用户名: 密码: 验证码:
基于分子印迹技术的大蒜功能成分的分离提取及药理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大蒜(Allium sativum L.)为百合科葱属植物的地下鳞茎,是著名的食药两用植物,富含有机硫化物、黄酮类化合物、皂苷类化合物和多糖等药用功能成分。近代医学研究表明,大蒜功能成分具有抑菌、降血脂、抗肿瘤、防衰老、提高机体免疫力等功效,在医药和保健品领域具有很大的开发潜力。本论文利用分子印迹技术,从大蒜中分离提取出蒜氨酸、大蒜素和大蒜黄酮类化合物等大蒜功能成分,研究了4种大蒜提取物的药理活性。本论文主要包括以下五个部分:
     一、模板分子和功能单体的设计与预组装
     针对从水相体系中分离提取大蒜功能成分存在的工艺复杂和分离困难等问题,以寻找能够在水相体系中有效分离蒜氨酸、大蒜素和大蒜黄酮类化合物的功能材料为目标,将分子印迹原理与现代配位化学理论相结合,构建了两种分子印迹识别模型。采用GAMESS软件包中的PM3基组优化了模板分子和功能单体的结构,分别采用非共价键和配位键两种结合模式计算了模板分子和功能单体组成的系列复合物的结合能(ΔE),通过比较复合物结合能的大小,探讨了采用不同结合方式所形成复合物的稳定性差异。在量化计算结果指导下,设计了基于金属配位识别模式的大蒜功能成分分子印迹分离体系,并采用光谱法实验对模板分子和功能单体进行预组装筛选,优化出用于分离大蒜功能成分的金属配位分子印迹识别模型用于指导功能配体和聚合物材料的合成。
     二、蒜氨酸配位分子印迹聚合物合成和性能研究
     合成了新型N (4苯乙烯基)草酰胺功能配体,以S丙基L半胱氨酸亚砜替代蒜氨酸作为“伪模板分子”,合成了S丙基L半胱氨酸亚砜Zn草酰胺配位单体,并以此配合物为功能配位单体,构筑对目标分离物蒜氨酸选择性识别的双金属配位分子印迹聚合物模型;采用悬浮聚合工艺,定向合成了对蒜氨酸具有较好识别性能的配位分子印迹聚合物微球;通过评价蒜氨酸配位分子印迹聚合物对目标分离物的识别性能和分离效果,从中筛选出分离度高、吸附容量大的配位分子印迹聚合物材料,并应用于从水溶液中分离提取蒜氨酸。与目前所采用的普通阳离子树脂法相比,采用蒜氨酸配位分子印迹聚合物微球提取的蒜氨酸产品纯度达到73.6%。该方法为水相体系中氨基酸的分离提取研究开辟了新的途径。
     三、大蒜素配位分子印迹聚合物合成和性能研究
     合成了新型N (3丙氨基) N’(4苯乙烯基)草酰胺功能配体,以二丙基硫醚替代大蒜素作为“伪模板分子”,构筑对目标分离物大蒜素选择性识别的金属配位分子印迹聚合物模型;采用悬浮聚合工艺,定向合成了对大蒜素具有良好识别性能的配位分子印迹聚合物微球;通过评价大蒜素配位分子印迹聚合物对目标分离物的识别性能和分离效果,从中筛选出分离度高、吸附容量大的配位分子印迹聚合物材料,并应用于从水溶液中提取大蒜素。采用大蒜素配位分子印迹聚合物微球提取的大蒜素产品纯度达到89.5%。为水相体系中微量硫醚类化合物的分离富集提供新的方法学支撑。
     四、大蒜黄酮配位分子印迹聚合物合成和性能研究
     以大蒜黄酮类化合物中含量最大的杨梅黄酮为模板分子,4乙烯基吡啶为功能单体,在Zn(II)介导下,采用悬浮聚合工艺合成了对模板分子类似物具有选择性吸附的大蒜黄酮配位分子印迹聚合物微球;通过评价这些配位分子印迹聚合物对杨梅黄酮、槲皮素、芹菜素和山奈酚等黄酮类化合物的分离效果,从中筛选出分离度适宜、吸附容量大的大蒜黄酮配位分子印迹聚合物材料,用于对大孔树脂提取的大蒜黄酮粗提物的分离纯化。大蒜黄酮粗提物经大蒜黄酮配位分子印迹聚合物微球分离纯化后,大蒜总黄酮含量达到81.2%,为大蒜黄酮的纯化和规模化制备奠定了基础。
     五、大蒜功能成分药理活性研究
     分别采用H1N1流感病毒神经氨酸酶抑制剂筛选模型和MDCK细胞模型,从分子水平上和细胞水平上研究了蒜氨酸、大蒜素、大蒜黄酮和大蒜皂苷4个大蒜功能成分对H1N1流感病毒神经氨酸酶抑制活性和抗甲型流感病毒活性。结果显示:大蒜黄酮的抗氧化活性IC50为2.064±0.026μg/mL,优于阳性对照药维生素C(3.876±0.203μg/mL);大蒜黄酮在H1N1流感病毒神经氨酸酶抑制剂筛选模型中的IC50值为10.922±2.651μg/mL,在MDCK细胞模型的IC50值为3.15μg/mL,在细胞水平抗流感活性实验中与阳性药物扎那米韦处于同一水平,而选择性和最大无毒浓度均低于阳性药物。显示了良好的体外抗流感活性和潜在的应用前景,为新型抗流感活性化合物的发现提供了新思路。采用DPPH抗氧化模型和乙、丁酰胆碱酯酶抑制剂模型,研究了蒜氨酸、大蒜素、大蒜黄酮和大蒜皂苷4个大蒜功能成分抗氧化和对乙、丁酰胆碱酯酶的抑制活性.利用荧光光谱法,从分子水平上研究大蒜黄酮类化合物(杨梅黄酮、槲皮素和山奈酚)与DNA的相互作用。以上这些药理活性研究为大蒜功能成分的药用开发奠定了科学基础。
     上述研究不仅开辟了大蒜功能成分分离提取的新途径,而且为大蒜黄酮类化合物在抗氧化和抗流感病毒等的应用奠定了基础,对提升我国大蒜药用功能成分开发的水平具有重要的现实意义。
Garlic (Allium sativum L.), the underground bulbs of a kind of liliaceous alliumplants, is very popular for its edible and medicinal properties. It contains variousmedicinal components such as organic sulphides, flavonoids, saponins andpolysaccharides, etc. According to recent medical studies, garlic’s functionalcomponents possess many beneficial effects on antibacteria, lowering blood,antitumor, anti aging, enhancing immunity and so on, and consequently have manypotential applications in health care products. In this thesis, we extract alliin, allicin,flavonoid compounds, etc. functional components from garlic via molecularimprinting technique. Subsequently, we investigate their pharmacological activity.The main results are outlined as follows:
     1. Design and pre-assembly of template molecule and functional monomers
     Because it is a complicated, hard process to separate the garlic’s functionalcomponents from aqueous system, we seek to find a kind of functional material whichcan effectively separate alliin, allicin and flavonoid compounds from aqueous system.With the combination of the principle of molecular imprinting and the theory ofmodern coordination chemistry, we established two molecular imprinting recognitionmodels, in which the structure of template molecule and functional monomers hasbeen optimized via PM3groups of GAMESS software packages. In addition, thebinding energy (ΔE) of the monomer template conjugates has been calculated withthe binding modes of noncovalent and coordinate bonds, respectively. The stabilitydiversities of the conjugates in different binding ways also were discussed bycomparing the binding energy of the conjugates. According to the results ofquantitative calculation, we designed the molecularly imprinted separation system ofgarlic’s functional components based on the metallic coordinate recognition model.Finally, In order to optimize the metallic coordinate molecular imprinting recognitionmodel for the separation of garlic’s functional components, we prescreened thetemplate molecule and functional monomers by the spectroscopy experiments toguide the synthesis of functional ligands and polymers.
