用户名: 密码: 验证码:
貂皮樟总黄酮对酒精性脂肪肝大鼠防治作用及部分机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒精性肝病(alcoholic liver disease,ALD)是因长期、大量饮用乙醇所致肝脏的损害性病变,在组织病理学上主要表现为三种形式:酒精性脂肪肝、酒精性肝炎和肝纤维化,这三种形式可单独或混和存在。酒精性脂肪肝(Alcoholic fattyliver,AFL)是ALD早期阶段,进一步发展为肝纤维化和肝硬化的危险性比单纯性脂肪肝高。AFL的发病机制可能与乙醇及其代谢产物对肝脏的损伤以及脂质过氧化损伤有关,酒精本身具有热量,长期大量摄入,容易造成能量堆积,营养失衡,酒精不仅损害脂肪氧化,也可刺激脂肪形成,引起脂质代谢紊乱。
     豹皮樟,又名老鹰茶,系樟科木姜子属毛豺皮樟(Litsea Coreana level)的嫩梢和叶片,是我国南方各民族民间长期饮用的一种植物代用茶,具有清凉止渴、解毒消肿、明目健胃等功效。老鹰茶中含有多种活性成分,经我院天然药物化学教研室提取分离鉴定,确定了豹皮樟的有效部位为总黄酮(Total flavonoids),总黄酮含量超过51.5%。我们前期研究发现豹皮樟总黄酮(Total Flavonoids of Litsea Coreana Level,TFLC)具有显著的抗炎免疫、降糖、调血脂作用和抗肝纤维化等作用。
     本研究以生理途径摄入酒精建立AFL大鼠模型,肝脏灌流获得原代肝细胞,观察TFLC对AFL大鼠和AFL大鼠肝细胞的防治作用并探讨其作用机制。具体内容概括如下:
     1、TFLC对AFL大鼠防治作用生理途径摄入酒精制备AFL大鼠模型,设置正常组,AFL模型组,TFLC (100,200,400mg/kg)组,阳性药谷胱甘肽(Glutathion,GSH)组,另设蔗糖对照组。第7周开始给药,连续6周。测定血清中ALT、AST水平,肝匀浆中MDA、SOD和GSHpx水平,HE染色、苏丹III染色以及透射电镜方法观察大鼠肝脏病理形态学的改变。结果显示:与模型组比较,TFLC用药后可改善大鼠一般状况,减轻明显增加的肝脏指数,降低AFL大鼠血清过高的ALT、AST水平,降低肝脏升高的MDA水平,同时使其降低的SOD和GSHpx水平有所恢复。病理检查结果显示,与AFL模型组比较,TFLC组大鼠肝脏脂肪变性和炎症明显减轻。TFLC对大鼠AFL的形成具有防治作用,可能与其抗脂质过氧化的作用有关。
     2、TFLC对AFL大鼠血糖、血脂以及脂肪细胞因子和胰岛素抵抗的作用造模第7周开始, TFLC ig连续6周。与AFL模型组比较,TFLC能明显降低大鼠血清TG、TC、FFA和LDL-C水平,对低下的HDL-C水平有一定的提升作用,对升高的血糖水平有一定的降低作用。ELISA法检测血清APOB、TNF-α水平,放射免疫法测定血清中Leptin、Insulin的含量。与模型组相比,TFLC能降低大鼠血清过高瘦素和胰岛素水平,也能降低AFL大鼠血清中增高的TNF-α和APOB水平RT-PCR法测定AFL大鼠肝脏脂肪细胞因子TNF-α、Leptin mRNA的表达。结果显示,与AFL模型组比较,TFLC可明显降低肝脏TNF-α、Leptin mRNA表达水平。TFLC可明显改善AFL脂质代谢紊乱状况,与其调节脂肪细胞因子和改善高胰岛素血症的作用有关。
     3、TFLC调节AFL大鼠脂质代谢相关指标ADRP、PPAR γ和Sir2的作用脂质代谢相关指标ADRP、PPAR γ和Sir2在AFL发生发展中其重要作用。RT-PCR和Western blotting检测AFL大鼠肝脏ADRP、PPAR γ和Sir2的表达。以β-actin作为内标,TFLC用药后ADRP、PPAR γ蛋白和mRNA表达有所下降,Sir2蛋白和PGC-1α、Sir2mRNA相对含量明显增高。
     免疫组化方法检测大鼠肝脏PPAR γ和ADRP表达,PPAR γ主要表达于细胞的胞浆和胞核,呈黄棕色颗粒;ADRP主要定位于成熟脂肪细胞胞膜上,呈棕黄色颗粒。TFLC用药6周后,与模型组比较,TFLC组大鼠肝脏PPAR γ和ADRP表达有不同程度的降低。TFLC对AFL大鼠的保护作用可能与其降血脂,调节AFL大鼠脂质代谢相关指标ADRP、PPAR γ和Sir2的作用有关。
     4、TFLC对AFL大鼠肝细胞脂质代谢的影响
     改良的原位二步Ⅳ胶原酶灌流法分离获得AFL大鼠原代肝细胞,SP染色的CK18鉴定肝细胞,胎盼蓝染色观察细胞活性大于80%。肝细胞分为正常组,AFL模型组,TFLC (1,10,100mg/L),GSH组以及Nic组。肝细胞培养16h,TFLC或GSH或Nic与肝细胞共培养48h,MTT测定TFLC对肝细胞的增殖能力的影响。免疫组化和RT-PCR方法测定ADRP、PPAR γ的蛋白和mRNA表达,Western Blot检测Sir2蛋白表达。TFLC用药后可明显改善体外培养的AFL肝细胞的增殖能力,减少ADRP以及PPAR γ阳性表达的细胞数和表达量,增加AFL肝细胞Sir2蛋白和mRNA表达。
     以上实验结果表明,整体动物和细胞水平研究发现,TFLC可明显大鼠减轻肝脏脂肪变性和炎症,具有降血糖,降血脂,调节脂肪细胞因子和改善高胰岛素血症的作用。能够降低ADRP和PPAR γ表达,增加PGC-1α和Sir2相对含量,作用机制可能与TFLC的抗炎、抗脂质过氧化、改善脂质代谢紊乱以及调节ADRP、PPAR γ和Sir2等脂质代谢相关指标等的作用有关。
Alcohol abuse is one of the main causes of morbidity and mortality throughout theworld. Chronic consumption of alcohol can cause a spectrum of liver abnormalitiesranging from simple fatty liver or steatosis to steatohepatitis, cirrhosis, andhepatocellular carcinoma. Chronic alcohol exposure commonly stimulateshyperlipidemia and hypercholesterolemia in several animal studies, and accumulating oftriglycerides in hepatocytes results in the development of fatty liver (steatosis).Alcoholic fatty liver (AFL) is reversible condition, but it can potentiate the developmentof alcoholic hepatitis and even cirrhosis via increasing oxidant generation, which is oneof the key pathogenic factors and could result in alcoholic liver disease (ALD).Prevention of hepatic steatosis may protect a large number of individuals at risk ofadvanced liver disease.
