用户名: 密码: 验证码:
大管电色谱技术和毛细管电色谱新型固定相研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电色谱(CEC)是近年来新兴的高效、快速的微分离分析技术,是色谱领域的研究热点之一。众多的科研工作者就电色谱的基本理论、柱制备技术、新型固定相合成及应用展开了大量的工作。本论文主要对大管电色谱技术和毛细管电色谱新型固定相进行了研究。
     1.大管电色谱(WE)技术
     CEC由于受焦耳热的限制,大多使用100μm以下的毛细管,低的载样量严重限制了其用于制备/半制备,也降低了检测的灵敏度。本论文设计并建立了一套大管电色谱系统,使用大内径石英管作为分离管道,在内部插入合适内径的毛细管作为制冷管,并通以冷却液,这样电泳过程中产生的焦耳热就可以及时地带出体系,从根本上解决了大管电色谱焦耳热的问题,使电色谱在大分离管道中进行成为可能。
     利用构建的WE体系,成功地制作了丙烯酰胺整体柱。以硫脲、萘和甲苯三种中性化合物为探针化合物,在电色谱模式下对该整体柱进行了评价。实验结果表明,大管体系具有良好的散热能力,即使在625 V cm-1的高电场下也没有发现焦耳热积累的现象。对于联苯最大载样量可以达到3μg,与普通的毛细管电色谱相比,载样量提高了几百倍。此外,在该大管整体柱上还对一种食品染料进行了分离,取得了很好的分离效果。使用该整体柱还对穿心莲片中的脱水穿心莲内酯进行了测定。
     在WE体系的基础上成功进行了琼脂糖凝胶电泳实验。由于引入内制冷体系,电泳过程中产生的焦耳热可以及时消除,从而实现高电场下分离,克服了常规琼脂糖凝胶电泳分离电压低、分离时间长的问题。由于使用大内径石英管进行直接紫外检测,避免了使用染色剂对人体的危害,同时灵敏度大大提高,比平板琼脂糖凝胶电泳提高1000倍。
     2.磺酸化聚β-环糊精硅胶整体柱CEC
     CEC具有高效性、高选择性、消耗的溶剂和手性样品少等优点,在手性化合物拆分方面也受到很多科研工作者的高度关注。本文首次制备了新型磺酸化聚β-环糊精整体柱。该环糊精整体柱通过化学键将环糊精键合到整体柱上,易于除去磺酸化过程中产生的高浓度无机盐。将其用于手性药物的拆分,得到了较好的分离效果,并且分离速度快,对测定的手性样品20 min内均能实现分离,部分样品十分钟之内即可以实现分离。
     3.有机硅树状化合物填充柱CEC
     本文首次将有机硅树状化合物固定相用于毛细管电色谱填充柱研究。实验结果表明,树状填料具有典型的反相色谱性质,在低的键合量情况下具有较好的疏水性能,将其用于中性化合物分离时取得了较好的效果,对于硫脲柱效将近90000 N m-1。
Capillary electrochromatography is a new micro-separation technique with high performance and fast speed. Much research is focused on its theory, column technique, new stationary phase and application. The main work of this dissertation is shown as follow:
     1. Wide bore electrochromatography (WE) technique
     The separation channel of CEC is restricted to capillary scale with id smaller than 100μm due to the limit of Joule heat, which results in low loadability and poor concentration detectability. In order to solve this problem, a new device was setup to perform wide bore electrochromatography. A quartz tube with millimeter id was used as the separation channel and a proper coolant was pumped through the inner cooling capillary which is coaxially inserted into the separation channel to dispel the Joule heat generated during electrophoresis. The WE system made it possible to perform electrochromatography in a wide bore tube.
     Polyacrylamide monolithic column was prepared successfully on the WE system.
     The column was evaluated in the electrochromatography mode using thiourea, naphthalene and biphenyl as probe compounds. Results indicated that this system can dissipate Joule heat in situ in real time, and has higher loadability compared with CEC. Agarose gel column was prepared on the WE system. Higher electric field strength could be applied across the gel column due to the inner cooling mechanism, which made the separation faster than conventional agarose gel electophoresis. At the same time, lower concentration detectablility was obtained due to direct UV detection and longer light distance.
