用户名: 密码: 验证码:
自由流电泳进样技术及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由流电泳(Free-Flow Electrophoresis, FFE)是一种兼具制备和分析功能的纯液相电泳,具有反应过程可控、条件温和、回收率较高、分辨率良好、生物活性保持完好且应用广泛等优点。FFE发展至今,主要的研究重点和难点是如何在缩窄样品带宽,改善分辨率的同时增加通量。目前的解决方法主要是:(1)减小样品的初始带宽;(2)改变FFE的运行模式(如间断式FFE的引入);(3)使用聚焦的方式(如IEF)。但是相关的研究却存在一些问题:(1)减小样品的初始带宽会导致通量的损失,使FFE失去制备的意义;(2)至今没有阐明间断式FFE模式与连续式FFE模式相比能否在相同通量条件下具有更好的分辨率;(3)聚焦不仅需要大量的两性电解质,使得分离制备成本大幅上涨,而且两性物质(如蛋白质)在聚焦位置(即等电点处)溶解度大幅下降,使样品易损失。基于前两个问题,本文做了一些样品带宽控制方面的初步研究。
     在开展实验之前,我们对已经搭建的重力自平衡-自由流电泳装置做了一系列改进,包括:(1)更换自平衡收集器的材质;(2)电极室缩短;(3)减小收集导管死体积;(4)加厚分离腔上下板;(5)在分离腔上板设置冷却挡板。经过改进后的整个装置占地空间由原来的80cm×100cm×160cm缩小为现在的70cm×85cm×45cm。
     本文中,我们开展了如下一系列实验工作:
     (1)研究如何利用样品/背景流量之比控制样品带宽、分辨率和载量。这里我们选用了两种进样方式;其一为保持背景缓冲液流量不变,改变样品进样流量;其二为保持样品进样流量不变,改变背景缓冲液流量。利用含有结晶紫的商品化甲基绿染料作为可视化样本,我们发现通过调节样品和背景缓冲液流量的比率可以很好的控制混合染料(甲基绿与结晶紫)的带宽、分辨率和通量。这些结果对于今后FFE装置的设计有着极为重要的意义。
     (2)在相同通量的情况下,定量比较间断式FFZE和连续式FFZE在分辨率提高方面的差异。实验中,我们仍然采用了含有结晶紫的商品化甲基绿染料作为可视化样本,同时严格控制了4个实验参数,即相同的模式染料载量(3.49、1.75、1.17、0.88mg/h),相同的运行时间(5、10、15、20min),相同的样品/背景流量之比(=10.64×10~(-3))、相同的电压(=200V)。实验结果表明在连续式模式中带宽受流体动力学影响发生明显拓宽,而间断式模式可以显著消除流体动力学引起的拓宽,极大增加染料的分辨率。最后,间断式FFZE被成功应用于两种模式抗生素(PCA和Plt,二者共表达于一种新型菌株Pseudomonas aeruginosa M18的发酵液中)的完全分离。这一结果可能会改变今后FFE的运行模式。
     (3)利用重力自平衡-自由流电泳装置分离制备Pseudomonas sp. M18发酵液中提取的低浓度吩嗪-1-羧酸(PCA)。从Pseudomonas sp. M18发酵液中提取大约0.3mM的低浓度PCA作为FFE分离纯化的初始样本。实验考察了3个影响分离效果的因素,即背景缓冲液pH和浓度,以及冷却循环系统。从实验结果我们可以发现不管有没有冷却循环系统,背景缓冲液pH和浓度对于PCA的分离影响都非常有限。相较而言,冷却循环系统对分离效果却有着非常大的影响。如果没有冷却循环系统,PCA的带宽控制将会非常困难,如果有则会变得容易。通过实验我们得到最佳实验条件为:10mM pH5.5磷酸缓冲液作为背景缓冲液,30mM pH5.5磷酸缓冲液作为电极缓冲液,5.46ml/min背景缓冲液流量,10min保留时间,500V电压。此时,PCA可以连续不断的获得较高产量的制备,所得回收率可达85%,通量约为7ml/h (115μl/min的样品流量)。实验结果表明FFE技术可以成为研究天然生物农药小分子的重要替代手段。
     通过一系列的实验研究,我们发现:(1)可以通过控制样品/背景流量之比来控制样品的分辨率和载量;(2)可以应用间断式FFZE获得样品分辨率的大幅提高,而不损失样品通量;(3)可以将我们自制的FFE应用于一些难溶于水、难电离的物质。这些结果将有利于今后我们实验室FFE的进一步研制及应用的拓展。
Free-Flow Electrophoresis (FFE) is a pure-liquid electrophoresis for bothpreparative and analytical purposes with the advantages of controllable process,gentle condition, high recovery, well resolution, complete preservation of activity, andwide applications. Until now, the development of FFE is to focus on how to narrowthe bandwidth, improve the resolution and increase the throughput. The currentsolutions are to (i) decrease the initial sample bandwidth;(ii) change the FFE runningmode (e.g. the introduction of interval FFE);(iii) use the focusing method (such asIEF). However, there are some problems remained.(i) To decrease the initial samplebandwidth can lower the sample throughput in no accordance with the preparativepurpose of FFE.(ii) The resolution of interval FFE mode has not been reported to bemore superior to that of continuous one at the same throughput.(iii) The focusingmethod does not only need a lot of ampholytes, making the cost higher, but also loseamphoteric substances (such as proteins) at their pIs. Based on the previous twoproblems, this paper has done some prelimilary works on the bandwidth controlling.
     Before experiment, we made a series of modifications on the previousconstructed FFE device with gratis gravity, including (i) the material of self-balancecollector (SBC) were changed,(ii) the lengths of electrode cavities were shortened;(iii) the dead volume of collection tubes were reduced;(iv) the up and down plateswere thickened; and (v) the cooling barriers were set on the up plate. Thus, the size ofwhole device (70cm×85cm×45cm) was greatly reduced in contrast to theprevious version of FFE apparatus (80cm×100cm×160cm).
     After the device modifications, we carried out the following experiments:
     (1) It was studied on how to use the flux ratio between the sample andbackground solutions to control the sample bandwidth, resolution and throughput.Two injection methods were described herein. The first method was the one in whichsample injection flux were variable, whereas the background flux was a constantvalue. The second was the one in which the background flux were flexible, while the sample flux was stable. With the help of methyl green and crystal violet as twoviewable model compounds, we found that the bandwidth, resolution and throughputof mixed dyes could be under better control by the adjustment of flux ratios betweensample and background flux. The results were of significance to the future designs onour newly-developed FFE device with gratis gravity.
