用户名: 密码: 验证码:
碱性内配碳团块高温自还原制备金属铁粒的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接还原铁是电炉炼钢的重要铁源之一。目前,工业化生产的直接还原铁,无论是气基法还是煤基法,其产品是含有酸性脉石的海绵铁。直接还原铁中铁与脉石的分离最终在炼钢炉中完成。本课题研究的直接还原技术命名为Wcomet直接还原法,是采用碱性内配煤团块在高温下自还原直接制备金属铁粒的方法。通过提高还原温度,被还原出来的海绵铁在高温下渗碳,渗碳后的金属铁熔点下降,并在界面张力作用下聚集成大颗粒金属铁;由于渣相碱度设计在CaO-Al2O3-SiO_2-MgO系的正硅酸钙(2CaO SiO_2)相区内,通过高温下的固相反应形成以2CaO SiO_2为主要矿物的渣相,正硅酸钙在冷却过程中发生多晶转变,体积膨胀而粉化,实现渣铁物理分离。
     本文主要研究碱性内配煤团块高温自还原过程中金属铁的聚集机理及添加剂对金属铁在还原温度下聚集行为的影响;研究还原产物渣铁分离机理及其影响因素;研究还原过程脱硫和脱磷规律及钾、钠、铅和锌的去除规律。
     1)通过共聚焦高温激光显微镜可观察到铁相的聚集过程,发现:渣相碱度低时,渣相完全熔化粘附在还原的铁粒上,渣铁分离效果较差,铁的聚集效果差。随着渣相碱度增加,还原产物孔隙率较大,有利于还原气体的扩散,加速了还原反应。高温还原实验表明,渣相碱度2.0时渣铁的分离效果较好,只需筛分就可以使渣铁完全分离;渣相碱度2.4时渣铁的分离很好,但铁粒细小。这是由于渣相碱度高时,渣量增加,铁的扩散距离增大,不利于铁的聚集成粒,因此合适的渣相碱度应为2.0~2.4。
     2)内配碳团块的自还原过程包括了气-固之间,固-固之间,气-液之间和固-液之间的还原反应。利用STA449C-QMS403C热分析质谱联合分析仪对内配碳团块直接还原过程进行同步热分析。将内配碳团块升温到1330℃后保温15min,得到还原过程的DTG和DSC曲线,以及气体溢出的MS曲线。由还原过程DTG,DSC曲线及DTA曲线可知,在还原过程中既有直接还原也有间接还原发生,并且有液态铁生成。
     3)内配碳团块中添加CaF_2时可提高渣铁间的界面张力,共聚焦高温激光显微镜观察表明,此时铁液和渣之间是不浸润的,从而有利于金属铁的聚集长大。加入适量CaF_2后,也有利于2CaO·SiO_2的形成,能显著促进渣铁分离。
     4)由于发生铁的渗碳反应,使铁的熔点降低,因此在还原过程中有液态铁生成,并且聚集成球。对最后的金属铁粒进行分析研究,可知铁粒中的碳含量为2.0%~4.5%之间。5)S在团块的还原过程中一部分通过气化脱除,一部分以CaS形式进入渣中,随着渣铁分离而去除。由STA449C-QMS403C热分析质谱联合分析仪得到的内配碳球团在还原过程溢出含S气体MS曲线可知,在还原过程中有CS_2,S_2和SO_2生成,用CS-8800型高频红外碳硫分析仪进行分析可知,铁粒中的S含量最低可为0.008%,总脱硫率在97%以上,其中气化脱硫率为9%-31%。脱硫反应是在还原气氛下进行的,所以球团内的气相还原产物CO的分压对脱硫起到了很大的作用。内配碳比增加时C的气化反应增加,从而有利于脱硫。但内配碳过大时,内配碳煤粉带入的S量增大,可能引起铁粒的硫含量增加。6)P在还原过程中一部分气化脱除,一部分进入渣中。由STA449C-QMS403C热分析质谱联合分析仪得到的内配碳球团在还原过程溢出含P气体MS曲线可知,在还原过程中有P、P_2和P_4气体产生。铁粒中的磷含量一般在0.12%~0.14%之间,而渣中的磷含量在0.05%~0.09%,说明被还原出来的磷主要被金属铁吸收。总脱磷率在27%~37%之间,气化脱磷率小于10%,通过渣相去除的磷是没被还原的部分与氧化钙形成磷酸盐。7)经过XRD分析可知,团块中的K元素以K_2O,KO_2和KFe_2O_4的形式存在,Na以Na_3PO_4和Na_2O的形式存在,由STA449C-QMS403C热分析质谱联合分析仪得到的内配碳团块在还原过程溢出气体K的MS曲线可知,K被气化脱除。在化学分析时,铁中检测不到K和Na的存在,认为它们的总脱除率达到100%。部分K进入渣中,K的气化脱除率可达到90%左右;而Na主要依靠渣相脱除,气化脱Na率远低于气化脱K率。8)Zn在团块中以蒸气的形态被还原出来。由于脱Zn反应均为吸热反应,因此温度升高有利于气化脱Zn。通过STA449C-QMS403C热分析质谱联合分析仪分析发现,300℃时,就有Zn蒸气出现,说明原料(钢铁厂二次粉尘)中本身带有金属Zn存在。由动力学研究可知:反应的限制性环节为Zn蒸气的向外扩散,随着时间的推移,扩散量增大,增加了Zn蒸气的脱除率。铁粒中的Zn含量约为0.001%左右,Zn脱除率达到99%。还原过程中,约90%的Zn进入渣中,约10%的Zn随气体排出团块。9)经过XRD分析发现Pb以Pb_3O_4和PbSO_3存在,由于团块内部为还原性气氛,所以Pb被还原,且为吸热反应。由热力学分析,温度升高有利于脱Pb,由动力学分析可知,外扩散为Pb脱除反应的限制性环节,随着还原反应的进行,Pb以蒸气的形式去除,脱Pb率大于90%。
     10)利用Wcomet直接还原工艺,以二次粉尘为原料,可生产直径为5mm~20mm大小的金属铁颗粒,且产品中不含脉石。铁的收得率97%以上;硫含量平均在0.01%左右;磷含量在0.12%~0.14%之间;脱锌率大于99%,脱铅率达到90%。
     本研究工作得到国家自然科学基金—宝钢钢铁联合基金(50774113)和国家自然科学基金青年基金(50804037)的资助。