     2. Sulfated poly (β-cyclodextrin) silica-based monolithic column for CEC
     A sulfated poly (β-cyclodextrin) silica-based monolithic column was prepared in capillary. Then it was evaluated in the CEC mode. Good enantiomeric separations were obtained when the column was applied in chiral separation. 3. Carbosilane dendrimer packed column for CEC
     Carbosilane dendrimer modified silica was synthesized and then packed into capillary by slurry method to perform CEC. Results indicated that carbosilane dendrimer stationary phase has typical reversed phase characteristics; comparable hydrophobic selectivity was obtained even with low bonding density. Several neutral compounds were separated on the stationary phase with satisfactory efficiency. The theoretical plate number for thiourea was almost up to 90 000 N m-1.
引文
[1] Pretorius V, Hopkins B J, Schieke J D. A new concept for high-speed liquid chromatography, J. Chromatogr., 1974, 99: 23~30
    [2] Jorgenson J W, Lukacs K D. High-resolution separations based on electrophoresis and electroosmosis, J. Chromatogr., 1981, 218: 209~216
    [3] Tsuda T, Nomura K, Nakagawa G J. Open-tubular microcapillary liquid chromatography with electro-osmosis flow using a UV detector, J. Chromatogr., 1982, 248: 241~247
    [4] Knox J H, Grant I H. Miniaturisation in pressure and electroendosmotically driven liquid chromatography: some theoretical consideration, Chromatographia, 1987, 24: 135~143
    [5] Knox J H. Thermal effects and band spreading in capillary electro-separation, Chromatographia, 1988, 26: 329~337
    [6] Tsuda T, Muramatsu Y. Electrochromatography with continuous sample introduction, J. Chromatogr., 1990, 515: 645~652
    [7] Mayer S, Schurig V. Enantiomer separation by electrochromatography on capillaries coated with chirasil-dex, J. High Resol. Chromatogr. 1992, 15: 129~131
    [8] Lord G A, Gordon D B, Tetler L W, et al. Electrochromatography-electrospray mass spectrometry of textile dyes, J. Chromatogr. A, 1995, 700: 27~33
    [9] Fujimoto C. Charged polyacrylamide gels for capillary electrochromatographic separations of uncharged low molecular weight compounds, Anal. Chem., 1995, 67: 2050~2053
    [10] Yan C, Dadoo R, Zare R N, et al. Gradient elution in capillary electrochromatography, Anal. Chem., 1996, 68: 2726~2730
    [11] Lin J M, Nakagama T, Uchiyama K, et al. Enantioseparation of d, l-phenylalanine by molecularly imprinted polymer particles filled capillary electrochromatography, J. Liq. Chromatogr., 1997, 20: 1489~1506
    [12] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting, Anal. Chem., 1997, 69: 1179~1183
    [13] Pusecker K, Schewitz J, Gfr?rer P, et al. On-line coupling of capillary electrochromatography, capillary electrophoresis and capillary HPLC with nuclear magnetic resonance, Anal. Chem., 1998, 70: 3280~3285
    [14] Adam T, Luedtke S, Unger K K. Packing and stationary phase design for capillary electroendosmotic chromatography (CEC), Chromatographia, 1999, 49: S49-S55
    [15] Luedtke S, Adam T, Doehren N, et al. Toward the ultimate minimum particle diameter of silica packings in capillary electrochromatography, J. Chromatogr. A, 2000, 887: 339~346
    [16] Cikalo M G, Bartle K D, Myers P. Attempt to define the role of the length of the packed section in capillary electrochromatography, J. Chromatogr. A, 1999, 836: 25~34
    [17] 张丽华, 邹汉法, 施维, 等. 中性溶质在反相毛细管电色谱中的保留行为, 色谱, 1998, 16(2): 106~110
    [18] Mueller T, Posch U C, Lindner H H. Separation of phenylthiohydantoin amino acids by capillary electrochromatography, Electrophoresis, 2004, 25: 578~585
    [19] Crego L, Martinez J, Martina M L. Influence of mobile phase composition on electroosmotic flow velocity, solute retention and column efficiency in open-tubular reversed-phase capillary electrochromatography, J chromatogr. A, 2000, 869: 329~337