     Total flavone of Litsea coteana (TFLC) is an active constituent isolated from thefruit of Litsea coteana (L.), a Chinese herbal medicine, which has been used in civilianas a hypolipidemic drug in southern China for hundreds of years. Evidencesdemonstrated TFLC exhibits biological and pharmacological properties such as anti-inflammation, antioxidation and lipid-lowering activities. However, the detailedmechanisms of TFLC on hepatic steatosis have not been fully understood. In the presentstudy, through a model of alcoholic fatty liver in rats fed alcohol by a physiologicalfeeding way, we focused on the effect of TFLC on alcoholic fatty liver (AFL) rats toevaluate the effects of TFLC on AFL rats in vivo and in vitro, and study the potentialmechanism.
     The main contents are generalized as follows:1. Protective effects of TFLC on alcoholic fatty liver in rats
     A model of alcoholic fatty liver in rats was established by intaking different dosesof alcohol (concentration from5%to40%) over12weeks.The alcohol containingdrinks composition of18%sucrose. Sucrose was also set as control and GSH was usedas positive control. From7weeks, TFLC(100,200,400mg/kg) was administrated byintragastric injection (ig) daily for6weeks, at the end of12weeks, rats were fastedovernight and sacrificed. Body weight was monitored throughout the12weeks protocol.Liver index was obtained by dividing liver weight by rat weight×100. Liver specimenswere taken immediately after the rats were sacrificed. Hepatic specimens were usedH&E staining, Sudan Ⅲstaining, and Electron microscopy for morphological analysis.The concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT)in the serum were measured by commercial analysis kits.
     Compared with the model group, rats in TFLC groups kept a steady body weightgain during the whole schedule and liver index was improved markedly. Serum levelsof AST, ALT and liver MDA contents were significantly decreased in the TFLC groups,while liver homogenate contents of SOD and GSHpx were significantly increased.Morphological evaluation revealed that rats fed with alcohol for12weeks developed ahigher degree of steatosis in model group, with a mean grade of2, meanwhile, theTFLC groups had much less as well as lower size vacuoles compared with the model group. TFLC has the protective effects on AFL rats; the mechanism may be involved inanti-lipid peroxidative.
     2. Effects of TFLC on serum levels of glucose, lipids, adipocytokines and insulin inAFL rats
     From7weeks TFLC was administrated by intragastric injection (ig) daily for6weeks, the concentrations of totalcholesterol (TC), triglyceride (TG), free fatty acid(FFA), glucose, low density lipoprotein (LDL-C), and high density lipoprotein (HDL-C)in the serum were measured according to those commercial analysis kits. Serum levelsof adipocytokines such as leptin and insulin were measured by radioimmunoassay kit,and serum levers of tumor necrosis factor (TNF-α) and apolipoprotein B (APOB) wereexamined by enzyme linked immunosorbent assay method.
     The results showed that treated with TFLC for6weeks, the levels of TG, TC,LDL-C, and APOB in serum were significantly decreased, while HDL-C levels wereelevated, which indicated that TFLC could efficiently regulate disturbance of lipidmetabolism induced by chronic alcohol consumption. TFLC treatment couldsignificantly decrease serum levels of insulin, TNF-α, leptin, and glucose. Meanwhile,the expressions of TNF-α and Leptin mRNA detected by Reverse TranscriptasePolymerase Chain Reaction (RT-PCR) were suppressed in TFLC-treated groups. TFLCtreatment could improve hyperinsulinemia, hyperleptinemia, and lipid metabolicdisturbance.
     3. Regulatory effects of TFLC on serum levels of lipid metabolism relatedindicators such as ADRP, PPAR γ and Sir2in AFL rats
     Lipid metabolism related indicators such as ADRP, PPAR γ and Sir2have animportant relationship with hepatic steatosis, and insulin resistance. ADRP is anintrinsic lipid storage protein found in lipid droplets, and has been recognized to be a reliable and sensitive marker for lipid droplets in alcohol-induced fatty liver.