DRI is one of the important sourses of EAF steelmaking. At present, the DRI produced bycommercial process, no matter through gas-based or coal-based direct reduction process, whoseproducts are sponge iron with acide gangue. The seperation of iron and gangue are complete inEAF finaly. The direct reduction technology researched in this project was named Wcomet directreduction process, which is managed by means of producing iron nuggets by self-reduction ofbacisity coal mixed briquettes at high temperature. Through raising the reduction temperature,carburization reaction of the reducing sponge iron would be developed, and the melting point ofwhich decreased after carburization, and it would aggregated to big iron nuggets by the functionof interfacial tension; because the slag bacisity is designed in2CaO×SiO2phase area of CaO-Al2O3-SiO2-MgO phase diagram, the slag phase whose main mineral is2CaO×SiO2formed bysolid-phase reaction at high temperature, and the polymorphic transformation would occurred,and pulverized due to the volume expansion, and then the seperation of the slag and iron wouldbe achieved.
     This paper mainly research the aggregation machanism of iron nuggets in the process ofself-reduction of bacisity coal mixed briquettes at high temperature and the effect of additions tothe aggregation behavour of iron nuggets at reduction temperature; and research the iron and slagseperation machnanism of reduced products and its influencing factors; besides, desulfurizationand dephosphorization pattern and the removal pattern of K, Na, Pb, Zn are also studied in thispaper.
     (1) The aggregation process of iron phase can be seen through laser scanning confocalmicroscope, it reveals that: Slag phase has completely melted and adhered to the reduced nuggetswhen basicity is lower, which results in the bad separation of slag and iron and poor aggregationof iron nuggets. With the increasing of slag bacisity, the porosity of the reduced products ishigher, which is benefit to the diffusion of reducing gas and accelerate the reducing reaction. Theseperation of the iron and slag is very well when slag basicity was2.0, iron and slag can beseperated completely through screening. The seperation of iron and slag also very well whenbasicity is2.4, but leading to small iron nuggets. Which is because that when the slag basicity ishigher, the amount of slag is increased and the diffusion length is enlarged, and this is bad for theaggregation of iron, therefore, the appropriate basicity ranged from2.0to2.4?
     (2) The whole reduction process consists of gas-solid reaction, solid-solid reaction, gas-liquid reaction, solid-liquid reaction, the thermal analysis study on the direct reduction of coalmixed briquettes in favour of STA449C-QMS403C Thermal analysis mass spectrometry combined analyzer. Raising the temperature of coal mixed briquettes to1330℃and keepconstant for15min,
     DSC line, DTA line and MS line of the outflowed gas can be obtained in the reductionprocess. From the above lines, we can find that not only direct reduction but also indirectreduction occurred in the reduction process, and with the liquid iron generating.