    [20] Banholczer A, Pyell U. Some considerations concerning the composition of the mobile phase in capillary electrochromatography, J. Chromatogr. A, 2000, 869, 363~374
    [21] Fu H J, Xie C H, Zou H F, et al. Monolithic columns with mixed modes of reversed-phase and anion-exchange stationary phase for capillary electrochromatography, J. Chromatogr. A, 2004, 1044: 237~244
    [22] Kenndler S E. Electrophoresis in fused-silica capillaries: the influence of organic solvents on the electroosmotic velocity and the zeta potential, Anal. Chem., 1991, 63: 1801~1804
    [23] Yan C, Electrokinetic packing of capillary column, US patent, 1993, NO. 5453163
    [24] Tang Q L, Lee M L. Column technology for capillary electrochromatography, Trends Anal. Chem., 2000, 19: 648~663
    [25] Qu Q S, Hu X Y, Zhu X S, et al. Packing capillary electrochromatography columns using vacuum - a preliminary study, J. Sep. Sci., 2004, 27: 1229~1232
    [26] Zhang C Q, Zhu C F, Lin X L, et al. The production of electrochromatography capillary columns using gas pressure powered dry-packing method, Anal. Lett., 2003, 36: 1411~1421
    [27] Reynolds K J, Maloney T D, Colón L A, et al. Capillary electrochromatography in columns packed by gravity - preliminary study, Analyst, 1998, 123: 1493~1495
    [28] Fermier A M, Colón L A. Capillary electrochromatography in columns packed by centripetal forces, J. Microcol. Sep., 1998, 10: 439~447
    [29] Crescentini G, Bruner F, Mangani F, et al. Preparation and evaluation of dry-packed capillary columns for high-performance liquid chromatography, Anal. Chem., 1988, 60: 1659~1662
    [30] Guan Y, Zhou L, Shang Z. Dry-packed capillary columns for micro HPLC, J. High Res. Chromatogr., 1992, 15: 434~436
    [31] Maloney T D, Colón L A. A drying-step in the protocol to pack capillary columns by centripetal forces for capillary electrochromatography, Electrophoresis, 1999, 20: 2360-2365
    [32] Maloney T D, Colón L A. A Comparison of column packing techniques for capillary electrochromatography, J. Sep. Sci., 2002, 25: 1215~1225
    [33] Piraino S M, Dorsey J G. Comparison of frits used in the preparation of packed capillaries for capillary electrochromatography, Anal. Chem., 2003, 75: 4292~4296
    [34] Zhang X M, Huang S. Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology, J. Chromatogr. A, 2001, 910: 13~18
    [35] Chen J -R, Dulay M T, Zare R N, et al. Macroporous photopolymer frits for capillary electrochromatography, Anal.Chem., 2000, 72: 1224~1227
    [36] Viklund C, Pontén E, Glad B, et al. Molded macroporous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties: preparation of monoliths using photoinitiated polymerization, Chem. Mater., 1997, 9: 463~471
    [37] van den Bosch S E, Heemstra S, Kraak J C, et al. Experiences with packed capillary electrochromatography at ambient pressure, J Chromatogr. A, 1996, 755: 165~177
    [38] Lord G A, Gordon D B, Myers P, et al. Tapers and restrictors for capillary electrochromatography and capillary electrochromatography – mass spectrometry, J.Chromatogr. A, 1997, 768: 9~16
    [39] Mayer M, Rapp E, Marck C. et al. Fritless capillary electrochromatography, Electrophoresis, 1999, 20: 43~49
    [40] Liu C Y. Stationary phases for capillary electrophoresis and capillary electrochromatography, Electrophoresis, 2001, 22: 612~628
    [41] Ye M L, Zou H F, Liu Z, et al. Separation of peptides by strong cation-exchange capillary electrochromatography, J. Chromatogr. A, 2000, 869: 385~396
    [42] Enlund A M, Hagman G, Isaksson R, et al. Capillary electrochromatography of basic compounds in pharmaceutical analysis, Trends Anal. Chem., 2002, 21:, 412~427
    [43] Ye M L, Zou H F, Ni J Y. Separation of acidic compounds by strong anion-exchange capillary electrochromatography, J. Chromatogr. A, 2000, 887: 223~231
