用户名: 密码: 验证码:
新型手性选择剂的合成及其毛细管电泳分离分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效毛细管电泳(HPCE)是近年来发展起来的一种简便、高效、灵敏、快速和微量的液相微分离分析技术,广泛应用于生命科学、化学和药学等研究领域,特别是在手性化合物分离、药物分析、生物大分子分析和环境分析等领域受到人们越来越多的关注,现已成为手性药物分离中有效的检测手段之一。在毛细管电泳手性分析中,通常是将手性选择剂加入背景电解质中构建手性分离环境,在分离过程中由于不同构型的对映体与手性选择剂的相互作用不同,导致不同对映体的有效电泳淌度不同,最终达到分离的目的。
     本论文以天然β-环糊精(β-CD)为基础,合成了4种新型手性选择剂,并用于毛细管电泳分离和测定手性邻二醇、手性芳香仲醇和手性氨基酸等多种手性化合物,并对手性分离的原理进行了初步探讨。主要研究工作有以下几个方面:
     1.在文献基础上,以CaH_2为缚酸剂,合成了用于不对称双羟基化反应(AD反应)的手性配体(QN)2PHAL,将其用于8种潜手性烯烃的AD反应,取得了良好的实验结果。在此基础上,以天然β-CD作为毛细管电泳手性选择剂,建立了快速有效的分离8种烯烃AD反应产物对映体的新方法,并探讨了影响手性分离的若干原因。在优化的电泳条件下,所有邻二醇对映体在15min内都实现了基线分离。用所建立的方法测定了AD反应合成样品的化学纯度和百分对映体过量值(%ee)。该法的测定结果与HPLC测定结果相一致。
     2.通过对β-环糊精结构中C6-位的修饰,合成了2种阳离子型氨基化-β-环糊精(β-CDen和β-CDdien)手性选择剂。对氨基化-β-环糊精合成过程中的重要中间体(6-OTs-β-CD)的合成方法进行了改进,简化了操作步骤,将化学产率从11%提高到23%。然后在DMAP催化作用下该中间体分别与过量的乙二胺和二亚乙基三胺作用,分别以50.3%和51.6%的产率得到β-CDen和β-CDdien。在此基础上,将合成的二种氨基化-β-环糊精用于手性拆分中性邻二醇对映体,取得了良好的手性分离效果,其手性识别能力明显优于天然中性β-环糊精,特别是对端基手性邻二醇表现出更加独特的手性识别作用。以β-CDen为优选的手性选择剂,建立了毛细管电泳分离分析8种手性邻二醇的新方法,在优化条件下8种手性邻二醇均得到基线分离。用建立的方法测定了8种不对称二羟化反应产物的百分对映体过量值(%ee),并与HPLC方法的测定结果比较,二者完全一致。
     3.以高磺化-β-CD作为毛细管电泳手性选择剂,建立了有效分离7种手性芳香仲醇对映体的新方法,在优化的电泳条件下,所有芳香仲醇对映体均实现了基线分离。用所建立的方法测定了芳香酮不对称氢转移反应产物芳香仲醇的百分对映体过量值(%ee),其测定结果与GC和HPLC测定结果完全一致。
     4.以天然L-(+)-酒石酸为原料,经酯化、羟基保护、还原、与MsCl酯化、叠氮化、催化还原等六步反应合成了(2S,3S)-(+)-2,3-O-异丙叉-1,4-丁二胺。再以(1R,2R)-(-)-1,2-二氨基环己烷和(2S,3S)-(+)-2,3-O-异丙叉-1,4-丁二胺为原料,在天然β-环糊精结构中引入二类不同的手性基因中心,分别合成了二种新的阳离子型手性胺-β-环糊精手性选择剂,将二者用于毛细管电泳手性拆分阴离子化合物。在100mmol·L~(-1) NaH_2PO_4-Na_2HPO_4缓冲体系中,20℃柱温,15kV操作电压下,对10种丹酰化氨基酸和N-乙酰苯丙氨酸对映体进行了手性拆分,取得了良好的分离效果,同时,对4种氨基酸混合样品进行分析,亦取得了满意的对映体分离。
In recent years, capillary electrophoresis (CE) has become one of the rapid development branch of chiral analysis due to its unique features, such as simplification, high efficiency, sensitiveness, trace consumption of sample, solvent and chiral selectors. CE has been widely used in life science, chemistry and pharmaceutical sciences, especially in chiral resolution and analysis of pharmaceutical and biomacromolecule. In CE chiral separation, the chiral selector is usually dissolved in the running buffer to provide chiral environment. The difference of the interactions between chiral selectors and enantiomers leads to the difference of electrophoretic mobilities, so the two enantiomers can be separated.
     In this thesis, four chiral selectors have been synthesized and used in CE for the resolution of chiral vicinal diols, chiral secondary aromatic alcohols and amino acids derivatives, respectively. Moreover, the mechanism of chiral resolution has been discussed.
     This thesis mainly focuses on four aspects as follows:
     1. A new access was improved to synthesis of 1,4-bis (9-O-quininyl) phthalazine [(QN)2PHAL], a very useful chiral ligand for catalytic asymmetric dihydroxyl- ation (AD), by using CaH_2 as acid-binding reagent in a high yield under mild conditions. The application of (QN)2PHAL to the AD reactions of eight olefins exhibited excellent enantioselectivity and activity with corresponding chiral vicinal diols. Furthermore, a capillary zone electrophoresis (CZE) method was developed to separate the synthetic chiral vicinal diols by using neutralβ-cyclodextrin(β-CD)as chiral selector and borate as running buffer. High resolution was achieved under the optimal conditions (β-CD 2.2% (w/v), pH 10, 200 mmol·L~(-1) borate buffer at 15 kV and 20℃within 15 min). The relative standard deviations of the corrected peak areas and migration time were less than 3.9% and 1.3%, respectively. In addition, the developed method was successfully applied to the determination of the purity and the enantiomeric excesses value (%ee) of the AD reaction products.
     2. Two new kinds of cationic amino-β-cyclodextrin chiral selector (β-CDen andβ-CDdien) have been prepared via modification of C6-β-cyclodextrin. The synthetic method to prepare intermediate (6-OTs-β-CD) was also improved in higher yield and simpler procedure.β-CDen andβ-CDdien were obtained by the reaction of 6-OTs-β-CD and ethylenediamine or diethylenetriamine in the presence of trace ammount of DMAP, and the chemical yields was 50.3% and 51.6%, respectively. Furthermore, these new chiral selectors were successfully applied for capillary electrophoresis separations of enantiomers of eight vicinal diols. To our delight, these new chiral selectors have achieved good results in chiral separation. The chiral recognition ability is superior to the naturalβ-neutral cyclodextrin, especially for the terminal chiral vicinal diols, showing greater chiral recognition. High resolution was achieved under the optimized conditions ofβ-CDen 10mmol·L~(-1), pH 10, 200 mmol·L~(-1) borate buffer at 15 kV and 20℃. In addition, the established method was successfully applied to the determination of the enantiomeric excesses value (%ee) of the AD reaction products. It was also found that the results of the CE analysis was in accordance with that of HPLC, which indicates that the proposed method is suitable for the determination of %ee value of the vicinal diols samples.