     (2) Under the same throughput, the resolution promotion of interval FFZE andcontinuous FFZE were compared quantitatively. In this paper, a commercial dye withmethyl green and crystal violet was well chosen as the model sample. Thecomparative experiments were conducted under the same sample loading of the modeldye (viz.3.49,1.75,1.17and0.88mg/h), the same running time (viz.5,10,15and20min), the same flux ratio between sample and background buffer (=10.64×10~(-3)) andthe same voltage (=200V). Under the given conditions, the relevant experimentsdemonstrated that the band broadening was evidently caused by hydrodynamic factorin continuous FFZE mode, and the interval mode ccould clearly eliminate thehydrodynamic broadening existing in the continuous mode, greatly resulting in theresolution increase of dye separation in FFZE. Finally, the interval FFZE wassuccessfully used for the complete separation of two model antibiotics (hereinpyoluteorin and phenazine-1-carboxylic acid co-existing in fermentation broth of anew strain Pseudomonas aeruginosa M18). These results might change FFE runningmode in the future.
     (3) The low concentration PCA (=0.3mM) extracted from fermentation brothof Pseudomonas sp. M18was selected to be isolated and prepared with a newly facileFFE device with gratis gravity. Three factors of pH value and concentration ofbackground buffer, and the cooling circle of FFE device were investigated for thepurification of PCA in the device. It was found that the pH value and concentration ofbackground buffer had mild influences on the separation of PCA whether withcooling circle or not. However, the cooling circle had a much greater impact on theseparation of PCA. The controlling of the band zone of PCA in FFE chamber wouldbe difficult if without cooling circle, while the controlling would become easy if withcooling circle. Under the optimal conditions (10mM pH5.5phosphate as background buffer,30mM pH5.5phosphate buffer as electrode solution,5.46mL/minbackground flux,10min residence time of injected sample, and500V), PCA couldbe continuously prepared from its impurities with relative high purity. The flux ofsample injection was115μL/min, viz.7mL sample throughput per hour, and therecovery was up to85%. All of the experiments indicated that FFE was a goodalternative tool for the study on natural biological control agents.
     According to a series of experiments, we concluded that (i) the sample resolutionand throughput could be controlled by the flux ratio of sample and backgroundsolutions;(ii) the application of interval FFZE could increase largely the sampleresolution without the loss of the sample throughput;(iii) the substances difficult todissolve and ionize could be separated in our homemade device. All these resultswould be beneficial to the deep investigations and extension of applications in ourFFE in the future.
引文
[1]Bier, M., Electrophoresis Theory, Methods and Applications. New York. Academic Press,1959ⅩⅤ-ⅩⅩ.
    [2]Tiselius, A, A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc.1937,524-531.
    [3]Wagner, H., Free-flow electrophoresis. Nature1989,341,669-670.
    [4]Roman, M.C., Brown, P.R. Free-flow electrophoresis, as a preparative separation technique. Anal. Chem.1994,66,86A-94A.
    [5]Hannig, K. Die tragerfreie kontinuierliche Elektrophorese und ihre Anwendung. Fresenius J. Anal. Chem.1961,181,244-254.
    [6]Weber, G. Bocek, P. Optimized continuous flow electrophoresis. Electrophoresis1996,17,1906-1910.
    [7]Chen, S., Palmer, J.F., Zhang, W., et al. A simple preparative free-flow electrophoresis joined with gratis gravity:I. Gas cushion injector and self-balance collector instead of multiple channel pump. Electrophoresis200930,1998-2007.
    [8]Mazereeuw, M., Best, C.M., Tjaden, U.R., et al. Free Flow Electrophoresis Device for Continuous On-Line Separation in Analytical Systems. An Application in Biochemical Detection. Anal. Chem.2000,72,3881-3886.
    [9]Wen, J., Wilker, E.W., Yaffe, M.B., et al. Microfluidic Preparative Free-Flow Isoelectric Focusing:System Optimization for Protein Complex Separation. Anal. Chem.2010,82,1253-1260.
    [10]Das, C., Fan, Z.H. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device. Electrophoresis2006,27,3619-3626.
    [11]Kohlheyer, D., Besselink, G.A.J., Schlautmann, S. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes. Lab Chip2006,6,374-380.
    [12]Hannig, K. Wirth, H. Meyer, B-H., Zeiller, K. Theoretical and Experimental Investigation of the Influence of Mechanical and Electrokinetic Vatiables on the Efficiency of the Method. Hoppe-Seyler's Z. Physiol. Chem.1975,356,1209-1223.
    [13]Clifton, M.J, Jouve, N., Balmann, H., Sanchez, V. Conditions for purification of proteins by free-flow zone electrophoresis. Electrophoresis1990,11,913-919.
    [14]Hinnig, K. Chapter VIII. Free-flow Electrophorisis:(A Technique for Continuous Preparative and Analytical Separation). Methods in Microbiology1971,5(B),513-548.
    [15]Knisley, K.A., Rodkey, L.S. New Buffer Systems for Cell Electrophoresis. In: Bauer J, Ed. Cell Electrophoresis. Boca Raton (FL):CRC Press,1994. chap7.
    [16]Bernhardt, I. Alternation of Cellular Features after Exposure to Low Ionic Strength Medium. In:Bauer J, Ed. Cell Electrophoresis. Boca Raton (FL):CRC Press,1994. chap8.
    [17]Golovanov, M.V. Electrophoresis of Cells at a physical Ionic Strength. In: Bauer J, Ed. Cell Electrophoresis. Boca Raton (FL):CRC Press,1994. chap9.
    [18]Shao, J., Li, S., Zhang, W., et al. Controlling of band width, resolution and sample loading by injection system in a simple preparative free-flow electrophoresis with gratis gravity. J. Chromatogr. A2010,1217,2182-2186.
    [19]Okhonin, V, Evenhuis, C.J., Krylov, S.N. Non-Orthogonal-to-the-Flow Electric Field Improves Resolution in the Orthogonal Direction:Hidden Reserves for Combining Synthesis and Purification in Continuous Flow. Anal. Chem.2010,82,1183-1185.
    [20]Krivankova, L., Bocek, P. Continuous free-flow electrophoresis. Electrophoresis1998,19,1064-1074.
    [21]Kohlheyer, D., Eijkel, J.C.T., Van Den Derg, A., et al. Miniaturizing free-flow electrophoresis-a critical review. Electrophoresis2008,29,977-993.
    [22]Pospichal J, Deml M, Bocek P. Electrically controlled electrofocusing of ampholytes between two zones of modified electrolyte with two different values of pH. J. Chromatogr.1993,638,179-186.
    [23]Cao C.X, Zhou S.L, He Y.Z, et al. Experimental study on moving neutralization reaction boundary created with the strong reactive electrolytes of HCl and NaOH in agarose gel. J. Chromatogr. A2000,891,337-347
    [24]Cao C.X, Zhou S.L, He Y.Z, et al. Corrections to moving chemical reaction boundary equation for weak reactive electrolytes under the existence of background electrolyte KCl in large concentrations. J. Chromatogr. A2001,907,347-352.
    [25]Cao C.X, Zhou S.L, He Y.Z, et al. Experimental investigation on moving chemical reaction boundary theory for weak-acid-strong-base system with background electrolyte KCl in large concentration. J. Chromatogr. A2001,922,283-292.
    [26]Cao C.X, Zhou S.L, Qian Y.T, et al. Investigations on factors that influence the moving neutralization reaction boundary method for capillary electrophoresis and isoelectric focusing. J. Chromatogr. A2002,952,29-38.