     2. Synthesis and property of coordinate molecularly imprinted polymers for alliin
     A new type of functional ligand N (4styryl) oxamide has been designed andsynthesized. Replacing alliin with S propyl L cysteine sulfoxide as a“pseudo template molecule”, the coordinate monomer named S propyl L cysteinesulfoxide Zn oxamide has been synthesized and considered as a functionalcoordinate monomer to establish the bimetallic coordinate molecularly imprintedpolymer model which can selectively recognize the target alliin separated from garlic.With suspension polymerization technique, the directed synthesis of coordinatemolecularly imprinted polymer microspheres which can recognize alliin effectivelyhas been achieved. Through evaluating the recognition and separation effect of alliincoordinate molecularly imprinted polymers on the separated target, the coordinatemolecularly imprinted polymers with satisfying separation ability and largeadsorption capacity have been selected and applied to separate alliin in aqueoussolution. Compared with common cationic resin used presently, the purity of alliinseparated by alliin coordinate molecularly imprinted polymer microspheres can reach73.6%. This method will open a new way to develop the extraction and separation ofamino acid in aqueous solution.
     3. Synthesis and property of coordinate molecularly imprinted polymers for allicin
     A new type of functional ligand N (3propylamino) N'(4styryl) oxamide hasbeen designed and synthesized. Replacing allicin with dipropyl thioether as a“pseudo template molecule”, the bimetallic coordinate molecularly imprintedpolymer model which can selectively recognize the target allicin separated from garlichas been established. With suspension polymerization technique, the directedsynthesis of coordinate molecularly imprinted polymer microspheres which canrecognize allicin effectively has been achieved. Through evaluating the recognitionand separation effect of allicin coordinate molecularly imprinted polymers on theseparated target, the coordinate molecularly imprinted polymers with satisfyingseparation ability and large adsorption capacity have been selected and applied toseparate allicin in aqueous solution. The purity of allicin separated by allicincoordinate molecularly imprinted polymer microspheres can reach89.5%. Thismethod will provide a new methodological support for the separation andconcentration of trace thioethers compounds in aqueous solution.
     4. Synthesis and property of coordinate molecularly imprinted polymers for garlic’s flavonoid
     With the major component myricetin in garlic flavonoids as template molecular, 4vinylpyridine as functional monomer and Zn(II) mediated,the garlic flavonoidcoordinate molecularly imprinted polymer microspheres, which can selectively adsorbthe template molecule analogues have been synthesized with the suspensionpolymerization technique. Through evaluating the separation effect of thesecoordinate molecularly imprinted polymers on several flavonoid compounds likemyricetin, quercetin, apigenin and kaempferol, the garlic’s flavonoids coordinatemolecularly imprinted polymers with proper separation ability and large adsorptioncapacity have been selected and applied to separate and purify the flavonoids crudeextract obtained by macroporous resin. And after the purification, the content ofgarlic’s flavonoids can reach81.2%. This method will lay a foundation for thepurification and large-scale preparation of garlic’s flavonoid.
     5. The pharmacological activity studies of garlic’s functional components
     The inhibition activities of the four garlic’s functional components on H1N1influenza virus neuraminidase and the influenza A virus have been studied at themolecular and cellular level with H1N1influenza virus neuraminidase inhibitorscreening model and MDCK cellular model. The results indicated that theantioxidative activity IC50of the garlic’s flavonoids is2.064±0.026μg/mL, which issuperior to the positive control vitamin C (3.876±0.203μg/mL). The IC50values ofgarlic’s flavonoids in H1N1influenza virus neuraminidase inhibitor screening modeland MDCK cellular model are10.922±2.651μg/mL and3.15μg/mL, respectively,which are at the same level with the positive drug zanamivir in evaluating theanti influenza activities at the cellular level, while lower than the positive drug withselectivity and the largest non toxic concentration. Consequently garlic’s flavonoidshave good in vitro anti-influenza activities and potential application prospect, whichwill provide a new idea for the discovery of novel anti-influenza activecompounds.The oxidative stability and inhibition activities of the four garlic’sfunctional components (alliin, allicin, garlic’s flavonoids and saponins) onacetylcholinesterase and butyrocholinesterase have been studied with the DPPHanti oxidation model and the acetylcholinesterase and butyrocholinesterase inhibitormodel. The interaction between garlic’s flavonoids (myricetin, quercetin andKaempferol) and some biological macromolecules, such as DNA, has beeninvestigated at the molecular level with ultraviolet and fluorescence spectroscopy.These pharmacological studies have provided a substantial basis for the pharmaceutical development of garlic’s functional components.
     In conclusion, our researches built a new approach to separate and extractgarlic’s functional components. The results indicated that garlic’s flavonoidcompounds exhibited several pharmacological activities, such as oxidative stabilityand anti influenza virus, etc, which will not only provide important scientific data forthe research of China's garlic medicinal functional components, but also are beneficialto the sustained and efficient development and utilization of China's garlic resources.
引文
[1] J. Peterson. The Cambridge World History of Food. Cambridge: Cambridge University Press,2000,249-271.
    [2] R.Kamenetskv,I.London N Shafir, F.Khassanov. Diversity in fertility potential andorgano-sulphur compounds among garlics from Central Asia. Biodiversity and Conservation,2005(14):281-295.
    [3] Kambiz Baghalian,Seyed Ali Ziai,Mohalnmad Reza Naghavi. Evaluation of allicin contentand botanical traits in Iranian garlic(Allium sativumL.) ecotypes. Scientia Horticulturae,2005,103:155-166.
    [4] J. L. Brewster. Onions and Other Vegetable Alliums. CABI, Wallingford, UK,2008.
    [5]宋立人,洪恂,丁绪亮,臧载阳.现代中药大辞典.北京:人民卫生出版社,2001,124-129.
    [6] Marta Corzo-Martínez, Nieves Corzo, Mar Villamiel. Biological properties of onions andgarlic. Trends in Food Science&Technology,2007,18(12):609-625.
    [7] E. B. Peffley. Genome complexity of Allium. The Plant Genone,2006,1:111-130.
    [8] D. Zohary and M. Hopf, Domestication of Plants in the Old World. Oxford:Oxford UniversityPress,2000,976-1164.
    [9] S. Moyers. Garlic in Health, History, and World Cuisine. Florida: Suncoast Press, St.Petersburg,1996,-325
    [10] K. Parejko. Pliny the Elder’s Silphium: first recorded species extinction. Conservation Biol.,2003,17,925-927.
    [11]徐明达.大蒜的化学.科学人杂志,2010,99:-
    [12] Eric Block. Garlic as a Functional Food: A Status Report. ACS Symposium Series,1998,702:125-143.