     3. A new CE method was developed to efficiently separate seven chiral secondary aromatic alcohols by using S-β-CD as chiral selector. Under the optimal conditions, the baseline separation of the enantiomers of secondary aromatic alcohols was obtained. In addition, the established method was successfully applied to the determination of the enantiomeric excesses value (%ee) of products of asymmetric transfer hydrogenation reactions. It was found that the results of determination by the CE analysis were in accordance with that by GC and HPLC.
     4. (2S,3S)-(+)-2,3-O-isopropylidene-l,4-tetramethylenediamine was synthesized in six steps from (2R,3R)-tartaric acid via esterification, hydroxyl protection, reduction, and MsCl esterification, azide reaction, and catalytic hydrogenation. Furthermore, two kinds of new cationic chiral amine-β-cyclodextrin chiral selector, which was used to enantioseparate the anionic chiral compounds, were synthesized from (1R,2R)-(-)-1,2-diaminocyclohexane and (2S,3S)-(+)-2,3-O- isopropylidene-l,4-tetramethylenediamine by introducing two chiral centre in C6 ofβ-CD, respectively. Furthermore, a CE method was established to separate 10 Dns-amino acids and N-acetylphenylalanine by using above-mentioned synthetic aminoderivatives ofβ-CD as chiral selector and phosphate as running buffer. Excellent enantiomeric separation was obtained under the optimal conditions (chiral selector 10mmol·L~(-1), pH 6.5, 20 mmol·L~(-1) Na2HPO4-NaH_2PO4 buffer at 15 kV and 20℃). Moreover, satisfactory enantioseparation was also achieved for the mixed samples of four amino acids under the optimal conditions.
引文
1. Magri M L, Vanthuyne N, Roussel C, Garcia M B, Orelli L R. Separation of atropisomeric 1,4,5,6-tetrahydropyrimidinium salts by chiral HPLC and determination of their enantiomerization barriers. J. Chromatogr. A, 2005; 1069:203-208.
    2. D’Acquarica I, Gasparrini F, Giannoli B, Badaloni E, Galletti B, Giorgi F, Tinf M O, Vigevani A. Enantio- and chemo-selective HPLC separations by chiral-achiral tandem-columns approach: the combination of CHIROBIOTIC TAG and SCX columns for the analysis of propionyl carnitine and related impurities. J. Chromatogr. A, 2004; 1061:167-173.
    3. Simplcio A L, Pedro M, John F G, John M C. Chiral separation and identification of β-aminoketones of pharmacological interest by high performance liquid chro- matography and capillary electrophoresis. J. Chromatogr. A, 2006; 1120:89-93.
    4. Yao T W, Zeng S, Wang T W, Chen S Q. Phenotype analysis of cytochrome P450 2C19 in Chinese subjects with mephenytoin S/R enantiomeric ratio in urine measured by chiral GC. Biomed. J. Chromatogr., 2001; 15: 9-13.
    5. Ling H, Thomas E B. Applications of Enantiomeric Gas Chromatography: A Review. J Liquid Chromatogr. R. T., 2005; 28(7-8):1075-1114.
    6. Gyllenhaal O, Karlsson A. Enantiomeric separations of amino alcohols by packed-column SFC on Hypercarb with L-(+)-tartaric acid as chiral selector. J. Biochem. Biophys. Methods., 2002; 54:169-185.
    7. Maftouh M, Granier-Loyaux C, Chavana E, Marini J, Pradines A, Vander Y, Picard C. Screening approach for chiral separation of pharmaceuticals Part III. Supercritical fluid chromatography for analysis and purification in drug discovery. J. Chromatogr. A, 2005; 1088(1-2): 67-81.
    8. Siouffi A M, Piras P, Roussel C. Some aspects of chiral separations in planar chromatography compared with HPLC, JPC. J. planar chromatogr. Mod. TLC, 2005; 18:5-12.
    9. Allenmark S G., Andersson S, M?ller P, Sanchez D. A new class of networkpolymeric chiral stationary phases. Clirality, 1995; 7:248-256.
    10. 李莉, 字敏, 任朝兴, 袁黎明. 气相色谱手性固定相研究进展. 化学进展,2007; 19(2-3):393-403.
    11. 林炳承.毛细管电泳导论. 科学出版社,北京,1996.
    12. 陈义. 毛细管电泳技术及应用(第二版). 化学工业出版社,北京,2006.
    13. Schug K, Frycak P, Maier N M, Lindner W. Measurement of solution-phase chiral molecular recognition in the gas phase using electrospray ionization-mass spectrometry. Anal. Chem., 2005; 77:3660-3670.
    14. Lin C E, Lin S L, Fang I J, Liao W S, Chen C C. Enantioseparations of hydro- benzoin and structurally related compounds in capillary zone electrophoresis using heptakis(2,3-dihydroxy-6-O-sulfo)-beta-cyclodextrin as chiral selector and enantiomer migration reversal of hydrobenzoin with a dual cyclodextrin system in the presence of borate complexation. Electrophoresis, 2004; 25:2786-2794.
    15. Foulon C, Danel C, Vaccher M P, Bonte J P, Vaccher C, Goossens J F. Chiral separation of N-imidazole derivatives, aromatase inhibitors, by cyclodextrin- capillary zone electrophoresis. Mechanism of enantioselective recognition. Electrophoresis, 2004; 25:2735-2744.
    16. Kvasnicka F, Biba B, Cvak L. Capillary zone electrophoresis separation of enantiomersof lisuride. J. Chromatogr. A, 2005; 1066:255-258.
    17. Mikus P, Valaskova I, Havranek E. Chiral separation of dioxopromethazine in eye drops by CZE with charged cyclodextrin. J. Pharm. Biomed. Anal., 2003; 33:157-164.
    18. Lin S L, Lin C E. Comparative studies on the enantioseparation of hydrobenzoin and structurally related compounds by capillary zone electrophoresis with sulfated beta-cyclodextrin as the chiral selector in the presence and absence of borate complexation. J. Chromatogr. A, 2004; 1032:213-218.
    19. Liao W S, Lin C H, Chen C Y, Kuo C M, Liu Y C, Wu J C, Lin CE. Enantioseparation of phenothiazines in CD-modified CZE using single isomer sulfated CD as a chiral selector. Electrophoresis, 2007; 28(21): 3922-3929.