    [44] Kitagawa S, Tsuji A, Watanabe H, et al. Pressurized flow-driven capillary electrochromatography using ion-exchange resins, J. Microcol. Sep., 1997. 9: 347~356
    [45] Kapnissi-christodoulou C P, Zhu X F, Warner I M. Analytical separations in open-tubular capillary electrochromatography, Electrophoresis, 2003, 24: 3917~3934
    [46] Guihen E, Glennon J D. Recent highlights in stationary phase design for open-tubular capillary electrochromatography, J. Chromatogr. A, 2004, 1044: 67~81
    [47] Pesek J J, Matyska M T, Sentellas S, et al. Multi-modal open tubular capillary electrochromatographic analysis of amines and peptides, Electrophoresis, 2002: 23: 2982~2989
    [48] Kamande M W, Kapnissi C P, Zhu X, et al. Open-tubular capillary electrochromatography using a polymeric surfactant coating, Electrophoresis, 2003, 24: 945~951
    [49] Yang L, Guihen E, Glennon J D, et al. Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography, Anal. Chem., 2005, 77: 1840~1846
    [50] Pesek J J, Matyska M T, Dawson G B, et al. Open tubular capillary electrochromatography of synthetic peptides on etched chemically modified columns, Anal. Chem., 2004, 76: 23~30
    [51] Miller M D, Baker G L, Bruening M L. Polymer-brush stationary phases for open-tubular capillary electrochromatography, J. Chromatogr. A, 2004, 1004: 323~330
    [52] Svec F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography, J. Sep. Sci., 2005, 28: 729~745
    [53] Li W, Fries D P, Malik A. Sol-gel stationary phases for capillary electrochromatography, J. Chromatogr. A, 2004, 1044: 23~52
    [54] Zou H F, Huang X D, Ye M L, et al. Monolithic stationary phases for liquid chromatography and capillary electrochromatography, J.Chromatogr.A, 2002, 954: 5~32
    [55] Ishizuka N, Minakuchi H, Tanaka N, et al. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions, Anal. Chem., 2000, 72: 1275~1280
    [56] Kato M, Dulay M T, Zare R N, et al. Effect of preparatory conditions on the performance of photopolymerized sol-gel monoliths for capillary electrochromatography, J. Chromatogr. A, 2002, 961: 45~51
    [57] Constantin S, Freitag R. One-step synthesis of monolithic silica nanocomposites in fused silica capillaries, J. Sol-Gel Sci. Tech., 2003, 28: 71~80
    [58] Allen D, El Rassi Z. Capillary electrochromatography with monolithic silica columns III Preparation of hydrophilic silica monoliths having surface-bound cyano groups: chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species, J. Chromatogr. A, 2004, 1029: 239~247
    [59] Fu H J, Jin W H, Zou H F, et al. Peptides separation in hydrophilic interaction capillary electrochromatography, Elelctrophoresis, 2003, 24: 2084~2091
    [60] Chen Z L, Hobo T. Chemically L-phenylalaninamide-modified monolithic silica column prepared by a sol-gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography, Anal. Chem., 2001, 73: 3348~3357
    [61] Chen Z L, Uchiyama K, Hobo T. Chemically modified chiral monolithic silica column prepared by a sol-gel process for enantiomeric separation by micro high-performance liquid chromatography, J. Chromatogr. A, 2002, 942: 83~91
    [62] Qin F, Liu Y, Chen X, et al. Capillary electrochromatographic separation of enantiomers under aqueous mobile phases on a convalently bonded cellulose derivative chiral stationary phase, Electrophoresis, 2005, 26: 3921~3929
    [63] Kang J W, Wistuba D, Schruig V. A Chirasil-Dex modified chiral monolithic column for enantiomer separation by capillary electrochromatography, Electrophoresis, 2002, 23: 1116~1120
    [64] Minakuchi H, Nakanishi K, Soga N, et al. Octadecylsilylated porous silica rods as separation media for reversed phase liquid chromatography, Anal. Chem., 1996, 68: 3498~3501
    [65] Kobayashi H, Smith C, Hosoya K, et al. Capillary electrochromatography on monolithic silica columns, Anal. Sci., 2002, 18: 89~92