     (3) The surface tension of slag and iron would be increased when adding CaF_2to the coalmixed briquettes, it can observe through laser scanning confocal microscope, the iron and slag isnot infiltrate at the moment, thus is beneficial to the aggregation of iron. In addition, addingdefined amount of CaF_2is good for the form of2CaO SiO2and remarkablely promote theseperation of iron and slag.
     (4) The melting point of iron decreased due to the carburization reaction of iron, thereforethe liquid iron is generate and aggregate into balls in the reduction process. Analysing the finnaliron nuggets, we can find that the carbon content in the rion nuggets ranged from2.0%to4.5%.
     (5) Parts of the S in the briquette is removed by the means of gasification, and the otherparts is removed in the form of CaS and achieved with the seperation of iron and slag. Analysingthe MS line of S gas obtained through STA449C-QMS403C Thermal analysis massspectrometry combined analyzer, it can find that CS_2,S_2and SO_2generated in the reductionprocess. Analysing the samples with CS-800High Frequency Infrared Carbon and SulfurAnalyzer, S in the iron can be lowest to0.008%, total desulfurization rate is above97%, amongwhich gasification desulphurization rate is9%~31%. The desulphurization reaction is conductedin the reduction atmosphere, so the partial pressure of gas phase reduction products CO plays animportant role to desulphurization. The gasification reaction of C increased with the C/O molarratio increasing, therefore which is in favour of desulphurization. However, when C/O molarratio oversized, S in the briquette is increasing with adding excessive coal; this may lead toincreasing of S in iron nuggets.
     (6) Parts of P in the nuggets is removed by the means of gasification, and the other partsgets into slag. Analysing the MS line of P gas obtained through STA449C-QMS403C Thermalanalysis mass spectrometry combined analyzer, it can find that P,P2and P4generated in thereduction process. In general, P in the iron is0.12%~0.14%, while P in slag is0.05%~0.09%,which illustrate that the reduced P is mainly absorbed by iron. The total dephosphorization rate is27%~37%, gasification dephosphorization rate is less than10%, the unreduced parts of P isremoved by the means of slag in the form of generating phosphate with calcium oxide.
     (7) It shows that K element in the briquettes exists in the form of K_2O, KO_2and KFe2O4andNa exists in the forms of Na_3PO_4and Na_2O by XRD analysis, analysing the MS line of K gas obtained through STA449C-QMS403C Thermal analysis mass spectrometry combined analyzer,it reveals that K is removed by gasification. In the chemical analysis the existence of K and Nacan not be detected in iron, making us think their total removal rate reaches100%. Part of Kenter into slag, the gasification desulphurization rate of K is nearly80%. But the removal of Namainly relys on the slag phase, the removal rate of Na is far lower than that of K rate bygasification.
     (8) Zn is reducted in briquettes in the form of steam. The reaction of Zn is endothermicreaction, so rising temperature is good to the removal of Zn by gasification. Through theSTA449C-QMS403C thermal analysis mass spectrometry combined analyzer analysis found that,Zn steam appeasr at300℃, which shows that metal Zn exists in raw materials (steel secondarydust). The dynamics research indicated that the diffuse outwards of Zn steam is the restrictivestep, with the pass of time, the amount of diffuse increases and the removal rate of Zn steamincreases. The content of Zn is about0.001%in iron nuggets, the removal rate of Zn reache99%,about90%of Zn enter into slag during reduction process, about10%of Zn are excluded frombriquettesin with gas.
     (9) It finds that Pb exists in the form of Pb_3O_4and PbSO_3by XRD analysis, becausebriquettes in internal is reducing atmosphere, so Pb is reduced and it is endothermic reaction. Bythermodynamic analysis, temperature is good to the removal of Pb, by the dynamics analysis, wecan conclude that the diffuse outwards of Zn steam is the restrictive step, with the reductivereaction going, Pb is removed in the form of steam, the removal rate of Pb is more than90%.
     (10) It can produce iron particles of5~20mm in diameter by using WCOMET directreduction process with secondary dust as raw material and it does not contain gangue. The yieldof iron is more than97%; sulfur content is0.01%on average and P content is between0.12%~0.14%; the removal rate of Zn is more than99%, the removal rate of Pb reaches90%.