    [27]Cao C.X, Zhou S.L, Qian Y.T, et al. Experimental investigation on moving chemical reaction boundary theory for weak-acid-strong-base system with background electrolyte KCl in large concentration. J. Chromatogr. A2002,952,39-46.
    [28]Cao C.X, He Y.Z, Li M, et al. Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary method in capillary zone electrophoresis. Anal. Chem.2002,74,4167-4174.
    [29]Hirokawa, T., Ohta, T., Tanaka, I., et al. Study of isotachophoretic separation behaviour of metal cations by means of particle-induced X-ray emission:V Fractionation of platinum group elements from a model solution of nuclear fuel waste by means of continuous free-flow isotachophoresis. J. Chromatogr.1993,638,215-223.
    [30]Sloan, J.E., Thormann, W., Twitty, G.E., et al. Automated recycling free fluid isotachophoresis:Principle, instrumentation and first results. J. Chromatogr.1988,457,137-148.
    [31]Mang, M., Gehmecker, H., Trautmann, N., et al. Separation of Oxydation States of Neptunium and Plutonium by Continuous Electrophoretic Ion Focusing. Radio-chim. Acta1993,62,49-54.
    [32]Kessler, R., Manz, H.J., SzBkely, G, Use of free-flow electrophoresis for the purification of components separated by ion-pair chromatography. J. Chromatogr.1989,469,444-447.
    [33]Bahre, F., Maier, H.G., Electrophoretic clean-up of organic acids from coffee for the GC/MS analysis. Fresenius J. Anal. Chem.1996,355,190-193.
    [34]Raymond, D. E., Manz, A., Widmer, H. M. Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip. Anal. Chem.1994,66,2858-2865.
    [35]Tarnopolsky, Y, Roman, M., Brown, P.R. A New Approach to Scaling Up Electrophoresis. Sep. Sci. Technol.1993,28,719-731.
    [36]Glukhovskiy, P., Vigh, G. Analytical-and preparative-scale isoelectric focusing separation of enantiomers.Anal. Chem.1999,71,3814-3820.
    [37]Glukhovskiy, P., Vigh, G. Use of single-isomer, multiply charged chiral resolving agents for the continuous, preparative-scale electrophoretic separation of enantiomers based on the principle of equal-but-opposite analyte mobilities. Electrophoresis2000,21,2010-2015.
    [38]Glukhovskiy, P., Landers, T.A., Vigh, G. Preparative-scale isoelectric focusing separation of enantiomers using a multicompartment electrolyzer with isoelectric membranes. Electrophoresis2000,21,762-766.
    [39]Glukhovskiy, P., Vigh, G. Improved preparative-scale, continuous, free-flow electrophoretic separation of the enantiomers of terbutaline utilizing equal-but-opposite enantiomer mobilities. Electrophoresis2001,22,2639-2645.
    [40]Hoffstetter-Kuhn, S., Wagner, H. Scale-up of free flow electrophoresis:I. Purification of alcohol dehydrogenase from a crude yeast extract by zone electrophoresis. Electrophoresis1990,11,451-456.
    [41]Hoffstetter-Kuhn, S., Wagner, H. Scale-up of free-flow electrophoresis:II. Purification of alcohol dehydrogenase from a crude yeast extract by field step electrophoresis and combined field step-zone electrophoresis. Electrophoresis1990,11,457-462.
    [42]Kuhn, R., Wagner, H. Free flow electrophoresis as a method for the purification of enzymes from E.coli cell extract. Electrophoresis1989,10,165-172.
    [43]Hannig, K. Eine Neuentwicklung der tragerfreien kontinuierlichen Elektrophorese. Zur Trennung hochmolekularer und grobdisperser Teilchen. Hoppe Seylers Z. Physiol. Chem.1964,338,211-227.
    [44]Seiler, N., Thobe, J., Werner, G. Electrophoresis in a carrier-free buffer stream. Ⅰ. Continuous separation in ampholyte gradients. Hoppe Seylers Z. Physiol. Chem.1970,351,865-868.
    [45]Weber, G., Bocek, P., Interval isotachophoresis for purification and isolation of ionogenic species. Electrophoresis1998,19,3090-3093.
    [46]Poux, M., Bertrand, J. Preparative free-flow isoelectric focusing:Modeling and experiments. Electrophoresis1990,11,907-912.
    [47]Kullertz, G., Fischer, G., Influence of additives on resolution and focusing efficiency in free-flow isoelectric focusing. J. Chromatogr. A1994,684,329-341.
    [48]Kullertz, G., Meyer, S., Fischer, G. Differentation by preparative continuous free flowisoelectric focusing of cyclosporin A inhibitable peptidyl-prolyl cis/trans isomerase of human erythrocytes. Electrophoresis1994,15,960-967.
    [49]Duman, J. G. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim. Biophys. Acta.1994,1206,129-135.
    [50]Maida, R., Krieger, J., Gebauer, T., et al. Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem.2000,267,2899-2908.
    [51]Hoffmann, P., Ji, H., Moritz, R.L., et al. Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM1215:A non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics2001,1,807-818.
    [52]Moritz, R.L., Ji, H., Schutz, F., et al. A Proteome Strategy for Fractionating Proteins and Peptides Using Continuous Free-Flow Electrophoresis Coupled Off-Line to Reversed-Phase High-Performance Liquid Chromatography. Anal. Chem.2004,76,4811-4824.
    [53]Wang, Y, Hancock, W.S., Weber, G, et al. Free flow electrophoresis coupled with liquid chromatography-mass spectrometry for a proteomic study of the human cell line (K562/CR3). J. Chromatogr. A2004,1053,269-278.
    [54]Obermaier, C., Jankowski, V, Schmutzler, C., et al. Free-flow isoelectric focusing of proteins remaining in cell fragments following sonication of thyroid carcinoma cells. Electrophoresis2005,26,2109-2116.
    [55]Nissum, M., Wildgruber, R., Free-flow electrophoresis system for plasma proteomic applications. Methods Mol. Biol.2008,484,131-144.
    [56]Tunica, D. G, Yin, X., Sidibe, A., et al. Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS. Proteomics2009,9,4991-4996.
    [57]Ciencialova, A., Neubauerova, T., Sanda, M., et al. Mapping the peptide and protein immune response in the larvae of the fleshfly Sarcophaga bullata. J. Pept. Sci.2008,14,670-682.
    [58]Hoffmann, P., Olayioye, M.A., Moritz, R.L., et al. Breast cancer protein StarD10identified by three-dimensional separation using free-flow electrophoresis, reversed-phase high-performance liquid chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis2005,26,1029-1037.
    [59]Nissum, M., Foucher, A.L., Analysis of human plasma proteins:a focus on sample collection and separation using free-flow electrophoresis. Expert Rev. Proteomics2008,5,571-587.
    [60]Moritz, R.L., Clippingdale, A.B., Kapp, E.A., et al. Application of2-D free-flow electrophoresis/RP-HPLC for proteomic analysis of human plasma depleted of multi high-abundance proteins. Proteomics2005,5,3402-3413.