    [66] Fujimoto C. Preparation of fritless packed silica columns for capillary electrochromatography, J. High. Resol. Chromatogr., 2000, 23: 89~92
    [67] 施治国, 冯钰锜, 达世禄. 凝胶技术制备毛细管硅胶整体柱及其应用 分析科学学报, 2003, 19(6): 503~506
    [68] Dulay M T, Zare R N. Determination of glutamine and serine in rat cerebrospinal fluid using capillary electrochromatography with a modified photopolymerized sol gel monolithic column, J. Chromatogr. A, 2003, 1004: 209~215
    [69] Xie C H, Hu J, Zou H F, et al. Preparation of monolithic silica column with strong cation-exchange stationary phase for capillary electrochromatography, J. Sep. Sci., 2005, 28: 751~756
    [70] Hutchinson J P, Hilder E F, Macka M, et al. Preparation and characterisation of anion-exchange latex-coated silica monoliths for capillary electrochromatography, J. Chromatogr. A, 2006, 1109: 10~18
    [71] Allen D, EI Rassi Z. Capillary electrochromatography with monolithic-silica columns. II. Preparation of amphiphilic silica monoliths having surface-bound cationic octadecyl moieties and their chromatographic characterization and application to the separation of proteins and other neutral and charged species, Analyst, 2003, 128: 1249~1256
    [72] Yan L J, Zhang Q H, Zhang Y K, et al. Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography, J. Chromatogr. A, 2004, 1046: 255~261
    [73] Hayes J D, Malik A. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography, Anal. Chem., 2000, 72: 4090~4099
    [74] Dulay M T, Quirino J P, Bennett B D, et al. Enhanced proteolytic activity of covalently bound enzymes in photopolymerized sol gel, Anal. Chem., 2001, 73: 3921~3926
    [75] Kato M, Sakai-Kato K, Matsumoto N. Cationic starch derivatives as dynamic coating additives for analysis of amino acids and peptides using poly(methyl methacrylate) microfluidic devices, Anal. Chem., 2002, 74: 1915~1921
    [76] Ding G S, Da Z L, Yuan R J, Bao J J. Reversed-phase and weak anion-exchange mixed-mode silica-based monolithic column for capillary electrochromatography electrophoresis, 2006, 27: 3363~3372
    [77] Minesso A, Genna F, Finotto T, et al. Synthesis and characterisation of sulfated zirconia sol-gel systems, J. Sol-Gel Sci. Tech., 2002, 24: 197~206
    [78] Marinsek M, Macek J, Meden T. Starved water hydrolysis of different precursors and its influence on the properties of precipitated zirconia, J. Sol-Gel Sci. Tech., 2002, 23: 119~127
    [79] Yu J, Ju H. Preparation of porous Titania sol-gel matrix for immobilization of horseradish perodase by a vapor deposition method, Anal. Chem., 2002, 74: 3579~3583
    [80] Zhang K, Yan C, Gao R Y. Preparation and evaluation of a series of reversed-phase monolithic columns for capillary electrochromatography, Anal. Lett., 2004, 37: 2363~2377
    [81] Fujimoto C, Kino J, Sawada H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow, J. Chromatogr. A, 1995, 716: 107~113
    [82] Fujimoto C, Fujiso Y, Matsuzawa E. Fritless packed columns for capillary electrochromatography: separation of uncharged compounds on hydrophobic hydrogels, Anal. Chem., 1996, 68: 2753~2757
    [83] Hjérten S, Nakazato K, Mohammad J, et al. Reversed-phase chromatography of proteins and peptides on compressed continuous beds, Chromatographia, 1993, 37: 287~294
    [84] Hoegger D, Freitag R. Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography, J. Chromatogr. A, 2001, 914: 211~222
    [85] Palm A, Novotny M V. Macroporous polyacrylamide/poly(ethylene glycol) matrixes as stationary phases in capillary electrochromatography, Anal. Chem., 1997, 69: 4499~4507
    [86] Végvári A, Foldesi A, Hjérten S, et al. A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition, Electrophoresis, 2000, 21: 3116~3125
    [87] Pucci V, Raggi M A, Svec F, et al. Monolithic columns with a gradient of functionalities prepared via photoinitiated grafting electrochromatography, J. Sep. Sci., 2004, 27: 779~788