     The author gratefully acknowledges the financial support for this work from NationalNatural Science Foundation of China and Baosteel Co.Ltd.(No.50774113).and National NaturalScience Foundation of China.(No.50804037).
引文
[1]易操,朱荣,尹振江等.基于30t转炉的COMI炼钢工艺实验研究[J],过程工程学报,2009,9(1):222
    [2]刘坤伦.直接还原炼铁的现状及发展趋势[J],攀钢技术,2002,(3):5
    [3]钢铁行业分析报告.上海钢铁网. http://www.smm.cn/
    [4]陈宏. HYL海面铁生产技术[J],钢铁,1990,5(11):64
    [5]张海峰.高碱度内配碳团块高温直接还原制备铁粒技术[D],武汉:武汉科技大学,2006.
    [6]杨叠.煤基直接还原回收二次含铁粉尘工艺研究[D],武汉:武汉科技大学,2010.
    [7]刘坤伦.直接还原炼铁的现状及发展趋势[J],攀钢技术,2002,25(3):5.
    [8]许晓杰,包向军,赵鹏.我国煤基直接还原铁发展现状及前景[J],第七届中国钢铁年会论文集(2009):1315
    [9]高文星,董凌燕,陈登福,温良英.煤基直接还原及转底炉工艺发展现状[J].矿冶,2008,17(2):68
    [10] I.Kabayashi, Y. Tanigaki and A. Uragami. A new process to produce iron directly from fine oil and coal[J], I&SM,2001Sep:19.
    [11] O.Tsuge. Successful iron nuggets production at ITmk3pilotplant, Ironmaking Proceedings,2002,511
    [12] Y.Sawa. New coal-based process to produce high quality DRI for the EAF, ISIJ Int.2001, Supplement,17.
    [13]段东平.转底炉直接还原新工艺的实验室研究[J],全国直接还原铁生产及应用学术交流会论文集,1999.10,192.
    [14] Degel R, Redsmelt Alternative ironmaking from Demag, Steel Times International, May1999,18(2):43
    [15] DegelR, Fontana P. LehmkuhlerH. J. A new generation of rotary hearth furnace for coal based DRIproduction, Stahl and eisen,2000,120(2):33
    [16]沙永志.王凤岐. FASTMET工艺评述[J],钢铁研究学报,1996,8(3):56.
    [17] Hoffmange, Harada.A Status Report on FASTMET Proess from the Kakogawa Demonstration Plant. Ironand Steelmaker,1997,24(5):51.
    [18]周强.直接还原新技术[J].烧结球团.1999,24(1):24.
    [19] Hoffmange, Harada.A Status Report on FASTMET Proess From the Kakogawa Demonstration Plant. Ironand Steelmaker,1997,24(5):51
    [20] Rene Munnix, Jean Borlee Didier Steyls, etc. COMET-A new coal-based process for the Production ofDRI.MPT international,1997,(2):50.
    [21] Jean Borlee, Didier Steylus, Rene Munnix. SCALE-UP OF THE COME T DIRECT REDUCTIONPROCESS.ISS Technical Paper.
    [22于青.日本钢铁巨头采用新技术应对资源危机[N].人民网, http://www.people.com.cn/.2010-3-3.
    [23]武颖.神户制钢:将拆资1,000亿日圆在越南建造钢厂.世华财讯,2010-4-2.
    [24]梁文阁.对烧煤加热隧道窑生产炼钢用直接还原铁在技术上存在的问题及改进意见.全国直接还原技术交流会会议文集[J],中国金属学会(内部资料)1996.6(1):173.
    [25]梁文阁.我国隧道窑直接还原铁生产现状及发展[J].会议资料:98‘全国直接还原铁生产和应用学术交流会.1998.12.天津.
    [26]邬士英徐南平等.Hoganas直接还原法在我国的状况.烧结球团[J].1996,21(1):36.
    [27]邬士英徐南平等.我国改进型DRI隧道窑的设计研究[J]‘烧结球团.1997,22(6):P24.
    [28]邬士英徐南平等.隧道窑直接还原工艺的节能途径.炼铁.1998,17(1):46.
    [29]王祥森.用铁鳞生产炼钢用直接还原铁的技术报告.全国直接还原技术交流会会议文集[J],中国金属学会(内部资料)1996.6(1):159.
    [30]李森蓉李品.武钢直接还原铁的生产与发展.全国直接还原技术交流会会议文集[J],中国金属学会(内部资料)1996.6(1):165.