    [13] Ute Münchberg, Awais Anwar, Susanne Mecklenburg Claus Jacob. Polysulfides asbiologically active ingredients of garlic. Org. Biomol. Chem.,2007,5:1505-1518.
    [14] Larry D. Lawson. Garlic: A Review of Its Medicinal Effects and Indicated Active Compounds.ACS Symposium Series,1998,691:176-209.
    [15] Larry D. Lawson and Christopher D. Gardner.Composition, Stability, and Bioavailability ofGarlic Products Used in a Clinical Trial. J. Agric. Food Chem.,2005,53(16):6254-6261.
    [16]李雅菲,赖雁.大蒜素临床应用的研究进展.成都医学院学报,2009,4(2):132-135.
    [17]唐辉,陈坚.蒜氨酸及其相关活性组分的研究进展.国际药学研究杂志,2008,35(6):441-446.
    [18]黄雪松,阎凤超,吴建中.基质辅助激光解析电离飞行时间质谱法测定大蒜寡糖和多糖分子质量分布.食品科学,2011,32(2):146-149.
    [19] B.H. Hameed, A.A. Ahmad. Batch adsorption of methylene blue from aqueous solution bygarlic peel, an agricultural waste biomass. Journal of Hazardous Materials,2009,164(2-3):870-875.
    [20]郑永军.蒜片加工废水的M-MIT多级处理及综合利用新技术.高新技术与产业化,2008,10:74-75
    [21] Ruomei Qi, Zhengang Wang. Pharmacological effects of garlic extract. Trends inPharmacological Sciences,2003,24(2):62-63.
    [22] A. Kamel, M. Saleh. Recent studies on the chemistry and biological activities of theorganosulfur compounds of garlic (allium sativum). Studies in Natural Products Chemistry,2000,23:455-485
    [23] Yukihiro Kodera, Ayumi Suzuki, Osamu Imada, Shigeo Kasuga, Isao Sumioka, AtsushiKanezawa, Nobuo Taru, Masanori Fujikawa, Shinji Nagae, Koji Masamoto, KatsuhikoMaeshige, Kazuhisa Ono. Physical, Chemical, and Biological Properties of S-Allylcysteine,an Amino Acid Derived from Garlic. J. Agric. Food Chem.,2002,50(3):622-632.
    [24] Hiroyuki Fujisawa, Kaoru Suma, Kana Origuchi, Hitomi Kumagai, Taiichiro Seki ToyohikoAriga. Biological and Chemical Stability of Garlic-Derived Allicin. J. Agric. Food Chem.,2008,56(11):4229–4235.
    [25] Makoto Ichikawa, Nagatoshi Ide, Jiro Yoshida, Hiroyuki Yamaguchi, Kazuhisa Ono.Determination of Seven Organosulfur Compounds in Garlic by High-Performance LiquidChromatography. J. Agric. Food Chem.,2006,54(5):1535–1540.
    [26] Sabine Baumgartner, Thomas G Dax, Werner Praznik, Heinz Falk. Characterisation of thehigh-molecular weight fructan isolated from garlic (Allium sativum L.). CarbohydrateResearch,2000,328(2):177-183.
    [27] Alexander Bilyk, Gerald M. Sapers. Distribution of quercetin and kaempferol in lettuce, kale,chive, garlic chive, leek, horseradish, red radish, and red cabbage tissues. J. Agric. FoodChem.,1985,33(2):226–228.
    [28]张新茹,杨晓虹,王天晓.葱属植物中甾体皂苷及其药理作用最新研究进展.解放军药学学报,2009,25(2):165-169.
    [29]王金主,杨丹,徐军庆,高艳华,李峰,袁建国,王元秀.大蒜中SOD含量的测定.山东食品发酵,2011,161:27-29
    [30] Elaine Fitches, Duncan Wiles, Angela E. Douglas, Gareth Hinchliffe, Neil Audsley, John A.Gatehouse. The insecticidal activity of recombinant garlic lectins towards aphids. InsectBiochemistry and Molecular Biology,2008,38(10):905-915.
    [31] Ralph G. Smith.Determination of the Country of Origin of Garlic (Allium sativum) UsingTrace Metal Profiling. J. Agric. Food Chem.,2005,53(10):4041-4045.
    [32]郑永军,丁养军,赵斌.微波消解/等离子发射光谱法测定金乡大蒜中多种元素含量.山东化工.2005,34:29-30.
    [33] J. Hughes, A. Tregova, A.B. Tomsett, M.G. Jones, R. Cosstick, H.A. Collin. Synthesis of theflavour precursor, alliin, in garlic tissue cultures. Phytochemistry,2005,66(2):.
    [34] Eric Blick. Garlic and other alliums. Cambirdge:The royal society of chemistry,2010,100-150。
    [35] A. Stoll and E. Seebeck, Allium compounds. I.Alliin, the ture mother compound of garlic oil,Helv. Chim. Acta,1948,31,189-210.
    [36] A. Stoll and E. Seebeck, Allium compounds.. Enzymic degradation of alliin and theproperties of alliinase, Helv. Chim. Acta,1949a,32,197-205.
    [37] A. Stoll and E. Seebeck, Allium compounds.. Specificity of alliinase and synthesis ofcompounds related to aliin, Helv. Chim. Acta,1949b,32,866-876.
    [38] E. Bartholomeus Kuettner, Rolf Hilgenfeld, Manfred S. Weiss. Purification, characterization,and crystallization of alliinase from garlic. Archives of Biochemistry and Biophysics,2002,402(2):192-200.
    [39]许真,严永哲,卢钢,金千焕,郭得平.葱属蔬菜植物风味前体物质的合成途径及调节机制.细胞生物学杂志,2007,29:508-512.
    [40] C. Rundqvist, Pharmacological investigation of Allium bulbs. Pharm. Notisbl.,1909,18:323-333.
    [41] E. Seebeck. Crystalline derivative from allium plants.美国专利,US2642374,1953.
    [42]徐洪霞.蒜氨酸检测方法及提取分离工艺研究:[硕士学位论文].合肥:合肥工业大学,2004.
    [43]黄雪松,宴日安.利用新鲜大蒜生产结晶蒜氨酸.食品科学,2004,25(11):200203.
    [44]严常开,胡霞敏,曾繁典.烯丙基半肤氨酸的合成及其对脂质代谢的影响.中国新药杂志,2006,15(8):616-620.
    [45] J. C. Namyslo, C. Stanitzek. A palladium-catalyzed synthesis of isoalliin, the main cysteinesulfoxide in onions (Allium cepa). Synthesis,2006,3367-3369.
    [46] Yara S. Queiroz, Emília Y. Ishimoto, Deborah H.M. Bastos, Geni R. Sampaio, ElizabethA.F.S. Torres. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitroantioxidant activity. Food Chemistry,2009,115(1):371-374.
    [47] Adam S. Mousa, Shaker A. Mousa. Cellular effects of garlic supplements and antioxidantvitamins in lowering marginally high blood pressure in humans: pilot study. NutritionResearch,2007,27(2):119-123.
    [48] K. T. Augusti and C. G. Sheela. Antiperoxide effect of S-allylcysteine sulfoxide, an insulinsecretagogue, in diabetic rats. Experientia,1996,52:115-120.
