lu-ming,HUANG Song-ling,WANG Lai-fu,etc. Research on magnetic testing method of stress distributio,Trans. Nonferrous Met. Soc. China,2002,12(3):388~391.
    [76] LI Lu-ming , HUANG Song-ling , WANG Xiao-feng , etc. Stress induced magnetic field abnormality,Trans. Nonferrous Met. Soc. China,2003,13(1):6~9.
    [77]康宜华,武新军,杨叔子.磁性无损检测技术的分类,无损检测,1999,21(2):58~60.
    [78]康宜华,武新军,杨叔子.磁性无损检测技术中的磁化技术,无损检测,1999,21(5):206~209.
    [79]康宜华,武新军,杨叔子.磁性无损检测技术中磁信号测量技术,无损检测,1999,21(8):340~343.
    [80]康宜华,武新军,杨叔子.磁性无损检测技术中的信号处理技术,无损检测,2000,22(6):255~259.
    [81]刘志平,康宜华,杨叔子.漏磁检测信号的反演,无损检测,2003,25(10):531~535.
    [82]金建华,康宜华.人工神经网络在电磁无损检测中的应用,2003,25(12):638~640.
    [83]蒋奇,王太勇.钢管漏磁检测信号的时频分析,机电设备,2002,(2):16~20.
    [84]蒋奇,王太勇,刘秋宏等.基于径向基函数神经网络的管道缺陷漏磁场分析,无损检测,2002,24(12):515~518.
    [85]蒋奇,王太勇,刘秋宏.钢管表面缺陷漏磁场与漏磁信号分析,中国机械工程,2003,14(12):1043~1046.
    [86]蒋奇,王太勇,蒋罕.管道腐蚀检测与识别技术的研究,电子测量与仪器学报,2003,17(2):13~18.
    [87]王太勇,蒋奇.管道缺陷定量识别技术的研究,天津大学学报,2003,36(1):45~48.
    [88]杨涛,王太勇,秦旭达等.基于特征量和神经网络的钢管缺陷预测模型,钢铁,2004,39(9):50~53.
    [89]王太勇,刘兴荣,秦旭达等.谱熵分析方法在漏磁信号特征提取中的应用,天津大学学报,2004,37(3):216~220.
    [90]杨涛,王太勇,李清等.油气管道缺陷漏磁检测试验,天津大学学报,2004,37(8):686~689.
    [91]王太勇,杨涛,蒋奇.油气输运管道缺陷漏磁检测量化技术研究,计量学报,2004,25(3):247~249.
    [92]魏茂安,靳世久,李莺莺等.油气管道缺陷二维轮廓重建及处理技术,石油学报,2003,24(6):98~101.
    [93]魏茂安,靳世久,李莺莺等.油气管道缺陷漏磁图像的小波压缩技术研究,光电工程,2004,31(4):58~60.
    [94]李莺莺,靳世久,魏茂安.管道漏磁法检测的ANSYS仿真研究,无损检测,2005,27(2):72~76.
    [95]李莺莺.油气管道在线内检测技术若干关键问题研究:(博士学位论文).天津:天津大学,2006.
    [96]何辅云,赖志荣.漏磁NDT原理漏磁NDT原理的研究,合肥工业大学学报(自然科学版),1994,17 (3):28~33.
    [97]汪友生,潘孟贤,何辅云.缺陷参数与漏磁信号相互关系的实验研究,合肥工业大学学报(自然科学版),1998,21 (5):28~31.
    [98]何辅云.石油管道的高速检测与缺陷识别,无损检测,2000,22(5):206~208.
    [99]何辅云,王宝,何箭.地下油气输送管道漏磁高速在线检测技术及装置,无损检测,2002,24(10):425~427.
    [100]何辅云,王晓芒,张勇等.油气输送管道电磁在线检测技术,合肥工业大学学报(自然科学版),2002,25 (2):218~221.
    [101]陈礼娟,何辅云,徐明亮.小波变换在漏磁检测中的应用研究,合肥工业大学学报(自然科学版),2002,25 (5):707~710.
    [102]何辅云,董文雯,王爱民.在役管线无损检测设备的研究,合肥工业大学学报(自然科学版),2004,27 (7):738~741.
    [103]徐海,何辅云,张海燕等.管道可视化检测系统的研究与实现,合肥工业大学学报(自然科学版),2006,29 (9):1136~1138.
    [104]沈兆鑫,何辅云.基于小波变换的在役管线漏磁信号的去噪,电子工程师,2006,32(7):41~44.
    [105]胡浪涛,何辅云,查君君.小波变换和神经网络在漏磁缺陷信号识别中的应用,2007,29 (4):197~199.
    [106]高兵,何辅云.基于整数小波变换的漏磁信号压缩方案,无损检测,2007,29 (7):382~385.
    [107]夏玉宝,何辅云,葛飞.基于多传感器数据融合的漏磁信号采集与处理,电子技术应用,2008,(2):116~118.
    [108]Yong Zhang,Zhongfu Ye,Lei Zhang. Correlation canceling principle used in pipeline head inspection, NDT&E International,2006,(39):253~257.