     Expression of ADRP, PPAR γ and Sir2in the liver were evaluated by Westernblotting, Immunohistochemistry and RT-PCR, respectively. After6weeks TFLCadministration, protein and mRNA levels of lipid metabolism related indicators in AFLrat livers corrected by β-actin was analysed. Compared with that in AFL model group,the expression of ADRP and PPAR γ were effectively down-regulated in TFLC treatedgroups, but expression of hepatic Sir2protein and hepatic PGC-1α、Sir2mRNA weresignificantly increased.
     Expression of hepatic ADRP and PPAR γ assessed by immunohistochemistry wereshowed that ADRP expression was significantly increased in model rats, predominantlyin the centrilobular regions of the liver. ADRP, visualized as brown granules in cellmembrane. Meanwhile PPAR γ expression was also significantly increased in modelrats, mainly in cell nucleus and cytolymph. Rats treated with TFLC showed apronounced reduction in the number and degree of ADRP-positive hepatocytes and wassimilar to PPAR γ expression.
     TFLC has protective effects on AFL rats; the potential mechanism may beassociated with lipid-lowering and regulation lipid metabolism related indicators suchas ADRP, PPAR γ and Sir2.
     4. In vitro study the effects of TFLC on AFL hepatocytes
     Hepatocytes were isolated from AFL rats by a modified two-step collagenaseperfusion method in situ. Hepatocytes viability, as assessed by trypan blue exclusion,exceeded80%, and hepatocytes were identified using Cytokeratin18antibodies stainingwith SP. Hepatocytes were cultured in DMEM medium containing10%fetal bovineserum. And then were inoculated in6-well culture plates. Cell viability and proliferationfunction were detected by MTT assay which relies on mitochondrial metabolic capacityof viable cells. Hepatocytes were divided into normal hepatocytes (NC), AFL hepatocytes (model, M), AFL hepatocytes with TFLC(1,10,100mg/L), AFLhepatocytes with GSH or Nic, respectively. After cultured16h, TFLC or GSH or Nicwas added into cultured supernatant. Immunohistochemistry and RT-PCR were used todetermine protein and mRNA expression of ADRPand PPAR γ, Western Blotting wasadopted to detect protein expression of Sir2. After administrated TFLC, proliferationfunction of hepatocytes was improved in TFLC treated group. RT-PCR showedexpressions of ADRP and PPAR γ mRNA were significantly decreased, and expressionof hepatic ADRP and PPAR γ assessed by immunohistochemistry shown that thenumber and color degree of ADRP and PPAR γ-positive cell expression weresignificantly decreased in TFLC treated group, meanwhile expression of Sir2proteinand mRNA were markedly increased.
     Taken as a whole, the results above demonstrate that TFLC has protective effectson AFL rats both in vivo and in vitro, the potential mechanism may be involved in itsproperties such as anti-inflammatory, anti-lipid peroxidative, modification lipidmetabolic disturbance, regulation lipid metabolism related indicators such as ADRP,PPAR γ and Sir2. TFLC might be beneficial for the prevention of excessive lipidaccumulation such as AFL.
引文
[1]曾民德,范建高.酒精性肝病的诊断与治疗.中国实用内科杂2007;27(1):21-3.
    [2] Schaffert CS, Duryee MJ, Hunter CD, Hamilton BC,3rd, DeVeney AL, Huerter MM, KlassenLW, Thiele GM. Alcohol metabolites and lipopolysaccharide: roles in the development and/orprogression of alcoholic liver disease. World J Gastroenterol2009;15:1209-18.
    [3] Xiong S, She H, Zhang AS, Wang J, Mkrtchyan H, Dynnyk A, Gordeuk VR, French SW, EnnsCA, Tsukamoto H. Hepatic macrophage iron aggravates experimental alcoholic steatohepatitis. Am JPhysiol Gastrointest Liver Physiol2008;295: G512-21.
    [4] Moriya T, Naito H, Ito Y, Nakajima T."Hypothesis of seven balances": molecular mechanismsbehind alcoholic liver diseases and association with PPARalpha. J Occup Health2009;51:391-403.
    [5] Persico M, Iolascon A. Steatosis as a co-factor in chronic liver diseases. World J Gastroenterol2010;16:1171-6.
    [6] Tsukamoto H, Gaal K, French SW. Insights into the pathogenesis of alcoholic liver necrosisand fibrosis: status report. Hepatology1990;12:599-608.
    [7] Lieber CS, DeCarli LM, Sorrell MF. Experimental methods of ethanol administration.Hepatology1989;10:501-10.
    [8]陈杰,彭承宏,沈柏用,邓侠兴,韩宝三,李宏为.肝细胞体外培养技术的研究与进展.中国组织工程研究与临床2008;12:10539-10542.
    [9] Yilmaz Y. Liver function tests: Association with cardiovascular outcomes. World J Hepatol2010;2:143-5.
    [10] Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P. Differential pattern of lipiddroplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology2008;47:1936-46.
    [11] Zhou Z. Zinc and alcoholic liver disease. Dig Dis2010;28:745-50.
    [12] Zhuge J. A decrease in S-adenosyl-L-methionine potentiates arachidonic acid cytotoxicity inprimary rat hepatocytes enriched in CYP2E1. Mol Cell Biochem2008;314:105-12.
    [13] Yang YM, Han CY, Kim YJ, Kim SG. AMPK-associated signaling to bridge the gap betweenfuel metabolism and hepatocyte viability. World J Gastroenterol2010;16:3731-42.