    20. Liu P, He W, Zhao Y, Wang P A, Sun X L, Li X Y, Zhang S Y. Synthesis of Chiral Vicinal Diols and Analysis of them by Capillary Zone Electrophoresis. Chirality, 2008, 20(2):75-83.
    21. Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T. Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem., 1984; 56:111-113.
    22. Hiroyuki N, Shigeru T. Micellar electrokinetic chromatography Perspectives in drug analysis. J. Chromatogr. A, 1996; 735(1-2):3-27.
    23. Zheng Z X, Lin J M, Qu F. Chiral separation of underivatized and dansyl amino acids by ligand-exchange micellar electrokinetic capillary chromatography using a copper(II)-Irvaline complex as selector. J. Chromatogr. A, 2003; 1007:189-196.
    24. Akbay C, Rizvi S A, Shamsi S A. Simultaneous enantioseparation and tandem UV-MS detection of eight beta-blockers in micellar electrokinetic chromatography using a chiral molecular micelle. Anal. Chem., 2005; 77: 1672-1683.
    25. Wang Z, Tang Z, Gu Z, Hu Z, Ma S, Kang J. Enantioseparation of chiral allenic acids by micellar electrokinetic chromatography with cyclodextrins as chiral selector. Electrophoresis, 2005; 26:1001-1006.
    26. Dey J, Mohanty A, Roy S, Khatua D. Cationic vesicles as chiral selector for enantioseparations of nonsteroidal anti-inflammatory drugs by micellar electrokinetic chromatography. J. Chromatogr. A, 2004; 1048:127-132.
    27. 罗国安,王义明,陈令新,梁琼麟. 毛细管电色谱及其在生命科学中的应用. 科学出版社,北京,2005.
    28. Macek J, Tjaden U. R, Van Der Greef J. Resolution and concentration detection limit in capillary gel electrophoresis. J. Chromatogr., 1991; 545:177-182.
    29. Hjertén S. High-performance electrophoresis Elimination of electroen- dosmosis and solute adsorption. J. Chromatogr., 1985, 347:191-198.
    30. Tanaka S, Kaneta T, Taga M, Yoshida H, Ohtaka H. Capillary tube isotacho- phoretic separation of catecholamines using cyclodextrin in the leading electrolyte. J. Chromatogr., 1991; 587:364-367.
    31. Ji í S, Ivan J, Eva S. Micellar, Inclusion and metal-complex enantioselective pseudophases in high-performance electromigration methods. J. Chromatogr., 1988; 452:511-590.
    32. Schardinger, F. Zentralbl. Bakteriol., Parasitenkd., Infektionskrankh. Hyg., Abt. 2, Narunviss: Allg., Londwirtsch. Tech. Mikrobiol. 1911, 29, 188.
    33. Wren S. The Use of Cyclodextrins as Chiral Selectors. Chromatographia, 2001; 54:S59-77.
    34. Schmitt U, Branch S K, Holzgrabe U. Chiral separations by cyclodextrin- modified capillary electrophoresis – Determinationofthe enantiomericexcess. J. Sep. Sci., 2002; 25:959-974.
    35. Gelb R L, Schwartz L M. Complexation of adamantane-ammonium substrates by beta-cyclodextrin and its0-methylated derivatives. J. Inclusion. Phenom. Mol. Recognit. Chem., 1989; 7:537-543.
    36. Yamashoji Y, Tanaka M, Shono T, Evaluation of Host-Guest Interaction of Cyclodextrinswith DL-Alanineβ-Naphthylamide by 1H NMR Spectroscopy. Chem. Lett., 1990; 945-949.
    37. Van Eeckhaut M, Michotte Y. Chiralseparations by capillary electrophoresis: Recent developments and applications. Electrophoresis, 2006; 27:2880-2895.
    38. Blanco M, Valverde I. Choice of chiral selector for enantioseparation by capillary electrophoresis. Trend.Anal. Chem., 2003; 22(7-8):428-439.
    39. Gubitz G, Schmid M G. Chiral separation principles in capillary electrophoresis. J.Chromatogr. A, 1997; 792:179-225.
    40. Yamashoji Y, Ariga T, Asano S, Tanaka M. Chiral recognition and enantiomeric separation of alanine p-naphthylamide by cyclodextrins. Anal. Chim. Acta, 1992; 268:39-47.
    41. Lin X, Zhu C, Hao A. Evaluation of newly synthesized derivative of cyclodextrin for the capillary electrophoretic separation. J.Chromatogr. A, 2004; 1059:181-189.
    42. Vespalec, R, Bocek, P. Chiral Separations in Capillary Electrophoresis. Chem. Rev., 2000; 100(10):3715-3754.
    43. Desiderio C, Palcaro C M, Fanli S. Stereoselective analysis of herbicides by capillary electrophoresis using sulfobutyletherβ-cyclodextrin as chiral selector. Electrophoresis, 1997; 18(2):227-234.
    44. Stalcup A M, Gahn K H. Application of sulfated cyclodextrins to chiral separations by capillary zone electrophresis. Anal. Chem., 1996; 68(8): 1360-1368.
    45. Mori P, Bellessort D, Dreux M, Troin Y, Gelas J. Chiral resolution of functio- nalized piperidine enantiomers by capillary electrophoresis with native, alky- lated and anionic β-cyclodextrins. J. Chromatogr. A, 1998; 796(2):375-383.
    46. Boer T, Zeeuw R A, Jong G J, Ensing K. Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis, 2000; 21:3220-3229.
    47. Lin X L, Zhu C F, Haob A. Enantiomeric separations of some acidic compounds with cationic cyclodextrin by capillary electrophoresis. Anal. Chim. Acta, 2004; 517:9-101.
    48. Gubitz G, Schmid M G. Recent progress in chiral separation principles in capillary electrophoresis. Electrophoresis, 2000; 21: 4112-4135.
    49. Galaverna G, Corradini R, Dossena A, Marchelli R, Vecchioz G. Histamine-modified P-cyclodextrins for the enantiomeric separation of dansyl- amino acids in capillary electrophoresis. Electrophoresis, 1997; 18:905-911.
    50. O'Keeffe F, Shamsi S A, Darcy R, Schwinte P, Warner I M. A Persubs- tituted Cationic-Cyclodextrin for Chiral Separations. Anal. Chem., 1997; 69: 4773-4782.
    51. Haynes J L, Shamsi S A, O'Keefe F,Darcey R, Warner I M. Cationic β-cyclodextrin derivative for chiral separations. J. Chromatogr. A, 1998; 803:261-271.