    [61]Cho, S.Y, Lee, E.Y, Lee, J.S., et al. Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map. Proteomics2005,5,3386-3396.
    [62]Hartwig, S., Kotzka, J., Muller, H., et al. A critical comparison between two classical and a kit-based method for mitochondria isolation. Arch. Physiol. Biochem.2009,115,259-266.
    [63]Nissum, M., Kuhfuss, S., Hauptmann, M., et al. Two-dimensional separation of human plasma proteins using iterative free-flow electrophoresis. Proteomics2007,7,4218-4227.
    [64]Wildgruber, R., Yi, J., Nissum, M., et al. Free-flow electrophoresis system for plasma proteomic applications. Methods Mol. Biol.2008,424,287-300.
    [65]Weber, G., Islinger, M., Weber, P., et al. Efficient separation and analysis of peroxisomal membrane proteins using free-flow isoelectric focusing. Electrophoresis2004,25,1735-1747.
    [66]Xie, H., Bandhakavi, S., Griffin, T. J., Evaluating Preparative Isoelectric Focusing of Complex Peptide Mixtures for Tandem Mass Spectrometry-Based Proteomics:A Case Study in Profiling Chromatin-Enriched Subcellular Fractions in Saccharomyces cerevisiae Anal. Chem.2005,77,3198-3207.
    [67]Xie, H., Rhodus, N. L., Griffin, R. J., et al. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell. Proteomics2005,4,1826-1830.
    [68]Malmstrom, J., Lee, H., Nesvizhskii, A. I., et al. Optimized peptide separation and identification for mass spectrometry based proteomics via free-flow electrophoresis. J. Proteome Res.2006,5,2241-2249.
    [69]Pernemalm, M., De Petris, L., Eriksson, H., et al. Use of narrow-range peptide IEF to improve detection of lung adenocarcinoma markers in plasma and pleural effusion. Proteomics2009,9,3414-3424.
    [70]Xie, H., Onsongo, G, Popko, J., et al. Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Cell Proteomics2008,7,486-498.
    [71]Xie, H., Bandhakavi, S., Roe, M. R., et al. iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J. Proteome Res. 2007,6,2019-2026.
    [72]Ouvry-Patat, S. A., Torres, M. P., Quek, H. H., et al. Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics2008,8,2798-2808.
    [73]Nissum, M., Abu Shehab, M., Sukop, U., et al. Functional and Complementary Phosphorylation State Attributes of Human Insulin-like Growth Factor-Binding Protein-1(IGFBP-1) Isoforms Resolved by Free Flow Electrophoresis. Mol. Cell Proteomics2009,8,1424-1435.
    [74]Drews, O., Zong, C., Ping, P. Exploring proteasome complexes by proteomic approaches. Proteomics2007,7,1047-1058.
    [75]Sneekes, E. J., Han, J., Elliot, M., et al. Accurate molecular weight analysis of histones using FFE and RP-HPLC on monolithic capillary columns. J. Sep. Sci.2009,32,2691-2698.
    [76]Kim, S. H., Miyatake, H., Ueno, T., et al. Development of a novel ampholyte buffer for isoelectric focusing:electric charge-separation of protein samples for X-ray crystallography using free-flow isoelectric focusing. Acta Crystallogr. D. Biol. Crystallogr.2005,61,799-802.
    [77]Marsh, M., Schmid, S., Kern, H., et al. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J. Cell. Biol.1987,104,875-886.
    [78]Harms, E., Kern, H., Schneider, J. A. Human lysosomes can be purified from diploid skin fibroblasts by free-flow electrophoresis. Proc. Natl. Acad. Sci. USA1980,77,6139-6143.
    [79]Amigorena, S., Drake, J. R., Webster, P.,et al. Transient accumulation of new class Ⅱ MHC molecules in a novel endocytic compartment in B lymphocytes. Nature1994,369,113-120.
    [80]Hannig, K., Heidrich, H., Cell separation methods. in:Bloemendal, H.(Ed.), Cell Separation Methods, Part Ⅳ. Elctrophoretic Methods, Elsevier, North-Holland1977,95-116.
    [81]Pesonen, M., Ansorge, W., Simons, K. Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical plasma membrane of Madin-Darby canine kidney cells. I. Involvement of endosomes and lysosomes. J. CellBiol.1984,99,796-782.
    [82]Morre, D., Creek, K., Matyas, G, et al. Purification of Golgi sub-compartment by free flow electrophoresis. Biotechniques1984,2,224-233.
    [83]Hannig, K., Heidrich, H. The use of continuous preparative free-flow electrophoresis for dissociating cell fractions and isolation of membranous components. In:Fleischer, S., Packer, S.(Eds.), Methods in Enzymology XXXI, Part A, Academic Press, New York1974,746-761.
    [84]Volkl, A., Mohr, H., Weber, G, et al. Isolation of rat hepatic peroxisomes by means of immune free flow electrophoresis. Electrophoresis1997,18,774-780.
    [85]Hansen, E., Hannig, K. Antigen-Specific Electrophoretic Cell Separation (ASECS):Isolation of human T and B lymphocyte subpopulations by free-flow electrophoresis after reaction with antibodies. J. Immunol. Methods1982,51,197-208.
    [86]Eubel, H., Lee, C. P., Kuo, J., et al. TECHNICAL ADVANCE:Free-flow electrophoresis for purification of plant mitochondria by surface charge. Plant J.2007,52,583-594.
    [87]Eubel, H., Meyer, E. H., Taylor, N. L., et al. Novel Proteins, Putative Membrane Transporters, and an Integrated Metabolic Network Are Revealed by Quantitative Proteomic Analysis of Arabidopsis Cell Culture Peroxisomes. Plant Physiol.2008,148,1809-1829.
    [88]Barkla, B. J., Vera-Estrella, R., Pantoja, O. Enhanced separation of membranes during free flow zonal electrophoresis in plants. Anal. Chem.2007,79,5181-5187.
    [89]Cutillas, P. R., Biber, J., Marks, J., et al. Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics2005,5,101-112.
    [90]Zischka, H., Weber, G., Weber, P. J., et al. Improved proteome analysis of Saccharomyces cerevisiae mitochondria by free-flow electrophoresis. Proteomics2003,3,906-916.
    [91]Zischka, H., Braun, R. J., Marantidis, E. P., et al. Differential analysis of Saccharomyces cerevisiae mitochondria by free flow electrophoresis. Mol. Cell Proteomics2006,5,2185-2200.
    [92]Islinger, M., Li, K.W., Loos, M., et al. Peroxisomes from the heavy mitochondrial fraction:isolation by zonal free flow electrophoresis and quantitative mass spectrometrical characterization. J. Proteome Res.2010,9,113-124.
    [93]Dittrich, P.S., Tachikawa, K., Manz, A. Micro total analysis systems. Latest advancements and trends. Anal. Chem.2006,78,3887-3908.
    [94]Manz, A., Eijkel, J.C.T. Miniaturization and chip technology. What can we expect? Pure and Applied Chemistry2001,73,1555-1561.
    [95]Das, C., Fan, Z.H. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device. Electrophoresis2006,27,3619-3626.