    [49] Muhammad Saeed Ahmad, Monika Pischetsrieder, Nessar Ahmed. Aged garlic extract andS-allyl cysteine prevent formation of advanced glycation endproducts. European Journal ofPharmacology,2007,561(1-3):32-38.
    [50] A.Eidi, M. Eidi, E. Esmaeili. Antidiabetic effect of garlic (Allium sativum L.) in normal andstreptozotocin-induced diabetic rats. Phytomedicine,2006,13(9–10):624-629.
    [51] Angelo De Martino, Giuseppe Filomeni, Katia Aquilano, Maria R. Ciriolo, Giuseppe Rotilio.Effects of water garlic extracts on cell cycle and viability of HepG2hepatoma cells. TheJournal of Nutritional Biochemistry,2006,17(11):742-749.
    [52] lker Durak, Erdal Y lmaz, Erdin Devrim, Hakk Perk, Murat Ka maz. Consumption ofaqueous garlic extract leads to significant improvement in patients with benign prostatehyperplasia and prostate cancer. Nutrition Research,2003,23(2):199-204.
    [53] D.Arditti, A. Rabinkov, T. Miron, Y. Reisner, A. Berrebi, M. Wilchek, D. Mirelman.Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situusing a rituximab-alliinase conjugate. Mol. Cancer Therapy,2005,4,325-331.
    [54] T. Miron, M. Mironchik, D. Mirelman, M. Wilchek, A. Rabinkov. Inhibition of tumorgrowth by a novel approach: in situ allicin generation using targeted alliinase delivery. Mol.Cancer Therapy,2003,2,1295-1301.
    [55] Kothapa N. Chetty, LeShanna Calahan, Katrina C. Harris, Waneene Dorsey, Dagne Hill,SriKrishna Chetty, Sushil K. Jain.Garlic attenuates hypercholesterolemic risk factors in oliveoil fed rats and high cholesterol fed rats. Pathophysiology,2003,9(3):127-132.
    [56] Francisca Pérez-Severiano, Mayra Rodríguez-Pérez, José Pedraza-Chaverrí, Perla D.Maldonado, Omar N. Medina-Campos, Alma Ortíz-Plata, Aurora Sánchez-García, JuanaVilleda-Hernández, Sonia Galván-Arzate, Penélope Aguilera, Abel Santamaría.S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-inducedneurotoxicity and oxidative damage in rats. Neurochemistry International,2004,45(8):1175-1183.
    [57] P. Avato, F. Tursi, C. Vitali, V. Miccolis, V. Candido. Allylsulfide constituents of garlicvolatile oil as antimicrobial agents. Phytomedicine,2000,7(3):239-243.
    [58]刘玉平,孙宝国,于雷.食用香料二烯丙基三硫和二烯丙基四硫的合成.精细与专用化学品,2007,15(21):24-26.
    [59] Yogeshwer Shukla, Neetu Kalra. Cancer chemoprevention with garlic and its constituents.Cancer Letters,2007,247(2):167-181.
    [60]吕慧,马永建,孙桂菊,杨立刚,王少康.大蒜挥发油提取工的优化研究.食品科学.2009,30(18):88-91.
    [61]郑屏,盛旋,张祥,胡艳云.天然大蒜油及合成大蒜素的气相色谱-质谱分析.分析化学,2005,33(9):1323.-1321.
    [62] Athanasios C. Kimbaris, Nikolaos G. Siatis, Dimitra J. Daferera, Petros A. Tarantilis, ChristosS. Pappas, Moschos G. Polissiou. Comparison of distillation and ultrasound-assistedextraction methods for the isolation of sensitive aroma compounds from garlic (Alliumsativum). Ultrasonics Sonochemistry,2006,13(1):54-60.
    [63]彭光华,韩月峰,马荣池.大蒜有机硫化物提取条件的优化及其成分的分析.食品科学,2008,29(7):226-230.
    [64] José M. del Valle, Verónica Glatzel, José L. Martínez. Supercritical CO2extraction of allicinfrom garlic flakes: Screening and kinetic studies. Food Research International,2012,45(1):216-224.
    [65]陈华,郑永军.从大蒜深加工废水中提取大蒜素的方法及用于大蒜素提取的大蒜素吸附树脂.中国专利,ZL200710016014.2,2009.
    [66]胡玉熙,陈曦,刘清飞,徐牧,王义明,罗国安.大蒜素药理作用研究的最新进展.2007,31(11):481-485.
    [67]何进,郭涛,孙学惠,周闺臣.大蒜油静脉注射乳剂大鼠体内组织分布的研究.中国药学杂志,2010,45(20):1567-1571.
    [68] I.M. Bakri, C.W.I. Douglas.Inhibitory effect of garlic extract on oral bacteria. Archives ofOral Biology,2005,50(7):645-651.
    [69] Hannah Curtis, Ulrike Noll, Judith St rmann, Alan J. Slusarenko. Broad-spectrum activity ofthe volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plantpathogenic bacteria, fungi and Oomycetes. Physiological and Molecular Plant Pathology,2004,65(2):79-89.
    [70] M. Zahid Ashraf, M.E. Hussain, M. Fahim.Antiatherosclerotic effects of dietarysupplementations of garlic and turmeric: Restoration of endothelial function in rats. LifeSciences,2005,77(8):837-857.
    [71]Marc P. McRae.A review of studies of garlic (Allium sativum) on serum lipids and bloodpressure before and after1994: does the amount of allicin released from garlic powder tabletsplay a role? Journal of Chiropractic Medicine,2005,4(4):182-190
    [72] D. Meng. P46The chemopreventive effect of garlic on tumorigenesis. European Journal ofCancer Supplements,2004,2(1):55-56.
    [73]梁笑倾,谭布珍,大蒜素对提高肿瘤细胞免疫功能的研究进展.南昌大学学报(医学版),2010,50(5):109-111.
    [74] S.H. Omar, N.A. Al-Wabel.Organosulfur compounds and possible mechanism of garlic incancer.Saudi Pharmaceutical Journal,2010,18:51–58.
    [75] N.S. Kang, E.Y. Moon, C.G. Cho, S. Pyo. Immunomodulating effect of garlic component,allicin, on murine peritoneal macrophages. Nutrition Research,2001,21(4):617-626.
    [76]张培成.黄酮化学,北京:化学工业出版社,2009.569
    [77]徐筱杰,康文艺.药用天然产物,北京:化学工业出版社,2010.77-79
    [78]徐任生.天然产物化学.北京:科学出版社,2004.526-568
    [79]唐浩国.黄酮类化合物研究.北京:科学出版社,2005.1-20
    [80] U.Takahama,S.Hirta. Deglucosidation of quercetin glucosides to the aglycone and formationof antifungal agents by peroxidase–dependent oxidation of quercetin on browning of onionscales. Plant Cell Physiol.,2000,41:1021-1029.
    [81] R. Slimestad, T. Fossen and I. M. Vagen, Onions: a source of unique dietary flavonoids, JAgric Food Chem.,2007,55:10067-10080.
    [82] K. R. Price and M. J. C. Rhodes, Analysis of the major flavonol glycosides present in fourvarieties of onion (Allium cepa) and changes in composition resulting from autolysis, J. Sci.Food Agric.,1997,74,331-339.