    [88] Ping G C, Zhang Y K, Zhang W B, et al. On-line concentration of neutral and charged species in capillary electrochromatography with a methacrylate-based monoithic stationary phase, Electrophoresis, 2004, 25: 421~427
    [89] Preinerstorfer B, Lindner W, L?mmerhofer M. Polymethacrylate-type monoliths functionalized with chiral amino phosphonic acid-derived strong cation exchange moieties for enantioselective nonaaqueous capillary electrochroamtography and investigation of the chemical composition of the monolithic polymer, Electrophoresis, 2005, 26: 2005~2018
    [90] L?mmerhofer M, Svec F, Fréchet J M J. Chrial monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. I. Optimization of polymerization conditions, porous properties and chemistry of the stationary phase, Anal. Chem., 2000, 72: 4614~4622
    [91] L?mmerhofer M, Svec F, Fréchet J M J. Chrial monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. II. Effect of chromatographic conditions on the chiral separations, Anal. Chem., 2000, 72: 4623~4628
    [92] L?mmerhofer M, Svec F, Fréchet J M J, et al. Capillary electrochroamtography in anion-exchange and normal-phase mode using monolithic stationary phases, J. Chromatogr. A, 2001, 925: 265~277
    [93] Fu H J, Xie C H, Dong J, et al. Monolithic column with zwitterionic stationary phase for capillary electrochromatography, Anal. Chem., 2004, 76: 4866~4874
    [94] Wu R A, Zou H F, Fu H J, et al. Separation of peptides on mixed mode of reversed-phase and ion-exchange capillary electrochromatography with a monolithic column, Electrophoresis, 2002, 23: 1239~1245
    [95] Wu R A, Zou H F, Ye M L, et al. Separation of basic, acid and neutral compounds by capillary electrochromatography using uncharged monolithic capillary columns modified with anionic and cationic surfactants, Electrophoresis, 2001, 22: 544~551
    [96] Svec F. Horvath's contribution to the theory and practice of capillary electrochromatography, J. Sep. Sci., 2004, 27: 1255~1272
    [97] Chirica G S, Remcho V T. Novel monolithic columns with templated porosity, J. Chromatogr. A 2001, 924: 223~232
    [98] Chuang S C, Chang C Y, Liu C Y. Polystyrene monolithic column functionalized with copper-iminodiacetate complex as a stationary phase for open tubular capillary electrochromatography, J. Chromatogr. A, 2004, 1044: 229~236
    [99] Gusev I, Huang X, Horváth C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography, J. Chromatogr. A, 1999, 855: 273~290
    [100] Zhang S, Zhang J, Horváth C. Rapid separation of peptides and proteins by isocratic capillary electrochromatography at elevated temperature, J. Chromatogr. A, 2001, 914: 189~200
    [101] Xiong B H, Zhang Y K, Zou H F, et al. Capillary electrochromatography with monolithic poly (styrene-codivinylbenzene-co-methacrylic acid), J. High Resol. Chromatogr., 2000, 23: 67~72
    [102] Jin W H, Fu H J, Huang X D, et al. Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography, Electrophoresis, 2003, 24: 3172~3180
    [103] Schweitz L, Andersson I A, Nisson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics, J. Chromatogr. A, 1997, 792: 401~409
    [104] Lin J M, Nakagama K, Uchiyama K, et al. Temperature effect on chiral recognition of some amino acids with molecularly imprinted polymer filled capillary electrochromatography, Biomed. Chromatogr., 1997, 11: 298~302
    [105] Lin J M, Nakagama K, Hobo T, et al. Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents, J. Anal. Chem., 1997, 357: 130~132
    [106] Ratunayake C K, Oh C S, Henry M. Particle loaded monolithic sol-gel columns for capillary electrochromatography: a new dimension for high performance liquid chromatography, J. High. Resol. Chromatogr., 2000, 23: 81~88
    [107] Ratunayake C K, Oh C S, Henry M. Characteristics of particle-loaded monolithic sol-gel columns for capillary electrochromatography I. Structural, electrical and band-broadening properties, J. Chromatogr. A, 2000, 887: 277~285