    [14] Ronis MJ, Hennings L, Stewart B, Basnakian AG, Apostolov EO, Albano E, Badger TM,Petersen DR. Effects of long-term ethanol administration in a rat total enteral nutrition model ofalcoholic liver disease. Am J Physiol Gastrointest Liver Physiol2010;300: G109-19.
    [15]陈玉璞,程文明,李俊.老鹰茶中黄酮类化学成分分析.安徽医科大学学报2008;43:65-7.
    [16]胡成穆,陈琳,李荣,程文明,李俊.豹皮樟总黄酮对免疫低下小鼠免疫功能的影响.中国药理学通报2007;23:804-8.
    [17]倪鸿昌,李俊,金涌,程文明,彭磊,张骏艳,黄艳.豹皮樟总黄酮对大鼠非酒精性脂肪性肝炎的防治作用.中国药理学通报2006;22:591.
    [18]吕雄文,李俊,邹宇宏,金涌,程文明,章秋,黄艳,张骏艳.老鹰茶总黄酮降血糖作用的实验研究.中国中医药科技2008;15:119-21.
    [19]王晓红,汪思应,黄德武,曹琦,李俊.大鼠酒精性肝病模型的建立及与瘦素关系的研究.中国药理学通报2007;23:1537-8.
    [20] Bujanda L, Hijona E, Larzabal M, Beraza M, Aldazabal P, Garcia-Urkia N, Sarasqueta C,Cosme A, Irastorza B, Gonzalez A, Arenas JI, Jr. Resveratrol inhibits nonalcoholic fatty liverdisease in rats. BMC Gastroenterol2008;8:40.
    [21] Amini M, Runyon BA. Alcoholic hepatitis2010: a clinician's guide to diagnosis and therapy.World J Gastroenterol2010;16:4905-12.
    [22]范建高,曾民德.脂肪性肝病. In:人民卫生出版社;2005.
    [23]曹绍岐,孟小芹,谭诗云,沈志祥.纳洛酮对大鼠酒精性脂肪肝的作用及机制探讨.浙江医药2009;31:933-6.
    [24] Nanji AA, French SW. Animal models of alcoholic liver disease--focus on the intragastricfeeding model. Alcohol Res Health2003;27:325-30.
    [25] El-Banhawey MA, Ashry MA, El-Ansary AK, Aly SA. Effect of Curcuma longa orparziquantel on Schistosoma mansoni infected mice liver--histological and histochemical study.Indian J Exp Biol2007;45:877-89.
    [26] Huang CH, Chang YY, Liu CW, Kang WY, Lin YL, Chang HC, Chen YC. Fruiting body ofNiuchangchih (Antrodia camphorata) protects livers against chronic alcohol consumption damage. JAgric Food Chem2010;58:3859-66.
    [27] Pickens MK, Yan JS, Ng RK, Ogata H, Grenert JP, Beysen C, Turner SM, Maher JJ. Dietarysucrose is essential to the development of liver injury in the methionine-choline-deficient model ofsteatohepatitis. J Lipid Res2009;50:2072-82.
    [28] Rivera CA, Abrams SH, Tcharmtchi MH, Allman M, Ziba TT, Finegold MJ, Smith CW.Feeding a corn oil/sucrose-enriched diet enhances steatohepatitis in sedentary rats. Am J PhysiolGastrointest Liver Physiol2006;290: G386-93.
    [29] Liu S, Hou W, Yao P, Zhang B, Sun S, Nussler AK, Liu L. Quercetin protects againstethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro2010;24:516-22.
    [30]肖育权,许瑟娇.60例冠心病患者血清载脂蛋白A1和B的检测分析.现代医院2009;3:84-5.
    [31]董元宝,陈延萍,尹丽娟,李波,刘同祥.载脂蛋白B与载脂蛋白AI比值与冠状动脉病变严重程度的研究.中国实用医学2009;4:31-32.
    [32] Mandal P, Park PH, McMullen MR, Pratt BT, Nagy LE. The anti-inflammatory effects ofadiponectin are mediated via a heme oxygenase-1-dependent pathway in rat Kupffer cells.Hepatology2010;51:1420-9.
    [33] You M, Rogers CQ. Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med(Maywood)2009;234:850-9.
    [34] Balasubramaniyan V, Murugaiyan G, Shukla R, Bhonde RR, Nalini N. Leptin downregulatesethanol-induced secretion of proinflammatory cytokines and growth factor. Cytokine2007;37:96-100.
    [35] Balasubramaniyan V, Shukla R, Murugaiyan G, Bhonde RR, Nalini N. Mouse recombinantleptin protects human hepatoma HepG2against apoptosis, TNF-alpha response and oxidative stressinduced by the hepatotoxin-ethanol. Biochim Biophys Acta2007;1770:1136-44.
    [36]何蓓晖,陈芝芸,赵振中,蔡丹莉.三七对酒精性肝病大鼠肝脏瘦素及其受体表达的影响.中国中医药科技2010;17:122-124.
    [37] Albano E, Vidali M. Immune mechanisms in alcoholic liver disease. Genes Nutr2009.
    [38] Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance.Gastroenterology2007;132:2169-80.
    [39]徐立,史恺,邓仪昊,陈道邦.酒精诱导大鼠脂肪肝肝变TNF-α、IL-6的表达.四川解剖学杂志2007;15:33-35.
    [40] Mandal P, Pritchard MT, Nagy LE. Anti-inflammatory pathways and alcoholic liver disease:role of an adiponectin/interleukin-10/heme oxygenase-1pathway. World J Gastroenterol2010;16:1330-6.