    [83]Bilyk, A.; Sapers, G. M. Distribution of Quercetin and Kaempferol in lettuce, kale, chive,garlic chive, leek, horseradish, red radish, and red cabbage tissues. J.Agric. Food Chem.1985,33,226-228
    [84] Koo Hui Miean; Suhaila Mohamed. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin,and Apigenin) Content of Edible Tropical Plants.J. Agric. Food Chem.2001.49.3106-3112
    [85]Shela Gorinstein;Hanna Leontowicz.Comparison of the Main Bioactive Compounds andAntioxidant Activities in Garlic and White and Red Onions after Treatment Protocols. J.Agric. Food Chem.2008,56,4418-4426.
    [86]蒋栋能,郑江.大蒜黄酮的分离及抗内毒素活性的评价.中国临床药理学与治疗学,2004,9(10):1154-156.
    [87] A. Kloskowski, M. Pilarczyk, A. Przyjazny and J. Namiesnik. Progress in Devel-opment ofMolecularly Imprinted Polymers as Sorbents for Sample Preparation. Critical Reviews inAnalytical Chemistry,2009,39(1):43-58.
    [88] G. Vasapollo, R. Del Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano and G. Mele.Molecularly Imprinted Polymers: Present and Future Prospective. International Journal ofMolecular Sciences,2011,12(9):5908-5945
    [89] C. M. Lok and R. Son. Application of Molecularly Imprinted Polymers in Food SampleAnalysis—A Perspective. International Food Research Journal,2009,16(2):127-140.
    [90] E. Caro, R. M. Marce, F. Borrull, P. A. G. Cormack and D. C. Sherrington. Application ofMolecularly Imprinted Polymers to Solid Phase Extraction of Compounds fromEnvironmental and Biological Samples. Trends in Analytical Chemistry,2006,25(2):143-154.
    [91] Dickert FL, Hayden O, Molecular fingerprints using imprinting techniques. Adv. Mater.,2000,12:311-314.
    [92] Haupt K, Mosbach K, Molecularly imprinted polymers and their use in biomimetic sensors.Chem. Rev.,2000,100:2495-2504.
    [93] Malitesta C, Losito I, Zambonin PG, Molecularly imprinted electrosynthesized polymers:New materials for biomimetic sensors. Anal. Chem.,1999,71:1366-1370.
    [94]小宫山真,竹内俊文,务川高志,浅沼浩子著,吴世康,汪鹏飞(译),分子印迹学—从基础到应用。北京:科学出版社.2006.17-86
    [95] Spivak DA, Campbell J, Systematic study of steric and spatial contributions to molecularrecognition by non-covalent imprinted polymers. Analyst,2001,126:793-801.
    [96]尹晓斐,郭秀春,陈军辉,周文辉,郑立,杨黄浩,庄峙夏,王小如,分子印迹技术用于海洋微生物生物碱活性成分的发现,海洋科学进展,2008,26(2):228-230.
    [97]谭天伟.分子印迹技术及应用.北京:化学工业出版社:2010.345-567.
    [98]董文国,同明,张敏莲,等.单体对分子印迹聚合物分子识别能力的影响:量子化学计算与实验研究.化工学报,2005,56(11):2131-2136.
    [99]王胜利,毕慧敏,刘妍.采用化计算和预实验的方法优化大黄酚印迹聚合物的合成.计算机与应用化学,2010,27(5):668-672
    [100]施介华,肖科科,吕园园.α-氯丙酸乙酯对映体与β-环糊精的主客体相互作用.物理化学学报,2009,25(7):1273-1278
    [101]马娟娟,王新龙,许兴友.不同功能单体制备的S-蔡普生印迹聚合物材料的性能.精细化工,2007,24(2):13-135.
    [102]尹小英,衷友泉,江一帆,罗永明.分子印迹聚合反应中功能单体与模板分子间作用力的光谱分析.光谱学与光谱分析,2010,30(8):2211-2214
    [103] F. Augusto, E. Carasek, R. G. C. Silva, S. R. Rivellino, A. D. Batista and E. Martendal. NewSorbents for Extraction and Microextraction Techniques. Journal of Chromatography A,2010,1217(16):2533-2542.
    [104] J. Zachary Hilt, Mark E. Byrne.Configurational biomimesis in drug delivery:molecularimprinting of biologically significant molecules. Advanced Drug Delivery Reviews,2004,56:1599-1620.
    [1] Riccardo Amorati and Gian Franco Pedulli. Do garlic-derived allyl sulfides scavenge peroxylradicals?. Org. Biomol. Chem.,2008,6:1103-1107.
    [2] C. M. Lok and R. Son. Application of Molecularly Imprinted Polymers in Food SampleAnalysis—A Perspective. International Food Research Journal,2009,16(2):127-140.
    [3]祝晓凤,李莉.悬浮聚合法制备L-半胱氨酸分子印迹聚合物微球.新疆医科大学学报,2010,33(3):258-259.
    [4]陈华,郑永军.从大蒜深加工废水中提取大蒜素的方法及用于大蒜素提取的大蒜素吸附树脂.中国专利,ZL200710016014.2,2009-05-27.
    [5] Susanne Striegler. Designing selective sites in templated polymers utilizing coordinativebonds.Journal of Chromatography B,2004,804:183–195.
    [6] Striegler S.Selective discrimination of closely related monosaccharides at physiological pH bya polymeric receptor. Tetrahedron,2001,(57):2349-2354.
    [7]董文国,同明,张敏莲,等.单体对分子印迹聚合物分子识别能力的影响:量子化学计算与实验研究.化工学报,2005,56(11):2131-2136.
    [8]王胜利,毕慧敏,刘妍.采用化计算和预实验的方法优化大黄酚印迹聚合物的合成.计算机与应用化学,2010,27(5):668-672.
    [9]施介华,肖科科,吕园园.α-氯丙酸乙酯对映体与β-环糊精的主客体相互作用.物理化学学报,2009,25(7):1273-1278.
    [10]马娟娟,王新龙,许兴友.不同功能单体制备的S-蔡普生印迹聚合物材料的性能.精细化工,2007,24(2):13-135.
    [11]尹小英,衷友泉,江一帆,罗永明.分子印迹聚合反应中功能单体与模板分子间作用力的光谱分析.光谱学与光谱分析,2010,30(8):2211-2214.
    [12] Bode, B. M. and Gordon, M. S. J. Mol. Graphics and Modeling,1999,16,133-138.
    [13] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert,M.S. Gordon, J.H. Jensen, S. Koseki,N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. GeneralAtomic and Molecular Electronic Structure System. J.Comput.Chem.1993,14:1347-1363.
    [1]贾江滨,许重远,罗景慧,谢立.大蒜中含硫氨基酸研究进展.中草药.2000,31(6):486-470.
    [2]王茜.大蒜有机硫化物及其类似物的心血管保护作用.上海:复旦大学,2009.
    [3]薛猛,崔洁,夏雯,李英,钱令波,叶治国,王会平,夏强.S-烯丙基-L-半胱氨酸对抗离体大鼠心肌缺血/再灌损伤作用的研究.中国应用生理学杂志,2011,27(1):13-17.