    [108] Tang Q L, Wu N J, Lee M. Continuous bed columns containing sol-gel bonded large-pore octadecylsilica for capillary electrochromatography, J. Microcol. Sep., 1999, 11: 550~561
    [109] Tang Q L, Lee M L. Monolithic columns containing sol-gel bonded octadecylsilica for capillary electrochromatography, J. Chromatogr. A, 2000, 887: 265~275
    [110] Chirica G S, Remcho V T. Fritless capillary columns for HPLC and CEC prepared by immobilizing the stationary phase in an organic polymer matrix, Anal. Chem., 2000, 72: 3605~3610
    [111] Dulay M T, Kulkarni R P, Zare R N. Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles, Anal. Chem., 1998, 70: 5103~5107
    [112] Gu X, Wang Y, Zhang X M. Large-bore particle-entrapped monolithic precolumns prepared by a sol-gel method for on-line peptides trapping and preconcentration in multidimensional liquid chromatography system for proteome analysis, J. Chromatogr. A, 2005, 1072: 223~232
    [113] Poppe H, Kraak J C. Influence of thermal conditions on the efficiency. of high-performance liquid chromatographic columns, J. Chromatogr., 1983, 282: 399~412
    [114] Poppe H, Kraak J C, Hubber J F K, et al. Temperature gradients in HPLC columns due to viscous heat dissipation, Chromatographia, 1981, 14: 515~523
    [115] Dittmann M M, Rozing G P, Ross G, et al. Advances in capillary electrochromatography, J. Capil. Electrophor., 1997, 4: 201~212
    [116] Que A H, Novotny M V. Separation of neutral saccharide mixtures with capillary electrochromatography using hydrophilic monolithic columns, Anal. Chem., 2002, 74: 5184~5191
    [117] Que A H, Mechref Y, Novotny M V, et al. Coupling capillary electrochromatogarphy with fourier-transform mass spectrometry for characterizing complex oligosaccharide pools, Anal. Chem., 2003, 75: 1684~1690
    [118] Que A H, Novotny M V. Structural characterization of neutral oligosaccharide mixtures through a combination of capillary electrochromatography and ion trap tandem mass spectrometry, Anal. Bioanal. Chem., 2003, 375: 599~608
    [119] Barceló-Barrachina E, Moyano E, Galceran M T. State-of-the-art of the hyphenation of capillary electrochromatography with mass spectrometry, Electrophoresis, 2004, 25: 1927~1948
    [120] Yamamoto H, Baumann J, Erni F. Electrokinetic reversed-phase chromatography with packed capillaries, J. Chromatogr. 1992, 593: 313~319
    [121] Yan C, Schaufelberger D, Erni F. Electrochromatography and micro high-performance liquid-chromatography with 320-μm id packed-columns, J. Chromatogr. A, 1994, 670: 15~23
    [122] Chen J -R, Zare R N, Peters E C, et al. Semipreparative capillary electrochromatography, Anal. Chem., 2001, 73: 1987~1992
    [123] Qu Q S, He Y Z, Gan W E, et al. Electrochromatography with a 2.7 mm inner diameter monolithic column, J. Chromatogr. A, 2003, 983: 255~262
    [124] Qu Q S, Xu Q, He Y Z, et al. Reduced-bore monolithic silica column modified with C8-TEOS for reversed-phase electrochromatography, J. Sep. Sci., 2004, 27: 725~728
    [125] Holman J P, Heat Transfer, 9th Edition, McGraw-Hill Companies, Inc: New York, 2002
    [126] Kreith F, Boehm R F, Raithby G D, et al, Heat and Mass Transfer, CRC Press LLC: Boca Raton, 1999
    [127] Tsuda T. Electrochromatography using high applied voltage, Anal. Chem.,1987, 59: 521~523
    [128] Eimer T, Unger K K, Tsuda T, et al. Pressurized flow electrochromatography with reversed phase capillary columns, Anal. Chem., 1995, 352: 649~653
    [129] Yao C Y, Gao R Y, Yan C. Quantitative sample injection for capillary electrophoresis, J. Sep. Sci., 2003, 26: 37~42
    [130] Nakashima R, Kitagawa S, Yoshida T, et al. Study of flow rate in pressurized gradient capillary electrochromatography using splitter and separation of peptides using an amide stationary phase. J. Chromatogr. A, 2004, 1044: 305~309