    [41] Ardigo D, Franzini L, Valtuena S, Numeroso F, Piatti PM, Monti L, Reaven GM, Zavaroni I.The increase in plasma PAI-1associated with insulin resistance may be mediated by the presence ofhepatic steatosis. Atherosclerosis2010;208:240-5.
    [42] Sapiro JM, Mashek MT, Greenberg AS, Mashek DG. Hepatic triacylglycerol hydrolysisregulates peroxisome proliferator-activated receptor alpha activity. J Lipid Res2009;50:1621-9.
    [43] Ohhira M, Motomura W, Fukuda M, Yoshizaki T, Takahashi N, Tanno S, Wakamiya N, KohgoY, Kumei S, Okumura T. Lipopolysaccharide induces adipose differentiation-related proteinexpression and lipid accumulation in the liver through inhibition of fatty acid oxidation in mice. JGastroenterol2007;42:969-78.
    [44] Xu G, Sztalryd C, Lu X, Tansey JT, Gan J, Dorward H, Kimmel AR, Londos C.Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasomepathway. J Biol Chem2005;280:42841-7.
    [45]刘梅芳,俎鲁霞徐,蒲申申,徐国恒.肿瘤坏死因子-α上调大鼠分化脂肪细胞脂肪分化相关蛋白水平及其机制.北京大学学报(医学版)2008;40.
    [46] Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS, Graham MJ, Crooke RM, Ahima RS.Inhibition of ADRP prevents diet-induced insulin resistance. Am J Physiol Gastrointest LiverPhysiol2008;295: G621-8.
    [47] Chang BH, Li L, Paul A, Taniguchi S, Nannegari V, Heird WC, Chan L. Protection againstfatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol CellBiol2006;26:1063-76.
    [48] Mak KM, Ren C, Ponomarenko A, Cao Q, Lieber CS. Adipose differentiation-related protein isa reliable lipid droplet marker in alcoholic fatty liver of rats. Alcohol Clin Exp Res2008;32:683-9.
    [49] Magnusson B, Asp L, Bostrom P, Ruiz M, Stillemark-Billton P, Linden D, Boren J, OlofssonSO. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglyceridesand inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol2006;26:1566-71.
    [50] Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H,Kohgo Y, Okumura T. Increased expression of PPARgamma in high fat diet-induced liver steatosisin mice. Biochem Biophys Res Commun2005;336:215-22.
    [51] Schadinger SE, Bucher NL, Schreiber BM, Farmer SR. PPARgamma2regulates lipogenesisand lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab2005;288:E1195-205.
    [52] Sun K, Wang Q, Huang XH. PPAR gamma inhibits growth of rat hepatic stellate cells and TGFbeta-induced connective tissue growth factor expression. Acta Pharmacol Sin2006;27:715-23.
    [53] Wang Z, Xu JP, Zheng YC, Chen W, Sun YW, Wu ZY, Luo M. Peroxisomeproliferator-activated receptor gamma inhibits hepatic fibrosis in rats. Hepatobiliary Pancreat Dis Int2010;10:64-71.
    [54] Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH.Metabolic regulation of SIRT1transcription via a HIC1:CtBP corepressor complex. Proc Natl AcadSci U S A2007;104:829-33.
    [55]王军,陈东风. Sirtl与非酒精性脂肪性肝病关系的研究进展.重庆医学2009;38:425-426.
    [56] Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2for life-span extension bycalorie restriction in Saccharomyces cerevisiae. Science2000;289:2126-8.
    [57]张红胜,周玥. AMPK,SIRTl与能量代谢.国际病理科学与临床杂志2009;29:202-206.
    [58]Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M,McBurney MW, Guarente L. Sirt1promotes fat mobilization in white adipocytes by repressingPPAR-gamma. Nature2004;429:771-6.
    [59] Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion ofSIRT1alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab2009;9:327-38.
    [60] Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carryinga liver specific SIRT1null mutation under a normal feeding condition. Int J Biol Sci2010;6:682-90.
    [61] Colak Y, Ozturk O, Senates E, Tuncer I, Yorulmaz E, Adali G, Doganay L, Enc FY. SIRT1asa potential therapeutic target for treatment of nonalcoholic fatty liver disease. Med Sci Monit2010;17: HY5-9.
    [62] Finck BN, Kelly DP. PGC-1coactivators: inducible regulators of energy metabolism in healthand disease. J Clin Invest2006;116:615-22.
    [63] Wick M, Koebe HG, Schildberg FW.[New ways in hepatocyte cultures: Cell immobilisationtechnique]. Altex1997;14:51-56.
    [64]张丽芳,王萍,胡晓.三种原代大鼠肝细胞分离方法的比较.江西医学院学报2009;49:4.
    [65]曹红翠.四步灌流法分离肝细胞的实验研究.浙江大学学位论文,内科学(传染病学)2007.
    [66]王伟雅,周济宏,张峰,平晓春,李幼生,黎介寿.一种改良大鼠肝细胞分离和原代培养技术.中华实验外科杂志2009;26:2.
    [67]于聪慧,冷希圣,魏玉华,刘继超,杜如昱.胶原酶及灌流时间对大鼠肝细胞分离效果的影响.中华实验外科杂志2000;17:2.
    [68]刘德敏,赵慧茹,杨莉丽,孙颖.大鼠肝细胞的原代培养及鉴定.天津医药2006;34:3.