    [4]孙园,常军民,陈坚.树脂吸附法回收结晶母液中蒜氨酸的实验研究.石河子大学学报(自然科学版),2009,27(3):324-327.
    [5]黄雪松,宴日安.利用新鲜大蒜生产结晶蒜氨酸.食品科学,2004,25(11):200-203.
    [6] G. Vasapollo, R. Del Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano G.Mele.Molecularly Imprinted Polymers: Present and Future Prospective. International Journalof Molecular Sciences,2011,12(9):5908-5945.
    [7] J. Matsui, K. Fuji-wara and T. Takeuchi. Atrazine-Selective Polymers Prepared by MolecularImprinting of Trialkylmelamines as Dummy Template Species of Atra-zine. AnalyticalChemistry,2000,72(8)1810-1813.
    [8]祝晓凤,李莉.悬浮聚合法制备L-半胱氨酸分子印迹聚合物微球.新疆医科大学学报,2010,33(3):258-259.
    [9] J. Matsui, I. A. Nicholls, T. Takeuchi, K. Mosbach and I. Karube. Metal Ion MediatedRecognition in Molecularly Imprinted Polymers. Analytica Chimica Acta,1996,335(1-2):71-77.
    [10] Susanne Striegler. Designing selective sites in templated polymers utilizing coordinativebonds.Journal of Chromatography B,2004,804:183–195.
    [11]谭天伟.分子印迹技术及应用.北京:化学工业出版社:2010.345-567
    [12] David A. Spivak. Optimization, evaluation, and characterization of molecularly imprintedpolymers. Advanced Drug Delivery Reviews,2005,57:1779–1794。
    [13]赵荣梅,王涛,李新霞,陈坚. HPLC法测定大蒜、蒜氨酸中间体及单体的蒜氨酸含量.药物分析杂志,2008,28(7):1099-1101.
    [14] Yan-Tuan Li, Wei Sun, Zhi-Yong Wu, Yong-Jun Zheng, Cui-Wei Yan. Synthesis, structureand voltammetric studies of copper(II) polymer with DNA interaction: The first1-Dcoordination polymer alternately bridged by oxalate and oxamidate ligands. J. Inorg.Organomet. Polym.,2010,20,586–591.
    [15] Yan-Tuan Li, Chun-Yuan Zhu, Zhi-Yong Wu, Man Jiang, Cui-Wei Yan. Synthesis, crystalstructures and anticancer activities of two decavanadate compounds. Trans. Met. Chem.,2010,35:597–603.
    [16] E. V. Piletska, A. R. Guerreiro, M. J. Whitcombe and S. A. Piletsky.Influence of thePolymerization Conditions on the Performance of Molecularly Imprinted Polymers.Macromolecules,2009,42(14):4921-4928.
    [17] Xiaonan Lu,Barbara A. Rasco, DongHyun Kang,Jamie M.F. Jabal,D. Eric Aston,Michael E.Konkel. Infrared and Raman Spectroscopic Studies of the Antimicrobial Effects of GarlicConcentrates and Diallyl Constituents on Foodborne Pathogens. Anal. Chem.2011,83,4137–4146.
    [18] J. Matsui, I. A. Nicholls, T. Takeuchi, K. Mosbach and I. Karube. Metal Ion MediatedRecognition in Molecularly Imprinted Polymers. Analytica Chimica Acta,1996,335(1-2):71-77.
    [19]刘佑习,童玉华,武利民.用X-射线衍射法测定聚对苯二甲酸乙二醇酯聚对苯二甲酸丁二醇酯共混体系的结晶度.高分子学报,1993,6:723-726
    [20]邴乃慈,田震,陈胜文,李庆华,许振良.SBA215表面S2naproxen分子印迹聚合物微球的合成与分子识别特性.华东理工大学学报(自然科学版),2009,35(4):564-568
    [1] P. Avato, F. Tursi, C. Vitali, V. Miccolis, V. Candido. Allylsulfide constituents of garlic volatileoil as antimicrobial agents. Phytomedicine,2000,7(3):239-243.
    [2]刘玉平,孙宝国,于雷.食用香料二烯丙基三硫和二烯丙基四硫的合成.精细与专用化学品,2007,15(21):24-26.
    [3] Yogeshwer Shukla, Neetu Kalra. Cancer chemoprevention with garlic and its constituents.Cancer Letters,2007,247(2):167-181.
    [4]吕慧,马永建,孙桂菊,杨立刚,王少康.大蒜挥发油提取工的优化研究.食品科学.2009,30(18):88-91.[5] Athanasios C. Kimbaris, Nikolaos G. Siatis, Dimitra J. Daferera,Petros A. Tarantilis, Christos S. Pappas, Moschos G. Polissiou. Comparison of distillation andultrasound-assisted extraction methods for the isolation of sensitive aroma compounds fromgarlic (Allium sativum). Ultrasonics Sonochemistry,2006,13(1):54-60.
    [5]黄诚,尹红,沈吴诚,卜林松.复合溶剂提取大蒜精油的工艺条件研究.食品科学,2009,30(6):89-91
    [6]彭光华,韩月峰,马荣池.大蒜有机硫化物提取条件的优化及其成分的分析.食品科学,2008,29(7):226-230.
    [7] José M. del Valle, Verónica Glatzel, José L. Martínez. Supercritical CO2extraction of allicinfrom garlic flakes: Screening and kinetic studies. Food Research International,2012,45(1):216-224.
    [8]郑屏,盛旋,张祥,胡艳云.天然大蒜油及合成大蒜素的气相色谱-质谱分析.分析化学,2005,33(9):1321-1323.
    [9]陈华,郑永军.从大蒜深加工废水中提取大蒜素的方法及用于大蒜素提取的大蒜素吸附树脂.中国专利,ZL200710016014.2,2009.
    [10]虞琦,徐铁军,宋菊玲.汽油脱硫吸附剂的研究.河南化工,2008,25(12):15-30.
    [11]徐怀浩.载金属离子的介孔碳吸附噻吩类有机硫的研究:[硕士学位论文].青岛:山东科技大学,2010.
    [12]孙小强,孟启,席海涛,姜艳,陈娟.具有脱硫醇作用的聚合物材料.中国专利,CN200510095468.4,2005.
    [13]孙小强,孟启,席海涛,姜艳,王雪.具有脱除硫醇作用的羧酸铜型树脂材料.中国专利,CN200510095467.X,2005.
    [14]黎维勇,宋波.高效液相色谱法测定大蒜素注射液中大蒜素的含量.中国医院药学杂志,2005,25(2):122-123.
    [15]蒋慧,刘斐.高效液相色谱法测定大蒜素注射液中大蒜素的含量.药物鉴定,2005,14(2)43-43.
    [16] Yan-Tuan Li, Wei Sun, Zhi-Yong Wu, Yong-Jun Zheng, Cui-Wei Yan. Synthesis, structureand voltammetric studies of copper(II) polymer with DNA interaction: The first1-Dcoordination polymer alternately bridged by oxalate and oxamidate ligands. J. Inorg.Organomet. Polym.,2010,20,586–591.
    [17]张万举.不对称N,N’-双取代草酰胺化合物与DNA相互作用及抗肿瘤活性研究:[博士学位论文].青岛:中国海洋大学,2009.