    [131] Hoegger D, Freitag R. Investigation of conditions allowing the synthesis of acrylamide-based monolithic microcolumns for capillary electrochromatography and of factors determining the retention of aromatic compounds on these stationary phases, Electrophoresis, 2003, 24: 2958~2972
    [132] Végvári á, F?ldesi A, Hetényi C, et al. A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition, Electrophoresis, 2000, 21: 3116~3125
    [133] Wistuba D, Czasla H. Enantiomer separation of pressure -supported electrochromatography using capillaries packed with a permethyl-β -cyclodextrin stationary phase, J Chromatogr. A, 1998, 815: 183~188
    [134] Wistuba D, Banspach L, Schurig V. Enantiomeric separation by capillary electrochromatography using monolithic capillaries with sol-gel-glued cyclodextrin-modified silica particles, Electrophoresis, 2005, 26: 2019~2026
    [135] Wistuba D, Schurig V. Enantiomer separation by capillary electrochromatography on a cyclodextrin-modified monolith, Electrophoresis, 2000, 21: 3152~3159
    [136] Lin B, Shi Z G, Zhang H J, et al. Perphenylcarbamoylated β-cyclodextrin bonded-silica particles as chiral stationary phase for enantioseparation by pressure-assisted capillary electrochromatography, Electrophoresis, 2006, 27: 3057~3065
    [137] Chen Z L, Ozawa H, Uchiyama K, et al. Cyclodextrin-modified monolithic columns for resolving dansyl amino acid enantiomers and positional isomers by capillary electrochromatography, Electrophoresis, 2003, 24: 2550~2558
    [138] Takashi K, Kyoji U. Enantiomeric separations of acidic and neutral compounds by capillary electrochromatography with β-cyclodextrin-bonded positively charged polyacrylamide gels, J. High. Resol. Chromatogr., 2000, 23: 59~66
    [139] Takashi K, Kyoji U. Enantiomeric separations of acidic and neutral compounds by capillary electrochromatography with β-cyclodextrin-bonded charged polyacrylamide, Anal. Sci., 1999, 15: 791~794
    [140] Stalcup A, Gahm K H. Application of sulfated cyclodextrins to chiral separations by capillary zone electrophoresis, Anal. Chem., 1996, 68: 1360~1368
    [141] Stalcup A, Gahm K H. A sulfated cyclodextrin chiral stationary phase for high-performance liquid chromatography, Anal. Chem., 1996, 68: 1369~1374
    [142] Jiskra J, Claessens H A, Cramers C A. Stationary and mobile phases in capillary. electrochromatography, J. Sep. Sci., 26: 1305~1330
    [143] Peric I, Kenndler E. Recent developments in capillary electrokinetic chromatography with replaceable charged pseduostationary phases or additives, Electrophoresis, 2003, 24: 2924~2934
    [144] Tanaka N, Fukutome T, Tanigawa T, et al. Structural selectivity provided by starburst dendrimers as pseudostationary phase in electrokinetic chromatography, J. Chromatogr. A, 1995, 699: 331~341
    [145] Chao H C, Hanson J E. Dendritic polymers as bonded stationary phases in capillary electrochromatography, J. Sci. Sep., 2002, 25, 345~350
    [146] 张志胜, 杨屹. 以枝形大分子聚酰胺-胺(PAMAM)为键合固定相的开管毛细管电色谱柱的制备及评价, 高等学校化学学报, 2006,27(1):47~51
    [147] 陈国文, 赵士贵, 冯圣玉. 有机硅树枝状化合物-硅胶键合固定相的制备及其在色谱中的应用, 山东大学学报(理学版), 2002, 40(6): 88~93
    [148] Smith N W, Evans M B. The analysis of pharmaceutical compounds using electrochromatography, Chromatographia, 1994, 38: 649~657
    [149] Behnke B, Grom E, Bayer E. Evaluation of the parameters determining the performance of electrochromatography in packed capillary columns, J. Chromatogr. A, 1995, 716: 207~213
    [150] Dulay M T, Yan C, Rakestraw D J, et al. Automated capillary electromatography: reliability and reproducibility studies, J. Chromatogr. A 1996, 725: 361~366
    [151] Vigh G, Varga-Puchony Z. Influence of temperature on the retention behavior of members of homologous series in reversed-phase high-performance liquid chromatography, J. Chromatogr., 1980, 196: 1~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700