    [69]张高峰,郭彤,魏华,马珂.采用Percoll法分离、纯化鲫肝细胞.中国水产科学2007;14:7.
    [70] Brophy CM, Luebke-Wheeler JL, Amiot BP, Khan H, Remmel RP, Rinaldo P, Nyberg SL. Rathepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte geneexpression and function. Hepatology2009;49:578-86.
    [71]杨德民王健:. LPS诱导HSC增殖与提高其胶原表达水平的细胞模型研究.中国现代医生2008;46:29-30.
    [72]廖于,李龙辉,左国庆,吴海峰,秦观海,宋世卿,袁英,邱烈,周天寒,朱照静.体外诱导的酒精性脂肪肝细胞模型的建立、鉴定及机制探讨.重庆医学2010;39:902-7.
    [1]曾民德,范建高.酒精性肝病的诊断与治疗.中国实用内科杂2007;27(1):21-3.
    [2] Ronis MJ, Hennings L, Stewart B, Basnakian AG, Apostolov EO, Albano E, Badger TM,Petersen DR. Effects of long-term ethanol administration in a rat total enteral nutrition model ofalcoholic liver disease. Am J Physiol Gastrointest Liver Physiol2010;300: G109-19.
    [3] Amini M, Runyon BA. Alcoholic hepatitis2010: a clinician's guide to diagnosis and therapy.World J Gastroenterol2010;16:4905-12.
    [4] Miranda-Mendez A, Lugo-Baruqui A, Armendariz-Borunda J. Molecular basis and currenttreatment for alcoholic liver disease. Int J Environ Res Public Health2010;7:1872-88.
    [5]王天懿.徐有青.酒精性肝病的发病机制.药品评价2007;4:98-100.
    [6] Yang KC, Huang YS, Perng CL, Lin HC, Lee SD. Polymorphism of N-acetyltransferase2Geneand the Susceptibility to Alcoholic Liver Cirrhosis: Interaction With Smoking. Alcohol Clin ExpRes.2011
    [7] Marcos M, Gomez-Munuera M, Pastor I, Gonzalez-Sarmiento R, Laso FJ. Tumor necrosisfactor polymorphisms and alcoholic liver disease: a HuGE review and meta-analysis. Am JEpidemiol2009;170:948-56.
    [8] Moriya T, Naito H, Ito Y, Nakajima T."Hypothesis of seven balances": molecular mechanismsbehind alcoholic liver diseases and association with PPARalpha. J Occup Health2009;51:391-403.
    [9]李爱华.酒精性肝病发病机制的研究进展.吉林医药2010;31:2670-2672.
    [10]赵洁,雷金艳.酒精性肝病的研究进展.北京中医药2009;28:907-908.
    [11]府炳荣,蒋凤荣.川芎嗪对非酒精性脂肪肝大鼠SOD-1的影响.科技创新导报2010:248-250.
    [12]吴娜,蔡光明,何群.氧化应激与肝脏损伤.世界华人消化杂志2008;16:3310-3315.
    [13] Ajmo JM, Liang X, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liverin mice. Am J Physiol Gastrointest Liver Physiol2008;295: G833-42.
    [14] Radosavljevic T, Mladenovic D, Vucevic D.[The role of oxidative stress in alcoholic liverinjury]. Med Pregl2009;62:547-53.
    [15] Wang Z, Yao T, Song Z. Chronic alcohol consumption disrupted cholesterol homeostasis in rats:down-regulation of low-density lipoprotein receptor and enhancement of cholesterol biosynthesispathway in the liver. Alcohol Clin Exp Res2010;34:471-8.
    [16] Schult A, Eriksson H, Wallerstedt S, Kaczynski J. Overweight and hypertriglyceridemia are riskfactors for liver cirrhosis in middle-aged Swedish men. Scand J Gastroenterol2010;46:738-44.
    [17] Grasselli E, Voci A, Pesce C, Canesi L, Fugassa E, Gallo G, Vergani L. PAT protein mRNAexpression in primary rat hepatocytes: Effects of exposure to fatty acids. Int J Mol Med2010;25:505-12.
    [18] Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S. Free fatty acids inducetransglutaminase2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. JCell Physiol.2011
    [19] Crabb DW, Liangpunsakul S. Alcohol and lipid metabolism. J Gastroenterol Hepatol2006;21Suppl3: S56-60.
    [20] Liu JF, Ma Y, Wang Y, Du ZY, Shen JK, Peng HL. Reduction of lipid accumulation in HepG2cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. PhytotherRes2010;25:588-96.
    [21] Fediuc S, Pimenta AS, Gaidhu MP, Ceddia RB. Activation of AMP-activated protein kinase,inhibition of pyruvate dehydrogenase activity, and redistribution of substrate partitioning mediate theacute insulin-sensitizing effects of troglitazone in skeletal muscle cells. J Cell Physiol2008;215:392-400.
    [22] You M, Crabb DW. Recent advances in alcoholic liver disease II. Minireview: molecularmechanisms of alcoholic fatty liver. Am J Physiol Gastrointest Liver Physiol2004;287: G1-6.
    [23]徐斌,赵慧颖.脂肪分化相关蛋白在动脉粥样硬化脂质蓄积中的作用.牡丹江医学院学报2009;30:60-63.
    [24] Sapiro JM, Mashek MT, Greenberg AS, Mashek DG. Hepatic triacylglycerol hydrolysisregulates peroxisome proliferator-activated receptor alpha activity. J Lipid Res2009;50:1621-9.