    [18]孟启.有机聚合物材料用于烃类脱硫研究:[博士学位论文].南京:南京理工大学,2007.
    [19] J. Matsui, I. A. Nicholls, T. Takeuchi, K. Mosbach and I. Karube. Metal Ion MediatedRecognition in Molecularly Imprinted Polymers. Analytica Chimica Acta,1996,335(1-2):71-77.
    [20] H.B. Sowbhagya, Kaul T. Purnima, Suma P. Florence, A.G. Appu Rao, P. Srinivas. Evaluationof enzyme-assisted extraction on quality of garlic volatile oil. Food Chemistry,2009,113(4):1234-1238.
    [1]张培成.黄酮化学,北京:化学工业出版社,2009.569
    [2]徐筱杰,康文艺.药用天然产物,北京:化学工业出版社,2010.7779
    [3]徐任生.天然产物化学.北京:科学出版社,2004.526568
    [4]唐浩国.黄酮类化合物研究.北京:科学出版社,2005.120
    [5]蒋栋能,郑江.大蒜黄酮的分离及抗内毒素活性的评价.中国临床药理学与治疗学,2004,9(10):1154156
    [6] Shela Gorinstein, Hanna Leontowicz, Maria Leontowicz, Jacek Namiesnik, Kasia Najman,Jerzy Drzewiecki, Milena Cvikrova, Olga Martincova, Elena Katrich, Simon Trakhtenberg.Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic andWhite and Red Onions after Treatment Protocols. J. Agric. Food Chem.2008,56,44184426.
    [7] Zhen-Yu Chen, Cheng Peng, Rui Jiao, Yin Mei Wong, Nan Yang, Yu Huang. Anti-hypertensiveNutraceuticals and Functional Foods. J. Agric. Food Chem.2009,57,44854499.
    [8] Koo Hui Miean; Suhaila Mohamed. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin,and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem.2001.49.310112.
    [9]贺敏强,万金城,孟敏佳,何娟.山奈酚分子印迹聚合物的制备及其性能表征.化学世界,2010,11:670674.
    [10] Yuqing Zhang, Xing Shana, Xiaoquan Gao. Development of a molecularly imprintedmembrane for selective separation of flavonoids. Separation and PurificationTechnology.2011,76:337344.
    [11]潘浪胜,刘敏敏,田红锦,刘跃进.木犀草素分子印迹聚合物的分子识别特性及固相萃取研究.高校化学工程学报.2009,23(2):36364.
    [12]曹杰,赵秀娟,吴坤,张莹,张宇秋.高效液相色谱法同时测定蔬菜水果中5种黄酮类化合物.预防医学情报杂志,2008,24(7):52527.
    [13]覃成箭,姚小敏,吴玉华,黄锁义,韦国锋.大蒜中总黄酮的提取及其含量测定.右江民族医学院学报.2005,27(5):60103.
    [14]范培民,王兵.槲皮素金属配位分子印迹聚合物的识别性能.高等学校化学学报,2009,30(12):25142520。
    [1] Hsieh YC, Wu TZ, Liu DP, et al. Influenza pandemics-past, present and future. Formos MedAssoc,2006,105(1):1-6.
    [2] Flahault A, Vergu E, Boelle PY. Potential for a global dynamic of influenza A (HINI). BMCInfect Dis,2009,9(l):129.
    [3] Sorianov,Gonzalez-Lahoz J.The challenge of the new H1N1influenza A. Med Clin(Barc),2009,133(18):708-709.
    [4] Linde A. Focus on the information around the Pandemic in the evaluation. To send a balancedmessage was “almost impossible. Lakartidningen,2011,108(5):196.
    [5]肖会敏,王四旺,王剑波,谢艳华,缪珊,侯麦芳.流感病毒致病特点及抗流感病毒中药活性成分与部位研究进展.亚太传统医药.2008,4(5):15-17.
    [6] Cheng-Tzu Liu, Hunry Hse, Chong-Kuei Lii, Phi-Sam Chen, Lee-Yan Sheen.Effects of garlicoil and diallyl trisulfide on glycemic control in diabetic rats. European Journal ofPharmacology,2005,516(2):165-173.
    [7] Yogeshwer Shukla, Neetu Kalra.Cancer chemoprevention with garlic and its constituents.Cancer Letters,2007,247(2):167-181
    [8] Suby Oommen, Ruby John Anto, Gopal Srinivas, Devarajan Karunagaran.Allicin (from garlic)induces caspase-mediated apoptosis in cancer cells. European Journal of Pharmacology,2004,485(1):97-103
    [9] lker Durak, Erdal Y lmaz, Erdin Devrim, Hakk Perk, Murat Ka maz.Consumption ofaqueous garlic extract leads to significant improvement in patients with benign prostatehyperplasia and prostate cancer. Nutrition Research,2003,23(2):199-204
    [10] P.M. Chandrashekar, Y.P. Venkatesh. Identification of the protein components displayingimmunomodulatory activity in aged garlic extract. Journal of Ethnopharmacology,2009,124(3):384-390
    [11] I.M. Bakri, C.W.I. Douglas. Inhibitory effect of garlic extract on oral bacteria. Archives ofOral Biology,2005,50(7):645-651.
    [12] Seyed Mehdi Razavi Rohani, Mehran Moradi, Tooraj Mehdizadeh, Seyyed SiavashSaei-Dehkordi, Mansel W. Griffiths.The effect of nisin and garlic (Allium sativum L.)essential oil separately and in combination on the growth of Listeria monocytogenes. LWT-Food Science and Technology,2011,44(10):2260-2265
    [13] Ji Eun Kim, Nan Hee Choi, Sun Chul Kang. Anti-listerial properties of garlic shoot juice atgrowth and morphology of Listeria monocytogenes. Food Control,2007,18(10):1198-1203
    [14] Dong Wan Sohn, Chang Hee Han, Yun Seok Jung, Sung In Kim, Sae Woong Kim,Yong-Hyun Cho. Anti-inflammatory and antimicrobial effects of garlic and synergistic effectbetween garlic and ciprofloxacin in a chronic bacterial prostatitis rat model. InternationalJournal of Antimicrobial Agents,2009,34(3):215-219
    [15] N. Benkeblia. Antimicrobial activity of essential oil extracts of various onions (Allium cepa)and garlic (Allium sativum). LWT-Food Science and Technology,2004,37(2):263-268
    [16]蒋栋能,郑江.大蒜黄酮的分离及抗内毒素活性的评价.中国临床药理学与治疗学.2004;9(10):1154–1156.
    [17]黎霆.大蒜书.南京:江苏文艺出版社,2010.25-30.
    [18]陈琛.槲皮素与奥司他韦对H1N1病毒感染细胞中TLR7信号通路的影响:[硕士学位论文],广东:暨南大学,2011.
    [19]杨淑珍.槲皮素类黄酮防治流感病毒作用及免疫机制研究:[硕士学位论文],广东:广东中医药大学,2008.
    [20]王海娣,杜冠华,刘艾林.天然黄酮类化合物的神经氨酸酶抑制活性评价.中国新药杂志,2009,18(15):1435-1439.
    [1]方立,陈瑶,张奕华.抗阿尔茨海默病的胆碱酯酶抑制剂研究进展.药学进展,2009,33(7):289-296.