    52. Haskard C A, Faston C J, May B L, Lincoln S F. Formation of Metallo-6A-((2- (2-aminoethyl)amino}ethyl)amino)-6A-deoxy-β-cyclodextrins and Their Complexation of Tryptophan in Aqueous Solution. Inorg. Chem., 1996; 35:1059-1064.
    53. Sandow M, May B L, Easton C J, Lincoln S F. Binary and Ternary Metallo- β-cyclodextrins of 6A-[Bis(carboxylatomethyl)amino] -6A-deoxy-β- cyclode- xtrin. Aust. J. Chem., 2000; 53:149-152.
    54. Pedersen C J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc., 1967; 89, 2495-2496.
    55. Kyba E P, Timko J M, Kaplan L J, de Jong F, Gokel G W, Cram D J. Host-guest complexation. 11. Survey of chiral recognition of amine and amino ester salts by dilocular bisdinaphthyl hosts. J. Am. Chem. Soc., 1978; 100:4555-4568.
    56. Sousa L R, Sogah G D Y, Hoffrnann D H, Cram D J. Host-guest complexa- tion. 12. Total optical resolution of amine and amino ester salts by chroma- tography. J. Am. Chem. Soc., 1978; 100:4569-4576.
    57. Hilton M, Armstrong D W. Evaluation of A Chiral Crown Etherlc Column For theSeparation of Racemic Amines. J. Liquid Chromatogr. R. T., 1991; 14:9-28.
    58. Zukowski J, Pawlowska M, Pietraszkiewicz M. Enantioseparation of α-phenylglycine by HPLC on an ODS column coatd with chiral crown ether. Chromatographia, 1991; 32(1-2):82-84.
    59. Girodeau J M, Lehn J M, Sauvage J P. A Polyfunctional Chiral Macrocyclic Polyether Derived from L-(+)-Tartaric Acid. Angew. Chem. Internet. Edit, 1975; 14(11):764.
    60. Behr J P, Girodeau J M, Hayward R C, Lehn J M, Sauvage J P. Molecular Receptors. Functionalized and Chiral Macrocyclic Polyethers Derived from Tartaric Acid. Helv. Chim. Acta, 1980; 63, 2096-2111.
    61. Kuhn R, Stoecklin R F, Erni F. Chiral Separations by Host-Guest Comp- lexation with Cyclodextrin and Crown-ether in Zone Electrophoresis. Chromatographia, 1992; 33(1-2):32-36.
    62. Kuhn R, Erni F. Chiral recognition and enantiomeric resolution based on host-guest complexation with crown ethers in capillary zone electrophoresis. Anal. Chem., 1992; 64:2815-2820.
    63. Kuhn R, Stocklin F, Erni R, Chiral separation by capillary zone electroph- oresis of an optically active drug and amino acids by host guest complexa- tion with cyclodextrins. J. Chromatogr. A, 1994; 666:375-379.
    64. Dutton P J, Fyles T M, McDermid S J. Synthesis and metal ion complex- ation behavior of polycarboxylate 18-crown-6 ethers derived from tartaric acid. Can. J. Chem., 1988, 66(5):1097-1108.
    65. Kuhn R, Stcklin F, Erni F. Chiral separations by host-guest complexation with cyclodextrin and crown ether in capillary zone electrophoresis. Chromatographia, 1992; 33:32-36.
    66. Armstrong, D W, Tang Y, Chen S. Zhou Y, Bagwill C, Chen J R. Macrocyclic aantibiotics as a new class of chiral selectors for liquid chromatography. Anal. Chem.,1994; 66:1473-1483.
    67. Rizzi A. Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis, 2001; 22:3079-3106.
    68. Armstrong D W, Gasper M P, RundlettHighly K L. Enantioselective capillary electrophoretic separations with dilute solutions of the macrocyclic antibiotic ristocetin A. J. Chromatogr. A, 1995; 689:285-304.
    69. Rundlett K L, Armstrong D W. Effect of Micelles and Mixed Micelles on Efficiency and Selectivity of Antibiotic-Based Capillary Electrophoretic Enantioseparations. Anal. Chem., 1995; 67(13):2088-2095.
    70. Ward T J, Dann III C, Brown A P. Separation of enantiomers using vancomycin in a countercurrent process by suppression of electroosmosis. Chirelity, 1996; 8:77-83.
    71. Armstrong D W, Rundlett U L, Chen J R. Evaluation of the Macrocyclic Antibiotic Vancomycin as a Chiral Selector for Capillary Electrophoresis. Chirelity, 1994; 6:496-509.
    72. Rundlett K L, Gasper M P, Zhou E Y, Armstrong D W. Capillary electrophoretic enantiomeric separations using the glycopeptide antibiotic, teicoplanin. Chirelity, 1996; 8:88-107.
    73. Gasper M P, Berthod A, Nair U B, Armstrong D W. Comparison and Modeling Study of Vancomycin, Ristocetin A, and Teicoplanin for CE Enantioseparations. Anal. Chem., 1996; 68:2501-2514.
    74. Hui F, Ekborg-Ott K H, Armstrong D W. High-performance liquid chromato- graphic and capillary electrophoretic enantioseparation of plant growth regul- ators and related indole compounds using macrocyclic antibiotics as chiral selectors. J. Chromatogr. A, 2001; 906:91-103.
    75. Armstrong D W, Rundlett K, Reid G L. Use of a Macrocyclic Antibiotic, Rifam- ycin B, and Indirect Detection for the Resolution of Racemic Amino Alcohols by CE. Anal.Chem., 1994; 66:1690-1695.
    76. Ward T J, Dann C, Blaylock A. Enantiomeric resolution using the macrocyclic antibiotics rifamycin B and rifamycin SV as chiral selectors for capillary electrophoresis. J. Chromatogr. A, 1995; 715:337-344.
    77. Desiderio C, Polcaro C M, Padiglioni P, Fanali S. Enantiomeric separation of acidic herbicides by capillary electrophoresis using vancomycin as chiral selector. J. Chromatogr. A, 1997; 781:503-513.
    78. Wang Z Y, Wang J F, Hu Z D, Kang J W. Enantioseparation by CE with vancomycin as chiral selector: Improving the separation performance by dynamic coating of the capillary with poly(dimethylacrylamide). Electrophoresis, 2007; 28: 938-943.
    79. Tesa ová E, Bosáková Z, Zusková I. Enantioseparation of selected N-tert.- butyloxycarbonyl amino acids in high-performance liquid chromatography and capillary electrophoresis with a teicoplanin chiral selector. J. Chromatogr. A, 2000; 879:147-156.
    80. Oswald T M, Ward T J. Enantioseparations with the macrocyclic antibiotic ristocetin a using a countercurrent process in CE. Chirelity, 1999; 11:663-668.