    [25] Ohhira M, Motomura W, Fukuda M, Yoshizaki T, Takahashi N, Tanno S, Wakamiya N, KohgoY, Kumei S, Okumura T. Lipopolysaccharide induces adipose differentiation-related proteinexpression and lipid accumulation in the liver through inhibition of fatty acid oxidation in mice. JGastroenterol2007;42:969-78.
    [26] Varela GM, Antwi DA, Dhir R, Yin X, Singhal NS, Graham MJ, Crooke RM, Ahima RS.Inhibition of ADRP prevents diet-induced insulin resistance. Am J Physiol Gastrointest Liver Physiol2008;295: G621-8.
    [27] Chang BH, Li L, Paul A, Taniguchi S, Nannegari V, Heird WC, Chan L. Protection against fattyliver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol2006;26:1063-76.
    [28] Mak KM, Ren C, Ponomarenko A, Cao Q, Lieber CS. Adipose differentiation-related protein isa reliable lipid droplet marker in alcoholic fatty liver of rats. Alcohol Clin Exp Res2008;32:683-9.
    [29] Magnusson B, Asp L, Bostrom P, Ruiz M, Stillemark-Billton P, Linden D, Boren J, OlofssonSO. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglyceridesand inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol2006;26:1566-71.
    [30] Li D, Wang D, Wang Y, Ling W, Feng X, Xia M. Adenosine monophosphate-activated proteinkinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosisin apolipoprotein E-deficient mice. J Biol Chem2010;285:33499-509.
    [31] Bikman BT, Zheng D, Kane DA, Anderson EJ, Woodlief TL, Price JW, Dohm GL, Neufer PD,Cortright RN. Metformin Improves Insulin Signaling in Obese Rats via Reduced IKKbeta Action ina Fiber-Type Specific Manner. J Obes2010.
    [32] Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH.AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol.Diabetes2010;59:554-63.
    [33] Lee WH, Kim SG. AMPK-Dependent Metabolic Regulation by PPAR Agonists. PPAR Res2010.
    [34]李建娥,兰怡,李琳琳,白旭东,毛新民. PRKAA2基因多态性与二甲双胍疗效的相关性研究.中国药理学通报2010;26:1041.
    [35]胡淑国,宋光耀,高宇,王敬,曲东明,刘晶.罗格列酮对老年胰岛素抵抗大鼠肝脏腺苷酸活化蛋白激酶仪表达及活性的影响.中国糖尿病杂志2010;18:102-105.
    [36] Ha SK, Kim J, Chae C. Role of AMP-activated Protein Kinase and Adiponectin duringDevelopment of Hepatic Steatosis in High-fat Diet-induced Obesity in Rats. J Comp Pathol.2011
    [37] Purohit V, Gao B, Song BJ. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin ExpRes2009;33:191-205.
    [38] Schaalan M, El-Abhar HS, Barakat M, El-Denshary ES. Westernized-like-diet-fed rats: effecton glucose homeostasis, lipid profile, and adipocyte hormones and their modulation by rosiglitazoneand glimepiride. J Diabetes Complications2009;23:199-208.
    [39] Mandal P, Park PH, McMullen MR, Pratt BT, Nagy LE. The anti-inflammatory effects ofadiponectin are mediated via a heme oxygenase-1-dependent pathway in rat Kupffer cells.Hepatology2010;51:1420-9.
    [40] You M, Rogers CQ. Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med(Maywood)2009;234:850-9.
    [41] Balasubramaniyan V, Murugaiyan G, Shukla R, Bhonde RR, Nalini N. Leptin downregulatesethanol-induced secretion of proinflammatory cytokines and growth factor. Cytokine2007;37:96-100.
    [42] Byun JS, Jeong WI. Involvement of hepatic innate immunity in alcoholic liver disease. ImmuneNetw2010;10:181-7.
    [43] Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innateimmune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol2004;287: G310-4.
    [44] Tsochatzis EA, Papatheodoridis GV, Archimandritis AJ. Adipokines in nonalcoholicsteatohepatitis: from pathogenesis to implications in diagnosis and therapy. Mediators Inflamm2009;2009:831670.
    [45] Pisto P, Ukkola O, Santaniemi M, Kesaniemi YA. Plasma adiponectin-an independent indicatorof liver fat accumulation. Metabolism.2011
    [46] Balasubramaniyan V, Shukla R, Murugaiyan G, Bhonde RR, Nalini N. Mouse recombinantleptin protects human hepatoma HepG2against apoptosis, TNF-alpha response and oxidative stressinduced by the hepatotoxin-ethanol. Biochim Biophys Acta2007;1770:1136-44.
    [47] Gove ME, Rhodes DH, Pini M, van Baal JW, Sennello JA, Fayad R, Cabay RJ, Myers MG, Jr.,Fantuzzi G. Role of leptin receptor-induced STAT3signaling in modulation of intestinal and hepaticinflammation in mice. J Leukoc Biol2009;85:491-6.
    [48] Agrawal S, Gollapudi S, Su H, Gupta S. Leptin Activates Human B Cells to Secrete TNF-alpha,IL-6, and IL-10via JAK2/STAT3and p38MAPK/ERK1/2Signaling Pathway. J Clin Immunol.2011
    [49] Handy JA, Saxena NK, Fu P, Lin S, Mells JE, Gupta NA, Anania FA. Adiponectin activation ofAMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). JCell Biochem2010;110:1195-207.