    [96]Zhang, C.X., Manz, A. High-speed free-flow electrophoresis on chip. Anal. Chem.2003,75,5759-5766.
    [97]Fonslow, B.R., Barocas, V.H., Bowser, M.T. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device. Anal. Chem.2006,78,5369-5374.
    [98]Fonslow, B.R., Bowser, M.T. Optimizing band width and resolution in micro-free flow electrophoresis. Anal. Chem.2006,78,8236-8244.
    [99]Lu, H., Gaudet, S., Schmidt, M.A., et al. A microfabricated device for subcellular organelle sorting. Anal. Chem.2004,76,5705-5712.
    [100]Janasek, D., Schilling, M., Manz, A., et al. Electrostatic induction of the electric field into free-flow electrophoresis devices. Lab Chip2006,6,710-713.
    [101]Prusik, Z., Kasicka, V, Mudra, P., et al. Correlation of capillary zone electrophoresis with continuous free-flow zone electrophoresis:Application to the analysis and purification of synthetic growth hormone releasing peptide. Electrophoresis1990,11,932-936.
    [102]Kasicka, V, Prusik, Z., Pospisek, J. Conversion of capillary zone electrophoresis to free-flow zone electrophoresis using a simple model of their correlation. Application to synthetic enkephalin-type peptide analysis and preparation.J. Chromatogr.1992,608,13-22.
    [103]Kasicka, V, Prusik, Z., Smekal, O., et al. Application of capillary and free-flow zone electrophoresis and isotachophoresis to the analysis and preparation of the synthetic tetrapeptide fragment of growth hormone-releasing peptide. J. Chromatogr. B1994,656,99-106.
    [104]Kasicka, V, Prusik, Z. Application of capillary and free-flow zone electrophoresis to the analysis and preparation of synthetic biopeptides. Am. Lab.1994,26,22-28.
    [105]Prusik, Z., Kasicka, V., Weber, G., et al. in:Radola, B. J.(Ed.), Elektrophorese Forum '91, Tech-nische UniversitatMunchen1991,201-206.
    [106]Kasicka, V, Prusik, Z. Sazelova, P., et al. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes: Application to analysis and preparation of fragments of insulin. J. Chromatogr. A1998,796,211-220.
    [107]Kasicka, V, Prusik, Z. in:Parvez, H., Caudy, P., Parvez, S., Roland-Gosselin, P.(Eds.), Capillary Elec-trophoresis in Biotechnology and Environmental Analysis, VSP, Utrecht1997,173-197.
    [108]Kasicka, V. in:Aboul-Enein, H. Y.(Ed.), Analytical and Preparative Separation Methods of Biomacromole-cules, Marcel Dekker, Inc., New York1999,39-97.
    [109]Wind, M., Hoffmann, P., Wagner, H., et al. Chiral capillary electrophoresis as predictor for separation of drug enantiomers in continuous flow zone electrophoresis. J. Chromatogr. A2000,895,51-65.
    [110]Keuth, U., Leinenbach, A., Beck, H. P., et al. Separation and characterization of humic acids and metal humates by electrophoretic methods. Electrophoresis1998,19,1091-1096.
    [111]Spanik, I., Lim, P., Vigh, G. Use of full-column imaging capillary isoelectric focusing for the rapid determination of the operating conditions in the preparative-scale continuous free-flow isoelectric focusing separation of enantiomers. J. Chromatogr. A2002,960,241-246.
    [112]Prusik, Z., Stepanek, J., Kasicka, V, in:Radola, B. J.(Ed.), Electrophoresis'79, Walter de Gruyter, Berlin/New York1980.
    [113]Sloan, J.E., Mosher, R. A., Thormann, W., et al. Protein Purification:Micro to Macro, Alan R. Liss, Inc., New York1987,329-335.
    [114]Bottcher, A., Mollers, C., Lackner, K.J., et al. Automated free-solution isotachophoresis:Instrumentation and fractionation of human serum proteins. Electrophoresis1998,19,1110-1116.
    [115]Bottcher, A., Schlosser, J., Kronenberg, F., et al. Preparative free-solution isotachophoresis for separation of human plasma lipoproteins:apolipoprotein and lipid composition of HDL subfractions. J. Lipid Res.2000,41,905-915.
    [116]Strickler, A. Continuous particle electrophoresis:A new analytical and preparative capability. Sep. Sci. Technol.1967,2,335-355.
    [117]Hoffmann, P., Wagner, H., Weber, G, et al. Separation and purification of methadone enantiomers by continuous-and interval-flow electrophoresis. Anal. Chem.1999,71,1840-1850.
    [118]Cui, H., Horiuchi, K., Dutta, P., et al. Isoelectric focusing in a poly (dimethylsiloxane) microfluidic chip. Anal. Chem.2005,77,1303-1309.
    [119]Shao, X.W., Shen, Y.F., O'Neill, K., et al. Plexiglas column coatings for capillary electrophoresis of biomolecules. J. Microcolumn Seperations1999,11,325-329.
    [120]Miller, T.Y, Williams, G.O., Snyder. R.S. Effect of conductivity and concentration on the sample stream in the transverse axis of a continuous flow electrophoresis chamber. Electrophoresis1985,6,377-381.
    [121]Rhodes, P.H., Snyder. R.S. Sample band spreading phenomena in ground and spacebased electrophoretic separators. Electrophoresis1986,7,113-120.
    [122]Wang, H. B., Zhang, Z. Y, Jiang, Y D., et al. Experimental study on temperature distribution within a wide-gap continuous free-flow electrophoresis chamber. Electrophoresis1998,19,1231-1233.
    [123]Matsumoto, H., Komatsubara, N., Kuroda, C., et al. Numerical simulation of temperature distribution inside microfabricated free flow electrophoresis module. Chem. Eng. J.2004,101,347-356.
    [1]Hannig, K. New aspects in preparative and analytical continuous free-flow cell electrophoresis. Electrophoresis1982,3,235-243.
    [2]Tiselius, A, A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc.1937,524-531.
    [3]Philpot, J.S.L. The Effect of Calcium on the Sedimentation Constant of Casein. Trans. Faraday. Soc.1939,36,38-45.
    [4]Barrolier,J., Watzke, E., Gibian, H. Einfache Apparatur fur die tragerfreie praparative Durchlauf-Elektrophorese. Z. Naturforschung. B1958,13,754.
    [5]Hannig, K. Die tragerfreie kontinuierliche Elektrophorese und ihre Anwendung. Fresenius J. Anal. Chem.1961,181,244-254.
    [6]Kolin, A., Cox, P. Continuous-flow electrophoresis in serpentine liquid columns stabilized against thermal convection. Proc. Natl. Acad. Sci. USA1964,52,19-26.
    [7]Strickler, A., Sacks, T. Focusing in Continuousflow Electrophoresis Systems by Electrical Control of Effective Cell Wall Zeta Potentials. Ann. N. Y. Acad. Sci.1973,209,497-514.
    [8]Grateful, T.M., Lightfoot, E.N. Finite difference modelling of continuous-flow electrophoresis. J. Chromatogr.1992,594,341-349.