    81. Ekborg-Ott K H, Zientara G A, Schneiderheinze J M, Gahm K, Armstrong D W. Avoparcin, a new macrocyclic antibiotic chiral run buffer additive for capillary electrophoresis. Electrophoresis, 1999; 20:2438-2457.
    82. Gao W, Kang J. Separation of atropisomers of anti-hepatitis drug dimethyl diphenyl bicarboxylate analogues by capillary electrophoresis with vancomycin as the chiral selector. J. Chromatogr. A, 2006; 1108:145-148.
    83. Ekborg-Ott K H, KullmanJ P, Wang X, Gahm K, He L, Armstrong D W. Evaluation of the macrocyclic antibiotic avoparcin as a new chiral selector for HPLC. Chirelity, 1998; 10:627-660.
    84. Wan H, Blomberg L G. Enantiomeric separation by capillary electrophoresis of di- and tri-peptides derivatized with 9-fluorenylmethyl chloroformate using vancomycin aschiral selector. J. Microcol. Sep., 1996; 8:339-344.
    85. Wan H., Blomberg L.G., Enantioseparation of amino acids and dipeptides using vancomycin as chiral selector in capillary electrophoresis. Electrophoresis, 1996; 17, 1938-1944.
    86. Jiang Z J, Kang J W, Bischoff D, Bister B, Süssmuth R D, Schurig V. Evaluation of balhimycin as a chiral selector for enantioresolution by capillary electrophoresis. Electrophoresis, 2004; 25, 2687-2692.
    87. Kang J, Bischoff D, Jiang Z, Bister B, Sussmuth R D, Schurig V. A mechanistic Study of Enantiomeric Separation with Vancomycin and Balhimycin as Chiral Selectors by Capillary Electrophoresis. Anal. Chem., 2004; 76:2387-2392.
    88. Gassmann E, Kuo J E, Zare R N. Electrokinetic Separation of Chiral Compounds. Science, 1985; 230:813-814.
    89. Gozel P, Gassman E, Michelsen H, Zare R N, Electrokinetic resolution of amino acid enantiomers with copper(II}aspartame support electrolyte. Anal. Chem., 1987; 59:44-49.
    90. Yuan Z, Yang L, Zhang Z Z, Enantiomeric separation of amino acids by copper (II)-L-arginine ligand exchange capillary zone electrophoresis. Electrophoresis, 1999; 20, 1842-1845.
    91. Desiderio C, Aturki Z, Fanali S. Separation of -hydroxy acid enantiomers by high performance capillary electrophoresis using copper(II)-L-amino acid and copper(II)-aspartame complexes as chiral selectors in the background electrolyte. Electrophoresis, 1994; 15:864-869.
    92. Schmid M G., Laffranchini M, Dreveny D, Gübitz G. Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis. Electrophoresis, 1999; 20:2458-2461.
    93. Kodama S, Yamamoto A, Iio R, Aizawa S, Nakagomi K, Hayakawa K. Chiral ligand exchange micellar electrokinetic chromatography using borate anion as a central ion.Electrophoresis, 2005; 26:3884-3889.
    94. Schmid M G, Gubitz G. Direct resolution of underivatized amino acids by capillary zone electrophoresis based on ligand exchange. Enantiomer, 1996; 1:23-27.
    95. Sundin N G, Dowling T M, Grinberg N, Bicker G. Enantiomeric separation of dansyl amino acids using MECC with a ligand exchange mechanism. J. Microcol. Sep., 1996; 8:323-329.
    96. Martínez-Gómez M A, Villanueva-Cama?as R M, Sagrado S, Medina-Hernández M J. Potential of human serum albumin as chiral selector of basic drugs in affinity electrokinetic chromatography-partial filling technique. Electrophoresis, 2006; 27:4364-4374.
    97. Martinez-Gomez M A, Sagardo S, Villanueva-Camanas R M, Medina- Hernandez M J. Enantioseparation of phenotiazines by affinity electrokinetic chromatography using human serum albumin as chiral selector: Application to enantiomeric quality control in pharmaceutical formulations. Anal. Chim. Acta, 2007; 582:223-228.
    98. Sun P, Wu N, Barker G, Hartwick R A. Chiral separations using dextran and bovine serum albumin as run buffer additives in affinity capillary electrophoresis. J. Chromatogr. 1993; 648:475-480.
    99. Nakamura M, Kiyohara S, Saito K, Sugita K, Sugo T. Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde. J. Chromatogr. A, 1998; 822:53-58.
    100. Ishihama Y, Oda Y, Asakawa N, Yoshida Y, Sato T. Optical resolution by electrokinetic chromatography using ovomucoid as a pseudo-stationary phase. J. Chromatogr., 1993; 666:193-201.
    101. Busch S, Kraak J C, Poppe H. Chiral separations by complexation with proteins in capillary zone electrophoresis. J. Chromatogr., 1993; 635:119-126.
    102. Haginaka J, Kanasugi N.Separation of basic drug enantiomers by capillary zoneelectrophoresis using ovoglycoprotein as a chiral selector. J. Chromatogr. A, 1997; 782:281-288.
    103. Valtcheva L, Mohammad J, Pettersson G. Chiral separation of β-blockers by high-performance capillary electrophoresis based on nonimmobilized cellulase as enantioselective protein. J. Chromatogr., 1993; 638:263-267.
    104. Geng L, Bao T, Liu H W, Li N, Liu F, Li K A, Gu J L, Fu R N. Capillary Coated with Layer-by-Layer Assembly of γ-Zirconium Phosphate/ Lysozyme Nanocomposite Film for Open Tubular Capillary Electrochromatography Chiral Separation. Chromatogrphia, 2004; 59:65-70.
    105. Bo T, Wiedmer S K, Riekkola M L. Phospholipid-lysozyme coating for chiral separation in capillary electrophoresis. Electrophoresis, 2004; 25:1784-1791.
    106. 任吉存,刘焕文. 毛细管电泳进展, 第二卷. 华南理工大学出版社,广州,1995; p 29-30.
    107. Martínez-Pla J J, Martín-Biosca Y, Sagrado S, Villanueva-Cama?as R M, Medina-Hernández M J. Chiral separation of bupivacaine enantiomers by capillary electrophoresis partial-filling technique with human serum albumin as chiral selector. J. Chromatogr. A, 2004; 1048: 111-118.
    108. Busch S, Kraak J C, Poppe H. Chiral separations by complexation with proteins in capillary zone electrophoresis. J. Chromatogr., 1993; 635:119-126.
    109. Martínez-Pla J J, Martín-Biosca Y, Sagrado S, Villanueva-Cama?as R M, Medina-Hernández M J. Fast enantiomeric separation of propranolol by affinity capillary electrophoresis using human serum albumin as chiral selector: application to quality control of pharmaceuticals. Anal. Chim. Acta, 2004, 507:175-182.