    [31]李铁顺. ASH-A海绵铁煤基直接还原技术.全国直接还原技术交流会会议文集[J],中国金属.1999,10(1):124.
    [32]秦民生.非高炉炼铁[M].冶金工业出版社,北京,1988.
    [33] XUE Zheng-liang,YOU Jin-zhou,ZHOU Guo-fan.Study on direct reduction characteristiecs of iron orecoal mixed pellets.J.Iron and Steel Res.,Int,2000,7(2):6,
    [34]周渝生,杨天均.含碳球团的冶金特性.中国金属学会第五届冶金过程与反应工程动力学学术会议论文集,1991,(10):74.
    [35]汪琦.铁矿含碳球团技术[M].冶金工业出版社,北京,2005.
    [36] Grant R T, Pargeter J K, Mac Dougall J A. The inmetco dri process for waste oxides and iron ores.M P T,1983,(4):20.
    [37] J.K.Pargeter, J.A.Macdongall et al.Ironmaking using the inmetco process and related technologies.55thIronmaking Proceeding Conference,1996,6(1:275.
    [38] Sajal Rumar DEY, Biswanath JANA and Amitava BASUMALLICK.Kinetics and reductioncharacteristics of hematite-noncoking coal mixed pellets under nitrogen gas atmosphere.ISIJ Int,1993,33(7):735.
    [39] Winston L. Tennies, James A. Lepinski, John T.Kopfle.The midrex fastmet process a simple, economicironmakong option.Economic Ironmaking Option, MPT,1991,9(2):36.
    [40] Yang X M, Wang D.B.et al.The effect of coal kinds on reduction speed of iron ore coal mixed pellets.Ironand Steel Research Journal,1997,9(20):1.
    [41] Hoffmange, Hatada.A status report on fastmet process from the Kakogawa demonstration plant. Iron andSteelmaker,1997,24(5):51.
    [42] O.Tsuge.Successful iron nuggets production at itmk3pilot plant.Ironmaking Proceeding, pages511,2002.
    [43] Rene Munnix, Jean B orlee Didier Steyls.Comet-a new coal-based process for the production of dri.MPTinternational,1997,(2):50,
    [44] I.Kobatashi.Diect ironmaking process using fine ore and coal.Asia Steel,2000, B:132
    [45] I.Kobayashi.A new process to produced iron directly feom fine ore and coal.Iron and Steel maker,2001,9(2):19.
    [46]王东彦,陈伟庆等.钢铁厂含锌铅粉尘配碳球团的直接还原工艺[J].北京科技大学学报.1997,19(2):4.
    [47]杜挺,杜昆.含谈球团-铁浴熔融还原法关键技术的应用基础研究[J].金属学报.1997,33(7):,7.
    [48]段东平等.硫在含谈球团内的转化行为[J].钢铁研究学报:.2005,17(5):10.
    [49]薛正良,周利刚,张海峰等.一种用铁矿粉和煤粉直接制备金属铁粒的新工艺[J].武汉科技大学学报:自然科学版,2008,31(5):453.
    [50]张海峰,薛正良,周继程等.内配煤团块直接还原法制备铁粒技术研究[J].武汉科技大学学报:自然科学版,2007,30(2):125.
    [51] XUE Zheng-liang, YOU Yin-zhou, ZHOU Guo-fan. Study on direct reduction characteristiecs of iron orecoal mixed pellets. J. Iron and Steel Res.Int,2000,7(2):6.
    [52]朱久发.国外钢铁公司废物再利用与处理技术发展动向[J].世界金属导报,2007,(8):21
    [53]陈砚雄,冯万静.钢铁企业粉尘的综合处理与利用[J].烧结球团,2005,30(5):42.
    [54]苏允隆,金俊,王桂龙,尹明东.马钢炼钢污泥直接配入烧结混合料系统的研发及用[J].中国冶金,2004,79(6):18.
    [55]朱贺民,熊德怀.马钢炼钢炼铁污泥的循环利用[J].钢铁研究,2009,37(5):37.
    [56]田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005,30(2):56,.
    [57]郝素菊,蒋武锋,方觉.我国竖炉球团生产技术进步[J].钢铁,2002,37(12):69.
    [58]付丽娜,亢立明.竖炉球团配加炼钢污泥的研究及实践[J].烧结球团,2001,16(6):16.
    [59]贺建峰.济钢炼钢炼铁污泥的处理和应用[J].钢铁,2003,38(5):57.