    [9]Clifton, M.J. Numerical simulation of protein separation by continuous-flow electrophoresis. Electrophoresis1993,14,1284-1291.
    [10]Roman, M.C., Brown, P.R. Free-flow electrophoresis, as a preparative separation technique. Anal. Chem.1994,66,86A-94A.
    [II]Krivankova, L., Bocek, P. Continuous free-flow electrophoresis. Electrophoresis1998,19,1064-1074.
    [12]Hannig, K. Wirth, H. Meyer, B-H., Zeiller, K. Theoretical and Experimental Investigation of the Influence of Mechanical and Electrokinetic Vatiables on the Efficiency of the Method. Hoppe-Seyler's Z. Physiol. Chem.1975,356, 1209-1223.
    [13]Hannig, K. Wirth, H., Schindler, R.K.,et al. Free-Flow Electrophoresis Ⅲ. An Analytical Version for a Rapid, Quantitative Determination of Electrophoretic Parameters. Hoppe-Seyler's Z. Physiol. Chem.1977,358,753-764.
    [14]Raymond, D.E., Manz, A., Widmer, H.M. Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure. Anal. Chem.1996,68,2515-2522.
    [15]Kohlheyer, D., Besselink, G.A.J., Schlautmann, S. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes. Lab Chip2006,6,374-380.
    [16]Kobayashi, H., Shimamura, K., Akaida, T., et al. Free-flow electrophoresis in a microfabricated chamber with a micromodule fraction separator:Continuous separation of proteins. J. Chromatogr. A2003,990,169-178.
    [17]Zhang, C.X., Manz, A. High-speed free-flow electrophoresis on chip. Anal. Chem.2003,75,5759-5766.
    [18]Fonslow, B.R., Barocas, V.H., Bowser, M.T. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device. Anal. Chem.2006,78,5369-5374.
    [19]Fonslow, B.R., Bowser, M.T. Optimizing band width and resolution in micro-free flow electrophoresis. Anal. Chem.2006,78,8236-8244.
    [20]Kohlheyer, D., Eijkel, J.C.T., Van Den Derg, A., et al. Miniaturizing free-flow electrophoresis-a critical review. Electrophoresis2008,29,977-993.
    [21]Strickler, A. Continuous particle electrophoresis:A new analytical and preparative capability. Sep. Sci. Technol.1967,2,335-355.
    [22]Huebner, V.R., Lawson, R.H. rformance characteristics of a new continuous-flow electrophoresis instrument. Sep. Sci. Technol.1968,3,265-277.
    [23]Rhodes, P.H., Snyder, R.S. Roberts, GO. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis. J. Colloid. Interf. Sci.1989,129,78-90.
    [24]Ivory, C.F. Continuous flow electrophoresis, the crescent phenomena revisited:: I. Isothermal effects.J. Chromatogr.1980,195,165-179.
    [25]Ivory, C.F. Continuous flow electrophoresis:The crescent phenomena revisited Part II:Nonisothermal effects. Electrophoresis1981,2,31-39.
    [26]Ostrach, S. Convection in continuous-flow electrophoresis. J. Chromatogr.1977,140,187-195.
    [27]Chen, S., Palmer, J.F., Zhang, W., et al. A simple preparative free-flow electrophoresis joined with gratis gravity:I. Gas cushion injector and self-balance collector instead of multiple channel pump. Electrophoresis200930,1998-2007.
    [28]Cao, C.X. Moving chemical reaction boundary and isoelectric focusing:I. Conditional equations for Svensson-Tiselius' differential equation of solute concentration distribution in idealized isoelectric focusing at steady state. J. Chromatogr. A1998,813,153-171.
    [29]Cao C.X, He Y.Z, Li M, et al. Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary method in capillary zone electrophoresis. Anal. Chem.2002,74,4167-4174.
    [30]Cao, C.X., Fan, L.Y., Zhang, W. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration. Analyst2008,133,1139-1157.
    [31]Junkers, J., Schmitt-Kopplin, P., Munch, J.C., et al. Up-scaling capillary zone electrophoresis separations of polydisperse anionic polyelectrolytes with preparative free-flow electrophoresis exemplified with a soil fulvic acid. Electrophoresis2002,23,2872-2879.
    [1]Hannig, K. Die tragerfreie kontinuierliche Elektrophorese und ihre Anwendung. Fresenius J. Anal. Chem.1961,181,244-254.
    [2]Kohlheyer, D., Eijkel, J. C. T., van den Berg, A., et al. Miniaturizing free-flow electrophoresis-a critical review. Electrophoresis2008,29,977-993.
    [3]Kasicka, V. From micro to macro:Conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale. Electrophoresis2009,30, S40-S52.
    [4]Islinger, M., Eckerskorn, C., Volkl, A. Free-flow electrophoresis in the proteomic era:A technique in flux. Electrophoresis2010,31,1754-1763.
    [5]Agostino, F. J., Evenhuis, C. J., Krylov, S. N. Milli-free flow electrophoresis:I. Fast prototyping of mFFE devices. J. Sep. Sci.2011,34,556-564.
    [6]Lanz, M., Caslavska, J., Thormann., W. Enantiomeric separation of methadone by cyclodextrinbased capillary and recycling isotachophoresis. Electrophoresis1998,19,1081-1090.
    [7]Gratz, S.R., Schneiderman, E., Mertens, T.R., et al. Use of dyes to investigate migration of the chiral selector in CFFE and the impact on the chiral separations. Anal. Chem.2001,73,3999-4005.
    [8]Kobayashi, H., Ishii, N., Nagaoka, S. Bioprocessing in microgravity:free flow electrophoresis of C. elegans DNA. J. Biotechnol.1996,47,367-376.
    [9]Jing, M., Bowser, M. T. Isolation of DNA aptamers using micro free flow electrophoresis. Lab Chip2011,11,3703-3709.
    [10]Kasicka, V, Prusik, Z., Smekal, O., et al. Application of capillary and free-flow zone electrophoresis and isotachophoresis to the analysis and preparation of the synthetic tetrapeptide fragment of growth hormone-releasing peptide. J. Chromatogr. B1994,656,99-106.
    [11]Kasicka, V, Prusik, Z., Pospisek, J. Conversion of capillary zone electrophoresis to free-flow zone electrophoresis using a simple model of their correlation. Application to synthetic enkephalin-type peptide analysis and preparation.J. Chromatogr.1992,608,13-22.
    [12]Kuhn, R., Hoffstetter-Kuhn, S., Wagner, H. Free-flow electrophoresis for the purification of proteins:Ⅱ. Isoelectric focusing and field step electrophoresis. Electrophoresis1990,11,942-947.
    [13]Kasicka, V, Prusik, Z., Sazelova, P., et al. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes-Application to analysis and preparation of fragments of insulin. J. Chromatogr. A1998,796,211-220.