    110. D'Hulst A, Verbeke N. Chiral separation by capillary electrophoresis with oligosaccharides. J. Chromatogr., 1992; 608:275-287.
    111. Stalcup A M, Agyei N M. Heparin: A Chiral Mobile-Phase Additive for Capillary ZoneElectrophoresis. Anal. Chem., 1994; 66:3054-3059.
    112. Budanova N, Shapovalova E, Lopatin S, Varlamov V, Shpigun O. N-(3-Sulfo, 3-carboxy)-propionylchitosan as New Chiral Selector for Enantioresolution of Basic Drugs by Capillary Electrophoresis. Chromatographia, 2004; 59:709-713.
    113. Sutton R M C, Sutton K L, Stalcup A M. Chiral capillary electrophoresis with noncyclic oligo-and polysaccharide chiral selectors. Electrophoresis, 1997; 18:2297-2304.
    114. Amini A. Recent developments in chiral capillary electrophoresis and applications of this technique to pharmaceutical and biomedical analysis. Electrophoresis, 2001; 22:3107-3130.
    115. Soini H, Stefansson M, Riekkola M L, Novotny M V. Maltooligosaccharides as Chiral Selectors for the Separation of Pharmaceuticals by Capillary Electrophoresis. Anal. Chem., 1994; 66:3477-3484.
    116. Nishi H. Enantioselectivity in chiral capillary electrophoresis with polysaccharides. J. Chromatogr. A, 1997; 792:327-347.
    117. Nishi H, Kuwahara Y. Enantiomer separation by capillary electrophoresis utilizing noncyclic mono-, oligo- and polysaccharides as chiral selectors. J. Biochem. Biophys. Methods, 2001; 48:89-102.
    118. Nishi H, Nakamura K, Nakai H, Sato T. Enantiomeric Separation of Drugs by Mucopolysaccharide-Mediated Electrokinetic Chromatography. Anal. Chem., 1995; 67:2334-2341.
    119. Agyei N M, Gahm K H, Stalcup A M. Chiral separations using heparin and dextran sulfate in capillary zone electrophoresis. Anal. Chim. Acta, 1995; 307:185-191.
    120. Nishi H, Izumoto S, Nakamura K, Nakai H, Sato T. Dextran and dextrin as chiral selectors in capillary zone electrophoresis. Chromatographia, 1996; 42:617-630.
    121. Sokolie? T, Gronau M, Menyes U, Roth U, Jira T. Separation of (Z)- and (E)-isomers of thioxanthene and dibenz[b,e]oxepin derivatives with calixarenes and resorcinarenes asadditives in nonaqueous capillary electrophoresis. Electrophoresis, 2003; 24:1648-1657.
    122. Yang W C, Yu X D, Yu A M, Chen H Y. Study of a novel cationic calix [4]arene used as selectivity modifier in capillary electrophoresis with electrochemical detection. J. Chromatogr. A, 2001; 910:311-318.
    123. Shohat D, Grushka E. Use of calixarenes to modify selectivities in capillary electrophoresis. Anal. Chem., 1994; 66(5):747-750.
    124. Sanchez Pena M, Zhang Y, Warner I M. Enantiomeric Separations by Use of Calixarene Electrokinetic Chromatography. Anal. Chem., 1997; 69(16): 3239-3242.
    125. Lynam C, Jennings K, Nolan K, Kane P, McKervey M A, Diamond D. Tuning and Enhancing Enantioselective Quenching of Calixarene Hosts by Chiral Guest Amines. Anal. Chem., 2002; 74(1): 59-66.
    126. Zhao T, Hu X, Cheng J, Lu X. Use of calix[4]arene to separate positional isomers in capillary electrophoresis. Anal. Chim. Acta, 1998; 358:263-268.
    127. Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T. Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem., 1984; 56(1):111-113.
    128. Van Eeckhaut A, Detaevernier M R, Michotte Y. Separation of neutral dihydropyridines and their enantiomers using electrokinetic chromatography. J. Pharm. Biomed. Anal., 2004; 36:799-805.
    129. Otsuka K, Kashihara M, Kawaguchi Y, Koike R, Hisamitsu T, Terabe S. Optical resolution by high-performance capillary electrophoresis: Micellar electro- kinetic chromatography with sodium N-dodecanoyl-L-glutamate and digitonin. J. Chromatogr., 1993; 652:253-257.
    130. Ishihama Y, Terabe S. Enantiomeric Separation by Micellar Electrokinetic Chromatography Using Saponins. J. Liq. Chromatogr. R. T., 1993; 16(4):933-944.
    131. Terabe S, Shibata M, Miyashita Y. Chiral separation by electronkinetic chromatography while bile salt micelles. J. Chromatogr., 1989; 480:403-411.
    132. Verleysen K, Sandra P. Separation of chiral compounds by capillary electroph- oresis. Electrophoresis, 1998; 19:2798-2833.
    133. Mazzeo J R, Grover E R, Swartz M E, Petersen J S. Novel chiral surfactant for the separation of enantiomers by micellar electrokinetic capillary chromatography. J. Chromatogr. A, 1994; 680:125-135.
    134. Rassi Z E. Chiral glycosidic surfactants for enantiomeric separation in capillary electrophoresis. J. Chromatogra. A, 2000; 875:207-233.
    135. Dalton D D, Taylor D R, Waters D G. Synthesis and use of a novel chiral surfactant based on (R,R)-tartaric acid and its application to chiral separations in micellar electrokinetic capillary chromatography. J. Microcol. Sep., 1995; 7:513-520.
    136. Dobashi A, Ono T, Hara S, Yamaguchi J. Enantioselective hydrophobic entanglement of enantiomeric solutes with chiral functionalized micelles by electrokinetic chromatography. J. Chromatogr., 1989; 480:413-420.
    137. Mechref Y, Rassi Z E. Comparison of alkylglycoside surfactants in enantioseparation by capillary electrophoresis. Electrophoresis, 1997; 18:912-918.
    138. Bluhm L, Huang J, and Li T. Recent advances in peptide chiral selectors for electrophoresis and liquid chromatography. Anal. Bioanal. Chem., 2005; 382:592-598.
    139. Rizvi S A A, Shamsi S A. Polymeric alkenoxy amino acid surfactants: I. Highly selective class of molecular micelles for chiral separation of β-blockers, Electrophoresis, 2004; 25:2514-2526.
    140. Rizvi S A A, Simons D N, Shamsi S A. Polymeric alkenoxy amino acid surfactants: III. Chiral separations of binaphthyl derivatives. Electrophoresis, 2004; 25:712-722.