    [60]史占彪编著.非高炉炼铁学[M].沈阳:东北工学院出版社,1991.3.
    [61]冶金部直接还原技术开发中心中国金属学会非高炉炼铁学术委员会.第三届直接还原技术交流会会议纪要.中国金属学会全国直接还原技术交流会会议文集.1996.6(1):.2
    [62]魏山.直接还原技术发展现状[J].世界金属导报.1998.12.
    [63]游锦洲.新煤基直接还原理论与工艺研究[J]东北大学1999.9.
    [64] Qin M. S... Ironmaking without Blast Furnace, Beijing: Press of Metallurgical Industry,1988.12(2):20.
    [65]徐萌.转底炉煤基热风炉熔融炼铁工艺的基础性研究[D].北京:北京科技大学,2006.
    [66] Hoffmange, Hatada.A status report on fastmet process from the Kakogawa demonstration plant. Iron andSteelmaker,1997,24(5):51.
    [67]徐萌.转底炉煤基热风炉熔融炼铁工艺的基础性研究[D].北京:北京科技大学,2006.
    [68] Jander W et al, Allgem Chem.1927(163):1
    [69]汪琦.铁矿含碳球团技术[M].冶金工业出版社:2005,84.
    [70]张海峰,薛正良,周继程等.内配煤团块直接还原法制备铁粒技术研究[J].武汉科技大学学报:自然科学版,2007,30(2):125.
    [71] Yang X M, Wang D.B.et al.The effect of coal kinds on reduction speed of iron ore coal mixed pellets.Ironand Steel Research Journal,1997,9(20):1.
    [72]张海峰,薛正良,周继程等.内配煤团块直接还原法制备铁粒技术研究[J].武汉科技大学学报:自然科学版,2007,30(2):125.
    [73] W. Jander and Z.Anorg.Allgem.Chem,1927,163(1-2):1.
    [74] Yang Tianjum, et al.Iron ore briquting containing carbon.Ironmaking and steelmaking,1998,(3):22.
    [75]黄典冰,杨学民,杨天均,孔令坛.含碳球团还原过程动力学及模型[J].金属学报,1996,32(6):629.
    [76]黄典冰,孔令坛.内配碳赤铁矿球团反应动力学及其模型[J].钢铁,1995,30(11):1.
    [77]黄希祜.钢铁冶金原理[M].冶金工业出版社,书号:978-7-5024-2861-7,北京,2002.
    [78]牛永胜,马永磊,李惠朝,张美焦.含碳球团配碳比的实验研究[J],河北冶金,2001.
    [79]牛永胜,马永磊,李惠朝,张美焦.含碳球团配碳比的实验研究[J].河北冶金,2001,122(2):9.
    [80]黄典冰,孔令坛.内配碳赤铁矿球团反应动力学及其模型[J].钢铁,1995,30(11):1.
    [81] Yoshiaki Iguchi, Satoshi Endo. Reactions, coalescence of reduced iron particles, and liberation of carbonparticles in carbon composite iron ore pellets. ISIJ International,2004,44(12):1999.
    [82]康岳华,含碳球团直接还原的实验研究.学位论文[D].北京:北京科技大学,1998.
    [83]黄希祜.钢铁冶金原理[M].冶金工业出版社,书号:978-7-5024-2861-7,北京,2002.
    [84]王东彦陈伟庆等.钢铁厂含锌铅粉尘配碳球团的直接还原工艺[J].北京科技大学学报.1997,19(2):130.
    [85]付丽娜,亢立明.竖炉球团配加炼钢污泥的研究及实践[J].烧结球团,2001,16,(6):16.
    [86]刘松利,白层光,胡途等.钒钛铁精矿内配碳球团直接还原的动力学[J].钢铁研究学报,2011,23(4):5.
    [87]张海峰,薛正良,周继程等.内配煤团块直接还原法制备铁粒技术研究[J].武汉科技大学学报:自然科学版,2007,30(2):125.
    [88]柏凌,张建良,郭豪,张雪松,张曦东.高炉内碱金属的富集循环[J].钢铁研究学报.2008,20(9):5
    [89]李明.铅,锌,对高炉炉料性能的影响及含碱炉渣热力学性质的研究[D].河北理工大学,2007.
    [90] Cui PENG, Fuli ZHANG, Huifang LI and Zhancheng GUO. Removal behavior of Zn, Pb, K and Na fromcold bonded briquettes of metallurgical dust in simulated rhf. ISIJ International,2009,49(12):1874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700