    [14]Wang, P. L., Zhang, L. H., Shan, Y. C., et al. Protein separation using free-flow electrophoresis microchip etched in a single step. J. Sep. Sci.2010,33,2039-2044
    [15]Crespi, P., Perroud, P., Greppin, H. Guanosine triphosphate-binding proteins on the plasmalemma of spinach leaf cells. Planta1996,198,557-562.
    [16]Spaans, M.C., Tobler, M., Amman, R.W., et al. Separation and analysis of pig pancreatic zymogen granules with free flow electrophoresis and lectins. Electrophoresis1994,15,572-576.
    [17]Stein, G, Flad, H.D., Pabst, R., et al. paration of human lymphocytes by free-flow electrophoresis. Biomedicine1973,19,388-391.
    [18]Heidrich, H.C., Dew, M. Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cell isolated by free-flow electrophoresis. J. Cell Biol.1977,74,780-788.
    [19]Dong, Y. C., Shao, J., Yin, X. Y, et al. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins. J. Sep. Sci.2011,34,1683-1691.
    [20]Horka, M., Horky, J., Matouskova, H., et al. Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues. J. Chromatogr. A2009,1216,1019-1024
    [21]Hannig, K. New aspects in preparative and analytical continuous free-flow cell electrophoresis.Electrophoresis1982,3,235-243.
    [22]Poggel,M.,Melin,T.Free-flow zone electrophoresis:A novel approach and scale-up for preparative protein separation.Electrophoresis2001,22,1008-1015.
    [23]Kohlheyer, D.,Eijkel,J.C.T.,Van Den Derg,A.,et al.Miniaturizing free-flow Electrophoresis:a critical review.Electrophoresis2008,29,977-993.
    [24]Wagner, H.Free-flow electrophoresis.Nature1989,341,669-670.
    [25]Xie,H.,Rhodus,N.L.,Griffin,R.J.,et al.A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry.Mol. Cell.Protemics2005,4,1826-1830.
    [26]Nissum,M.,Abu Shehab,M.,Sukop,U.,et al.Functional and Complementary Phosphorylation State Attributes of Human Insulin-like Growth Factor-Binding Protein11(IGFBP-1)Isoforms Resolved by Free Flow Electrophoresis.Mol. Cell Proteomics2009,8,1424-1435.
    [27]Nissum,M.,Kuhfuss,S.,Hauptmann,M.,et al.Two-dimensional separation of human plasma proteins using iterative free-flow electrophoresis.Proteomics2007,7,4218-4227.
    [28]Moritz,R.L.,Clippingdale,A.B.,Kapp,E.A.,et al.Application of2-D free-flow electrophoresis/RP-HPLC for proteomic analysis of human plasma depleted of multi high-abundance proteins.Proteomics2005,5,3402-3413.
    [29]Keuth,U.,Leinenbach,A.,Beck,H.P,et al.Separation and characterization of humic acids and metal humates by electrophoretic methods.Electrophoresis1998,19,1091-1096.
    [30]Gratz,S.R.,Schneiderman,E.,Mertens,T.R.,et al.Use of dyes to investigate migration of the chiral selector in CFFE and the impact on the chiral separations.Anal.Chem.2001,73,3999-4005.
    [31]Glukhovskiy,P.,Vigh,G. Improved preparative-scale,continuous,free-flow electrophoretic separation of the enantiomers of terbutaline utilizing equal-but-opposite enantiomer mobilities. Electrophoresis2001,22,2639-2645.
    [32]Strickler, A., Sacks, T. Focusing in Continuousflow Electrophoresis Systems by Electrical Control of Effective Cell Wall Zeta Potentials. Ann. N. Y. Acad. Sci.1973,209,497-514.
    [33]Bauer, J., Weber, G. Interval carrier free electrophoresis for high resolution protein purification. J. Dispersion Sci. Technol.1998,19,937-950.
    [34]Hoffmann, P., Wagner, H., Weber, G, et al. Separation and purification of methadone enantiomers by continuous-and interval-flow electrophoresis. Anal. Chem.1999,71,1840-1850.
    [35]Foucher, A.L., Hartmann, K., Hauptmann, M., et al. Resolution of adiponectin oligomers in human plasma using free flow electrophoresis. Arch. Physiol. Biochem.2009,115,267-278.
    [36]Shao, J., Li, S., Zhang, W., et al. Controlling of band width, resolution and sample loading by injection system in a simple preparative free-flow electrophoresis with gratis gravity. J. Chromatogr. A2010,1217,2182-2186.
    [37]Shao, J., Fan, L. Y., Zhang, W., et al. Purification of low-concentration phenazine-1-carboxylic acid from fermentation broth of Pseudomonas sp. M18via free flow electrophoresis with gratis gravity. Electrophoresis2010,31,3499-3507.
    [38]Chen, S., Palmer, J.F., Zhang, W., et al. A simple preparative free-flow electrophoresis joined with gratis gravity:Ⅰ. Gas cushion injector and self-balance collector instead of multiple channel pump. Electrophoresis2009,30,1998-2007.
    [39]Ge, Y.H., Pei, D.L., Zhao, Y.H., et al. Correlation between antifungal agent phenazine-1-carboxylic acid and pyoluteorin biosynthesis in Pseudomonas sp. M18. Curr. Microbiol.2007,54,277-281.
    [40]Wang, Q.L., Zhang, X.H., Fan, L.Y, et al. Quantitative analysis of pyoluteorin in anti-fungal fermentation liquor of Pseudomonas species by capillary zone electrophoresis with UV-vis detector. J. Chromatogr. B2005,826,252el-252e6.
    [41] Chen, J., Wang, W., Xu, Y.Q., et al. Slow-Release Formulation of a NewBiological Pesticide, Pyoluteorin, with Mesoporous Silica. J. Agric. Food Chem.2011,59,307–311.
    [42] Wang, W., Lu, X.H., Qin, X.J., et al. Solubility of Pyoluteorin in Water,Dichloromethane, Chloroform, and Carbon Tetrachloride from (278.2to333.2)K. J. Chem. Eng. Data2008,53,2241–2243.
    [43] Zhang, J.F., Wang, W., Lu, X.H., et al. The stability and degradation of a newbiological pesticide, pyoluteorin. Pest Manag. Sci.2010,66,248–252.
    [1] Yang, Z.J., Hu, H.B., Zhang, X.H., et al.SH olubility of Phenazine-1-carboxylicAcid in Water, Methanol, and Ethanol from (278.2to328.2) K.H J. Chem. Eng.Data2007,52,184–185.
    [2] Huang, X.Q., Zhu, D.H., Ge, Y.H., et al.IH dentification and characterization ofpltZ, a gene involved in the repression of pyoluteorin biosynthesis inPseudomonas sp. M18.H FEMS Microbiol. Lett.2004,232,197–202.
    [3] Yang, Z.J., Wang, W., Jin, Y., et al.IH solation, Identification, and DegradationCharacteristics of Phenazine-1-Carboxylic Acid–Degrading StrainSphingomonas sp. DP58.H Curr. Microbiol.2007,55,284–287.
    [4] Ligon, J.M., Hill, D.S., Hammer, P.E., et al.NH atural products with antifungalactivity from Pseudomonas biocontrol bacteria.H Pest Manage. Sci.2000,56,688–695.