    141. Kuhn R, Hoffstetter K. Chiral Separation by Capillary Electrophoresis. Chromatographia, 1992; 34(9/10):505-511.
    142. Lurie I S, Klein R F X, Cason T A D, LeBelle M J, Brenneisen R, Weinberger R E. Chiral Resolution of Cationic Drugs of Forensic Interest by Capillary Electrophoresiswith Mixtures of Neutral and Anionic Cyclodextrins. Anal. Chem., 1994; 66(22): 4019-4026.
    143. Fillet M, Hubert Ph, Crommen J. Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J. Chromatogr. A, 2000; 875:123-134.
    144. Lurie I S. Separation selectivity in chiral and achiral capillary electrophor- esis with mixed cyclodextrins. J. Chromatogr. A, 1997; 792:297-307.
    145. Beaufour M, Morin P, Ribet J P. Chiral separation of the four stereois-omers of a novel antianginal agent using a dual cyclodextrin system in capillary. J. Sep. Sci., 2005; 28(6):529-533.
    146. Abushoffa A M, Fillet M, Servais A C, Hubert P, Crommen J. Enhancement of selectivity and resolution in the enantioseparation of uncharged compounds using mixtures of oppositely charged cyclodextrins in capillary electroph- oresis. Electrophoresis, 2003; 24: 343-350.
    147. Nishi H. Separation of binaphthyl enantiomers by capillary zone electropho- resis and electrokinetic chromatography. J. High Resol. Chromatogr., 1995; 18: 659-664.
    148. Kuhn R, Steinmetz C, Bereuter T, Haas P, Erni F. Enantiomeric separations in capillary zone electrophoresis using a chiral crown ether. J. Chromatogr. A, 1994; 666(1-2): 367-373.
    149. Salami M, Jira T, Otto H H. Capillary electrophoretic separation of enantiomers of amino acids and amino acid derivatives using crown ether and cyclodextrin. Pharmazie, 2005; 60(3):181-185.
    150. Armstrong D W, Chang L W, Chang S S. Mechanism enantioseparations using a combination of an achiral crown of capillary electrophoresis ether plus cyclodextrins. J. Chromatogr. A, 1998; 793(1):115-134.
    151. Valle B C, Billiot F H, Shamsi S A, Zhu X, Powe A M, Warner I M. Combination of cyclodextrins and polymeric surfactants for chiral separations. Electrophoresis, 2004;25:743-752.
    152. Bielejewska A, Duszczyk K, Kwaterczak A, Sybilska D. Comparative study on the enantiomer separation of 1,1′-binaphthyl-2,2′diyl hydrogenphosphate and 1,1′-bi-2-naphthol by liquid chromatography and capillary electropho- resis using single and combined chiral selector systems. J. Chromatogr. A, 2002; 977:225-237.
    153. Ward T J, FarrisⅢ A B, Woodling K. Synergistic chiral separations using the glycopeptides ristocetin A and vancomycin. J. biochem. Biophys. Methods, 2001; 48:163-174.
    154. Wang J, Warner I M. Combined polymerized chiral micelle and γ-cyclode- xtrin for chiralseparation in capillary electrophoresis. J. Chromatogr. A, 1995; 711(1-2): 297-304.
    155. Akbay C, Shamsi S A, Warner I M. Separation of monomethyl-benz[a] anthracene isomers using cyclodextrin-modified electrokinetic chromato- graphy. J. Chromatogr. A, 2001; 910: 147-155.
    156. Mwongela S M, Numan A, Gill N L, Agbaria R A, Warner I M. Separation of Achiral and Chiral Analytes Using Polymeric Surfactants with Ionic Liquids as Modifiers in Micellar Electrokinetic Chromatography. Anal. Chem. 2003; 75(22):6089-6096.
    157. Lee S, Jung S. Enantioseparation using cyclosophoraoses as a novel chiral additive in capillary electrophoresis. Carbohydr. Res., 2003; 338:1143-1146.
    158. Cucinotta V, Giuffrida A, Grasso G, Maccarrone G, Vecchio G. Hemispherodextrins, a new class of cyclodextrin derivatives, in capillary electrophoresis. J. Chromatogr. A, 2001; 916: 61-64.
    159. Cucinotta V, Giuffrida A, Grasso G, Maccarrone G, Vecchio G. Simultaneous separation of different enantiomeric pairs in capillary electrophoresis by mixing different hemispherodextrins, a very versatile class of receptors. J. Chromatogr. A, 2002; 979: 137-145.
    160. Nair U B, Armstrong D W, Hinze W L. Characterization and Evaluation ofd-(+)-Tubocurarine Chloride as a Chiral Selector for Capillary Electrophoretic Enantioseparations. Anal. Chem., 1998; 70(6):1059-1065.
    161. Ingelse B A, Flieger M, Claessens H A, Everaerts F M. Ergot alkaloids as chiral selectors in capillary electrophoresis determination of the separation mechanism. J. Chromatogr. A, 1996; 755: 251-259.
    162. Honzátko A, Votruba J, Ol ovská J, Flieger M, Bachechi F, Ferrantelli P, Sinibaldi M, Cvak L. Enantioseparation of dansyl amino acids on terguride-based chiral selectors. Part I: Capillary electrophoretic separation. J. Sep. Sci., 2003; 26:851-856.
    163. Horimai T, Arai T, Sato Y. New amphiphilic aminosaccharide derivatives as chiral selectors in capillary electrophoresis. J. Chromatogr. A, 2000; 875: 295-305.
    164. Chiari M, Desperati V, Manera E, Longhi R. Combinatorial Synthesis of Highly Selective Cyclohexapeptides for Separation of Amino Acid Enantiomers by Capillary Electrophoresis. Anal. Chem., 1998; 70(23):4967-4973.
    165. Lorenzi E D, Massolini G, Molinari P, Galbusera C, Longhi R, Marinzi C, Consonni R, Chiari M. Chiral capillary electrophoresis and nuclear magnetic resonance investigation on the structure-enantioselectivity relationship in synthetic cyclopeptides as chiral selectors. Electrophoresis, 2001; 22:1373-1384.
    166. Marinzi C, Longhi R, Chiari M, Consonni R. Capillary electrophoresis investigation on the structure-enantioselectivity relationship in synthetic cyclopeptides as chiral selectors. Electrophoresis, 2001; 22:3257-3262.
    167. Ye N S, Gu X X, Zou H, Zhu R H. Separation and determination of ephedrine enantiomers by capillary electrophoresis using l-leucine as chiral selector. Chromatographia, 2002; 56:637-639.
    168. Dowling, V A, Charles J A M, Nwakpuda E, McGown L B. A Reversible Gel for Chiral Separations. Anal. Chem., 2004; 76(15):4558-4563.
    1. Kim N S, Choi J R, Cha J K. A concise, Enantioselective synthesis of castanospermine. J. Org. Chem., 1993; 58: 7096-7099.