    [50] Labruna G, Pasanisi F, Nardelli C, Caso R, Vitale DF, Contaldo F, Sacchetti L. HighLeptin/Adiponectin Ratio and Serum Triglycerides Are Associated With an "At-Risk" Phenotype inYoung Severely Obese Patients. Obesity (Silver Spring).2010
    [51] Ryan VH, German AJ, Wood IS, Hunter L, Morris P, Trayhurn P. Adipokine expression andsecretion by canine adipocytes: stimulation of inflammatory adipokine production by LPS andTNFalpha. Pflugers Arch2010;460:603-16.
    [52] Gormez S, Demirkan A, Atalar F, Caynak B, Erdim R, Sozer V, Gunay D, Akpinar B, Ozbek U,Buyukdevrim AS. Adipose Tissue Gene Expression of Adiponectin, Tumor Necrosis Factor-alphaand Leptin in Metabolic Syndrome Patients with Coronary Artery Disease. Intern Med2010;50:805-10.
    [53] Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG,Wen X, Wu GD, Lazar MA. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci US A2001;98:502-6.
    [54] Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS,Lazar MA. The hormone resistin links obesity to diabetes. Nature2001;409:307-12.
    [55] Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: Functional roles and therapeuticconsiderations for cardiovascular disease. Br J Pharmacol.2011
    [56] Costandi J, Melone M, Zhao A, Rashid S. Human resistin stimulates hepatic overproduction ofatherogenic ApoB-containing lipoprotein particles by enhancing ApoB stability and impairingintracellular insulin signaling. Circ Res2010;108:727-42.
    [57] Lebensztejn DM, Wojtkowska M, Skiba E, Werpachowska I, Tobolczyk J, Kaczmarski M.Serum concentration of adiponectin, leptin and resistin in obese children with non-alcoholic fattyliver disease. Adv Med Sci2009;54:177-82.
    [58] Donohue TM, Jr. Alcohol-induced steatosis in liver cells. World J Gastroenterol2007;13:4974-8.
    [59] Albano E, Vidali M. Immune mechanisms in alcoholic liver disease. Genes Nutr2009.
    [60] Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance.Gastroenterology2007;132:2169-80.
    [61] Qin Y, Tian YP. Preventive effects of chronic exogenous growth hormone levels on diet-inducedhepatic steatosis in rats. Lipids Health Dis2010;9:78.
    [62] Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha:structure, function and interaction with anti-TNF agents. Rheumatology (Oxford)2010;49:1215-28.
    [63] Wicovsky A, Henkler F, Salzmann S, Scheurich P, Kneitz C, Wajant H. Tumor necrosis factorreceptor-associated factor-1enhances proinflammatory TNF receptor-2signaling and modifiesTNFR1-TNFR2cooperation. Oncogene2009;28:1769-81.
    [64] Deng QG, She H, Cheng JH, French SW, Koop DR, Xiong S, Tsukamoto H. Steatohepatitisinduced by intragastric overfeeding in mice. Hepatology2005;42:905-14.
    [65] Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation andhormone/growth factor/adipokine imbalance. World J Gastroenterol2010;16:4773-83.
    [66] Ardigo D, Franzini L, Valtuena S, Numeroso F, Piatti PM, Monti L, Reaven GM, Zavaroni I.The increase in plasma PAI-1associated with insulin resistance may be mediated by the presence ofhepatic steatosis. Atherosclerosis2010;208:240-5.
    [67] Yessoufou A, Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors(PPARs) at the cellular and whole organism levels. Swiss Med Wkly2010;140: w13071.
    [68] Gyamfi MA, Wan YJ. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. ExpBiol Med (Maywood)2010;235:547-60.
    [69] Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H,Kohgo Y, Okumura T. Increased expression of PPARgamma in high fat diet-induced liver steatosis inmice. Biochem Biophys Res Commun2005;336:215-22.
    [70] Moya M, Gomez-Lechon MJ, Castell JV, Jover R. Enhanced steatosis by nuclear receptorligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclearreceptor expression profile. Chem Biol Interact2010;184:376-87.
    [71] Schadinger SE, Bucher NL, Schreiber BM, Farmer SR. PPARgamma2regulates lipogenesisand lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab2005;288:E1195-205.
    [72]鲁晓岚,罗金燕,王文勇,李昂,张双保,杜文霞,胡长根,黄莺,耿燕. TNF-α、Leptin-Rb、NF-κB和PPAR γ在酒精性肝病大鼠肝细胞中的表达.西安交通大学学报(医学版)2008;29:508-512.
    [73]黄成,李俊,马陶陶. PPARγ对肝纤维化相关信号转导途径的影响.安徽医药2008;12:385-387.
    [74] Sun K, Wang Q, Huang XH. PPAR gamma inhibits growth of rat hepatic stellate cells and TGFbeta-induced connective tissue growth factor expression. Acta Pharmacol Sin2006;27:715-23.
    [75] Wang Z, Xu JP, Zheng YC, Chen W, Sun YW, Wu ZY, Luo M. Peroxisomeproliferator-activated receptor gamma inhibits hepatic fibrosis in rats. Hepatobiliary Pancreat Dis Int2010;10:64-71.
    [76] Finck BN, Kelly DP. PGC-1coactivators: inducible regulators of energy metabolism in healthand disease. J Clin Invest2006;116:615-22.
    [77] Ranhotra HS. Long-term caloric restriction up-regulates PPAR gamma co-activator1alpha(PGC-1alpha) expression in mice. Indian J Biochem Biophys2010;47:272-7.
    [78] Liu C, Lin JD. PGC-1coactivators in the control of energy metabolism. Acta Biochim BiophysSin (Shanghai)2011;43:248-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700