    [5] Gurusiddaiah, S., Weller, D.M., Sarkar, A., et al.CH haracterization of anantibiotic produced by a strain of Pseudomonas fluorescens inhibitory toGaeumannomyces graminis var. tritici and Pythium spp.H Antimicrob. Agents Chemother.1986,29,488–495.
    [6] Lee, J.Y., Moon, S.S., Hwang, B.K. Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare ofphenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag. Sci.2003,59,872–882.
    [7] Taunk, P.C., Mital, R.L. n-layer chromatographic studies of some new5,10-dihydrophenazines. J. Chromatogr.1971,60,433–435.
    [8] Fernandez, R.O., Pizarro, R.A.H High-performance liquid chromatographicanalysis of Pseudomonas aeruginosa phenazines.H J. Chromatogr. A1997,771,99–104.
    [9] Liu, H.M., Zhang, X.H., Huang, X.Q., et al. Rapid quantitative analysis ofphenazine-1-carboxylic acid and2-hydroxyphenazine from fermentation cultureof Pseudomonas chlororaphis GP72by capillary zone electrophoresis. Talanta2008,76,276–281.
    [10] Chen, K.K., Hu, H.B., Wang, W., et al.MH etabolic degradation of phenazine-1-carboxylic acid by the strain Sphingomonas sp. DP58: theidentification of two metabolites.H Biodegradation2008,19,659–667.
    [11] Hoffmann, P., Wagner, H., Weber, G., et al.SH eparation and purification ofmethadone enantiomers by continuous-and interval-flow electrophoresis.H Anal. Chem.1999,71,1840–1850.
    [12] K ivánková, L., Bo ek, P. Continuous free-flow electrophoresis.Electrophoresis1988,19,1064-1074
    [13] Glukhovskiy, P., Vigh, G.AHnalytical-and preparative-scale isoelectric focusingseparation of enantiomers.HAnal. Chem.1999,71,3814–3820.
    [14] Keuth, U., Leinenbach, A., Beck, H. P., et al.SHeparation and characterization ofhumic acids and metal humates by electrophoretic methods.H Electrophoresis1998,19,1091–1096.
    [15] Junkers, J., Schmitt-Kopplin, P., Munch, J.C., et al. Up-scaling capillary zoneelectrophoresis separations of polydisperse anionic polyelectrolytes withpreparative free-flow electrophoresis exemplified with a soil fulvic acid.Electrophoresis2002,23,2872-2879.
    [16] Chen, S., Palmer, J.F., Zhang, W., et al. A simple preparative free-flowelectrophoresis joined with gratis gravity: I. Gas cushion injector andself-balance collector instead of multiple channel pump. Electrophoresis200930,1998-2007.
    [17] Shao, J., Li, S., Zhang, W., et al.CH ontrolling of band width, resolution andsample loading by injection system in a simple preparative free-flowelectrophoresis with gratis gravity.H J. Chromatogr. A2010,1217,2182-2186.
    [18] Moritz, R.L., Simpson, R.J.LH iquid-based free-flow electrophoresis-reversed-phase HPLC:Aproteomic tool.H Nat. Methods2005,2,863-873.
    [19] Yuan, L.L., Li, Y.Q., Wang, Y., et al.OH ptimization of critical mediumcomponents using response surface methodology for phenazine-1-carboxylicacid production by Pseudomonas sp. M-18Q.H J. Biosci. Bioeng.2008,105,232-237.
    [20]王灿华,祝新德,许煜泉等.假单胞菌株M18分泌羧基吩嗪抑制黄瓜枯萎病害.上海交通大学学报2000,34,1574-1578.
    [21] Zhu, X.D., Xu, W.G., Geng, H.F., et al.GHene Cloning of rpoD and its Impact onBiosynthesis of Antibiotics in Fluorescent pseudomonas M18.H Acta.Microbiologica. Sinica.2003,43,315-323.
    [22] Hu, H.B., Xu, Y. Q., Chen, F., et al. Isolation and characterization of a newfluorescent Pseudomonas strain that produces both phenazine1-carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol.2005,15,86-90.
    [23] Slininger, P. J., Shea-Wilbur, M. A.,LH iquid-culture pH, temperature, and carbon(not nitrogen) source regulate phenazine productivity of the take-all biocontrolagent Pseudomonas fluorescens2-79.H Appl. Microbiol. Biotechnol.1995,43,794-800.
    [24] Levitch, M.E., Stadtman, E.R.AH study of the biosynthesis ofphenazine-1-carboxylic acid.H Arch. Biochem. Biophys.1964,106,194-199.
    [25] Rosales, A. M., Thomashow, L., Cook, R. J., et al.IH solation and identificationof antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp..H The American Phytopathol. Soc.1995,85,1028-1032.
    [26] Prusík, Z., Ka i ka, V., Mudra, P., et al. Correlation of capillary zoneelectrophoresis with continuous free-flow zone electrophoresis: Application tothe analysis and purification of synthetic growth hormone releasing peptide.Electrophoresis1990,11,932–936.
    [27] Ka i ka, V., Prusík, Z., Pospí ek, J. Conversion of capillary zoneelectrophoresis to free-flow zone electrophoresis using a simple model of theircorrelation. Application to synthetic enkephalin-type peptide analysis andpreparation. J. Chromatogr.1992,608,13–22.
    [28] Ka i ka, V., Prusík, Z., Smékal, O., et al. Application of capillary and free-flowzone electrophoresis and isotachophoresis to the analysis and preparation of thesynthetic tetrapeptide fragment of growth hormone-releasing peptide. J.Chromatogr. B1994,656,99–106.
    [29] Ka i ka, V., Prusík, Z.AHpplication of capillary and free-flow zoneelectrophoresis to the analysis and preparation of synthetic biopeptides.H Am.Lab.1994,26,22-28.
    [30] Prusík, Z., Ka i ka, V., Weber, G., et al. in: Radola, B. J.(Ed.), ElektrophoreseForum ‘91, Tech-nische Universit tMünchen1991,201-206.
    [31] Ka i ka, V., Prusík, Z. Sázelová, P., et al.THheory of the correlation betweencapillary and free-flow zone electrophoresis and its use for the conversion ofanalytical capillary separations to continuous free-flow preparative processes:Application to analysis and preparation of fragments of insulin.H J. Chromatogr.A1998,796,211-220.
    [32] Ka i ka, V., Prusík, Z. in: Parvez, H., Caudy, P., Parvez, S., Roland-Gosselin, P.(Eds.), Capillary Elec-trophoresis in Biotechnology and Environmental Analysis, VSP, Utrecht1997,173-197.
    [33] Ka i ka, V. in: Aboul-Enein, H. Y.(Ed.), Analytical and Preparative SeparationMethods of Biomacromole-cules, Marcel Dekker, Inc., New York1999,39-97.
    [34] Cao, C. X. Comparisons Between the Mobilities of Small Salt Ions Obtained byMoving Boundary Method and Two Empirical Equations in Capillary Electrophoresis. J. Chromatogr. A1997,771,375-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700