    [2]赵丽,徐淑萍,张蕾,宋波,李宗阳,潘瑞乐.杨梅素及类似物乙酰胆碱酯酶抑制和抗氧化活性研究.食品工业科技,2012,33(1):289-296.
    [3] Kasa P, Pakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol,1997,52:511-535.
    [4] Kitamura Y, Kakimura J, Taniguchi T. Antiparkinsonian drugs and their neuro protectiveeffects. Biological&pharmaceutical bulletin.2002,25(3):284-290.
    [5] Dekosky S T, Scheff S W. Synapse loss in frontal cortex biopsiesin Alzheimer’s disease:correlation with cognitive severity [J]. AnnNeurol,1990,27:457-464.
    [6] Mandel S, Grunblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson’s disease: anupdate on progress. CNS drugs,2003,17(10):729-762.
    [7] Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res,2004,50(4):433-440.
    [8] Da H S, Jun H W, Hui M G, et al. Protective effect of hopeahainol A, a novelacetylcholinesterase inhibitor,on hydrogen peroxide-induced injury in PC12cells.Environmental Toxicology and Pharmacology,2009(28):30-36.
    [9]杨杰,钱亦华,胡海涛,等.维生素E抑制痴呆模型大鼠海马结构淀粉样前体蛋白表达的实验研究.中国老年学杂志,1999,19(4):234.
    [10] Riccardo Amorati and Gian Franco Pedulli. Do garlic-derived allyl sulfides scavenge peroxylradicals. Org. Biomol. Chem.,2008,6:1103-1107
    [11] Ute Münchberg, Awais Anwar, Susanne Mecklenburg Claus Jacob.Polysulfides asbiologically active ingredients of garlic. Org. Biomol. Chem.,2007,5:1505-1518
    [12] José Pedraza-Chaverrí, Omar N. Medina-Campos, Rosaura ávila-Lombardo, Alma BereniceZú iga-Bustos, Marisol Orozco-Ibarra. Reactive oxygen species scavenging capacity ofdifferent cooked garlic preparations. Life Sciences.2006,78(7):761-770
    [13] José Pedraza-Chaverrí, Omar Noel Medina-Campos, Sabina Segoviano-Murillo. Effect ofheating on peroxynitrite scavenging capacity of garlic. Food and Chemical Toxicology,2007:,45(4)622-627
    [14] Neelima B. Chauhan.Effect of aged garlic extract on APP processing and tau phosphorylationin Alzheimer's transgenic model Tg2576. Journal of Ethnopharmacology.2006,108(3):385-394
    [15] Yoshihisa Ito, Yasuhiro Kosuge, Taeko Sakikubo, Kayo Horie, Natsue Ishikawa, NaoyaObokata, Eiko Yokoyama, Kumiko Yamashina, Machiko Yamamoto, Hiroshi Saito, MotokiArakawa, Kumiko Ishige. Protective effect of S-allyl-l-cysteine, a garlic compound, onamyloid β-protein-induced cell death in nerve growth factor-differentiated PC12cells.Neuroscience Research,2003,46(1):119-125
    [16] Shih-Jei Tsai, C. Perry Chiu,Hui-Ting Yang,Mei-Chin Yin. s-Allyl Cysteine, s-Ethyl Cysteine,and s-Propyl Cysteine Alleviate β-Amyloid, Glycative, and Oxidative Injury in Brain of MiceTreated by D-Galactose. J. Agric. Food Chem,2011,59,6319–6326.
    [17] Hayate Javed, Mohd. Moshahid Khan, Andleeb Khan, Kumar Vaibhav, Ajmal Ahmad,Gulrana Khuwaja, Md. Ejaz Ahmed, Syed Shadab Raza, Mohammad Ashafaq, RizwanaTabassum, M. Saeed Siddiqui, O.M. El-Agnaf, Mohammed M. Safhi, Fakhrul Islam. S-allylcysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration inmouse model of streptozotocin-induced experimental dementia of Alzheimer's type. BrainResearch,2011,1389:128-137.
    [16] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature,1958,181:1199-1200.
    [17] Xu SH, Hang H. A simple method for the screening of free radical scavenger. Chin TraditHerb Drugs,2000,31(2):96-97.
    [18]王笑晴.基于DPPH自由基清除能力的姜黄提取物抗氧化活性评价.药物评价研究,2011,34(5):360-363.
    [19]黄锋,林黎琳,胡娟娟,刘艾林,肖培根,杜冠华.黄花倒水莲抗氧化活性研究.中国天然药物,2006,4(4):291-294.
    [20]高梅,刘艾林,杜冠华.丁酰胆碱酯酶抑制剂的高通量筛选.中国新药杂志,2009,18(12):1145-1148
    [21]孙存普.自由基生物学导论.合肥:中国科技大学出版社,1999.
    [22] SUN M K, KUBOTA K, KOBAYASHI A. Antioxidative activity of sulfur-containing flavorcompounds in garlic. Bioscience, Biotechnology, and Biochemistry,1998,61(9):1482-1485.
    [23] Fanelli SL, Castro GD,de-Toranzo EG. Mechanisms of the preventive properties of somegarlic components in the carbon tetrachloride-promoted oxidative stress.Diallyl sulfide;diallyldisulfide;allyl mercaptan and allyl methyl sulfide. Res Commun Mol PatholPharmacol,1998,102(2):163-174.
    [1]马卡姆.黄酮类化合物结构鉴定技术.北京:科学出版社.1990,253-261
    [2]姚新生.天然药物化学.北京:人民卫生出版社.1997,210-231
    [3] Leighton, T.; Ginther, C. Quercetin and its glycosides in Allium vegetables. AmericanChemical Society. Washington,DC.1992.165-231
    [4] Bilyk, A.; Sapers, G. M. Distribution of Quercetin and Kaempferol in lettuce, kale, chive,garlic chive, leek, horseradish, red radish, and red cabbage tissues. J.Agric. Food Chem.1985,33:226-228.
    [5]张泽英,陆艳.大蒜黄酮的提取和测定研究进展.科技创业月刊.2008.9:80-81.
    [6] Koo Hui Miean; Suhaila Mohamed. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin,and Apigenin) Content of Edible Tropical Plants.J. Agric. Food Chem.2001.49.3106-3112.
    [7] Shela Gorinstein;Hanna Leontowicz.Comparison of the Main Bioactive Compounds andAntioxidant Activities in Garlic and White and Red Onions after Treatment Protocols. J.Agric. Food Chem.2008,56,4418–4426.
    [8]蒋栋能,郑江.大蒜黄酮的分离及抗内毒素活性的评价.中国临床药理学与治疗学.2004.(10):1154-1156.
    [9] J. K. Barton. Metals and DNA: molecular left-handed complements. Science.1986.233:727-734.
    [10]张万举.不对称N,N’-双取代草酰胺化合物与DNA相互作用及抗肿瘤活性研究:[博士学位论文].青岛:中国海洋大学,2009.
    [11] P.B.Kandagal, S.Ashoka. Study of the interaction between doxepin and human serum albuminby speetroseopic methods. Photoehem. Photobiol.2006. A179:161-166.
    [12] R.F.pastemack,E.J.Gibbs,J.Villatmaca. Inieractions of prophyrins with nucleic acids,J.Bioehem.1983.22:2406-2414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700