    [109]Yong Zhang,Zhongfu Ye,Xu Xu. An adaptive method for channel equalization in MFL inspection, NDT&E International,2007,(40):127~129.
    [110]张勇.漏磁检测若干关键技术的研究:(博士学位论文).合肥:中国科学技术大学,2007.
    [111]杨理践,葛岷,高松巍.漏磁法管道在线检测计算机系统,沈阳工业大学学报,1999,21(3):227~229.
    [112]杨理践,王玉梅,冯海英.智能化管道漏磁检测装置的研究,无损检测,2002,24(3):100~102.
    [113]杨理践,邢燕好,高松巍.高精度管道漏磁在线检测系统的研究,无损探伤,2005,29(1):20~22.
    [114]杨理践.管道漏磁在线检测技术,沈阳工业大学学报,2005,27(5):522~525.
    [115]杨理践,陈晓春,魏兢.油气管道漏磁检测的信号处理技术,沈阳工业大学学报,1999,21(6):516~518.
    [116]刘秀清,高松巍,杨理践. ANSYS在管道漏磁法检测中的研究与应用,沈阳工业大学学报,2001,23(1):28~31.
    [117]马凤铭,杨理践.高速漏磁检测中的速度效应及信号补偿,无损探伤,2005,29 (3):12~15.
    [118]杨理践,马凤铭,高松巍.基于神经网络及数据融合的管道缺陷定量识别,无损检测,2006,28 (6):281~284.
    [119]吴先梅,钱梦碌.有限元法在管道漏磁检测中的应用,无损检测,2000,22(4):147~150.
    [120]蒋奇,王太勇.油气管道腐蚀检测技术的研究,石油化工自动化,2002,(5):81~84.
    [121]胡浪涛,何辅云.油气管道磁化系统设计与研制,电子技术,2008,(5):28~31.
    [122]胡浪涛,何辅云.油气管道高速漏磁检测系统中传感器研究和设计,电子技术,2008,(2):9~11.
    [123]李著信,苏毅,吕宏庆等.管道在线检测技术及检测机器人研究,后勤工程学院学报,2006,(4):41~45.
    [124]白世武.中国石油天然气管道行业的无损检测技术发展及其与国外的交流与合作,无损检测,2007,29 (12):685~689.
    [125]井一平,张招勤,周树元等.Φ273漏磁腐蚀检测器在输油管道上的应用,油气储运,1998,17(1):32~35.
    [126]赵华涛,钟喜梅.Φ377漏磁油管道腐蚀检测器国产化研制取得成功,油气储运,1999,18(11):5.
    [127]金虹.漏磁检测技术在我国管道腐蚀检测上的应用和发展,管道技术与设备2003,(1):43~46.
    [128]范向红,王少华,那晶.我国管道漏磁检测技术及其成就,石油科技论坛,2007,(4):55~57.
    [129]管道漏磁在线检测系统打破国际垄断,机械工程师,2007,(7):95.
    [130]刘晨东,王琳平,翁乐宁等.高精度管道漏磁线检测技术的应用,石油和化工设备,2008,(2):44~45.
    [131]杨金鹏.长输管道内检测技术开发项目通过鉴定,炼油技术与工程,2009,39(1):24.
    [132]R.C.Irelan,C.R.Torres. CHALLENGES IN CIRCUMFEREMTIAL MAGNETISATION:A FEA POINT OF VIEW,Proceedings of IPC2004,Canada,2004,945~955.
    [133]R.C.Irelan,C.R.Torres. Finite element modelling of a circumferential magnetiser,Sensors and Actuators A,2006,(129):197~202.
    [134]Natalia K. Nikolova,Duane Cronin,Sabir M. Pasha,etc. ELECTRIC RESISTANCE WELDED SEAM INSPECTION USING CIRCUMFERENTIAL FLUX , Proceedings of IPC2008 7th International Pipeline Conference,Calgary,Alberta,Canada,2008.
    [135]J.B. Nestleroth. CIRCUMFERENTIAL MFL IN-LINE INSPECTION FOR CRACKS IN PIPELINES,Technical Report of Battelle Memorial Institute (US),2003.
    [136]J.B. Nestleroth. Evaluation of Circumferential Magnetic Flux for In-Line Detection of Stress Corrosion Cracks and Selective Seam Weld Corrosion, PRCI Report L51811, 1999.
    [137]任吉林,林俊明,高春法.电磁检测,北京:机械工业出版社,2000.
    [138]陈可.缺陷漏磁场的研究及其无损检测探伤的应用:(硕士学位论文).西安:西北工业大学,2004.
    [139]徐章遂,徐英,王建斌等.裂纹漏磁定量检测原理与应用,北京:国防工业出版社,2005.
    [140]S. Mandayam,L. Udpa,etc. Invariance Transformations for Magnetic Flux Leakage Signals,IEEE TRANSACTIONS ON MAGNETICS,1996,32(3):1577~1580.
    [141]宋志哲.磁粉检测,北京:中国劳动社会保障出版社,2007.
    [142]杨大地,涂光裕.数值分析,重庆:重庆大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700