    2. Kobayashi Y, William A D, Tokoro Y. Sharpless asymmetric dihydroxylation of trans- propenylphosphonate by using a modified AD-mix-α and the synthesis of fosfomycin. J. Org. Chem., 2001; 66:7903-7906.
    3. Beller M, Sharpless K B. Diols via catalytic dihydroxylation. in: Cornils B, Herrmann WA, editors. Applied homogeneous catalysis with organometallic compounds, 2nd ed., Vol. 3. Wiley-VCH: Weinheim; 2002; p 1149-1159.
    4. Kolb H C, VanNieuwenhze M S, Sharpless K B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994; 94: 2483-2547.
    5. Zaitsev A B, Adolfsson H. Recent developments in asymmetric dihydroxylations. Synthesis. 2006; 11: 1725-1756.
    6. Motorina I, Crudden C M. Asymmetric dihydroxylation of olefins using cinchona alkaloids on highly ordered inorganic supports. Org. Lett., 2001; 3:2325-2328.
    7. Bolm C, Maischak A. Asymmetric dihydroxylations using immobilized alkaloids with an anthraquinone core. Synlett, 2001; 1:93-95.
    8. Song C E, Yang J W, Ha H J, Lee S. Efficient and practical polymeric catalysts for heteroge- neous asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 1996; 7:645-648.
    9. Jiang R, Kuang Y Q, Sun X L, Zhang SY. An Improved catalytic system for recycling OsO4 and chiral Ligands in the asymmetric dihydroxylation of olefins. Tetrahedron Asymmetry, 2004; 15:743-746.
    10. 孙晓莉, 张生勇, 南鹏娟. 制备金鸡纳生物碱配体的缚酸剂. 中国发明专利, ZL200510043141.2, 2005.
    11. Gong Y, Lee H K. Application of cyclam-capped β-cyclodextrin-bonded silica particles as a chiral stationary phase in capillary electrochromatography for enantiomeric separations. Anal. Chem., 2003; 75:1348-1354.
    12. Verleysen K, Sandra P. Separation of chiral compounds by capillary electrophoresis. Electrophoresis, 1998; 19:2798-2833.
    13. Rizzi A. Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis, 2001; 22:3079-3106.
    14. Fanali S. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J. Chromatogr. A, 2000; 875:89-122.
    15. Hernández-Borges J, Frías-Garcíaa S, Cifuentes A, Rodríguez-Delgado MA. Pesticide analysis by capillary electrophoresis. J. Sep. Sci., 2004; 27:947-963.
    16. Hoffstetter-Kuhn S, Paulus A, Gassmann E, Widmer H M. Influence of borate complex- ation on the electrophoretic behavior of carbohydrates in capillary electrophoresis. Anal. Chem., 1991; 63:1541-1547.
    17. Landers J P, Oda R P, Schuchard M D. Separation of boron-complexed diol compounds using high-performance capillary electrophoresis. Anal. Chem., 1992; 64:2846-2851.
    18. Oefner P J, Vorndran A E, Grill E, Huber C, Bonn G K. Capillary zone electrophoretic analysis of carbohydrates by direct and indirect UV detection. Chromatographia, 1992; 34:308-316.
    19. Jira T, Bunke A, Schmid M G, Gübitz G. Chiral resolution of diols by capillary electroph- oresis using borate-cyclodextrin complexation. J. Chromatogr. A, 1997; 761:269-275.
    20. Schmid M G, Wirnsberger K, Jira T, Bunke A, Gübitz G. Capillary electrophoretic chiral resolution of vicinal diols by complexation with borate and cyclodextrin: Comparative studies on different cyclodextrin derivatives. Chirality, 1997; 9:153-156.
    21. Lin C E, Lin S L, Liao W S, Liu Y C. Enantioseparation of benzoins and eenantiomermigration reversal of hydrobenzoin in capillary zone electrophoresis with dual cyclodextrin systems and borate complexation. J. Chromatogr. A, 2004; 1032:227-235.
    22. Zhao Y, Yang X B, Sun X L, Jiang R, Zhang S Y. Enantiomeric separation of synthetic 2,3-dihydroxy-3- phenylpropionate compounds by β-cyclodextrin-modified capillary electrophoresis. J. Chromatogr. A, 2006; 1108:258-262.
    23. Liu P, He W, Zhao Y, Wang P A, Sun X L, Li X Y, Zhang S Y. Synthesis of Chiral Vicinal Diols and Analysis of them by Capillary Zone Electrophoresis. Chirality, 2008; 20(2):75-83.
    24. Amberg W, Bennani Y L, Chadha R K, Crispino G A, Davis W D, Hartung J, Jeong K S, Oigno Y, Shibata T, Sharpless K B. Syntheses and Crystal Structures of the Cinchona Alkaloid Derivatives Used as Ligands in the Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins. J. Org. Chem., 1993; 58, 844-849.
    25. 孙晓莉,匡永清,南鹏娟,张生勇. 1,4-双(9-O-奎宁)-2,3-二氮杂萘的合成及其在烯烃不对称二羟基化反应中的应用. 高等学校化学学报, 2003; 24(7):1216-1218.
    26. Minato M, Yamamoto K, Tsuji J. Osmium tetraoxide catalyzed vicinal hydroxylation of higher olefins by using hexacyanoferrate(Ⅲ ) ion as a cooxidant. J. Org. Chem., 1990; 55:766-768.
    28. Kodama S, Yamamoto A, Iio R, Aizawa S I, Nakagomi K, Hayakawa K. Chiral ligand exchange micellar electrokinetic chromatography using borate anion as a central ion. Electrophoresis, 2005; 26:3884-3889.
    29. Wren S A C, Rowe R C. Theoretical aspects of chiral separation in capillary electrophoresis I. Initial evaluation of a model. J. Chromatogr., 1992; 603:235-241.
    30. Wren S A C, Rowe R C. Theoretical aspects of chiral separation in capillary electropho- resis II. The role of organic solvent. J. Chromatogr., 1992; 609:363-367.
    31. Wren S A C, Theory of chiral separation in capillary electrophoresis. J. Chromatogr. A, 1993; 636:57-62.
    32. Chankvetadze B, Endresz G, Blaschke G. Enantiomeric resolution of chiral imidazole derivatives using capillary electrophoresis with cyclodextrin-type buffer modifiers. J. Chromatogr. A, 1995; 700(1-2):43-49.
    1. Fanali S J. Controlling enantioselectivity in chiral capillary electrophoresis with inclusion–complexation. J.Chromatogr. A, 1997; 792:227-267.
    2. De Boer T, De Zeeuw R A, Jong G J, Ensing K. Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis, 2000; 21: 3220-3229.
    3. Gubitz G, Schmid M G. Recent progress in chiral separation principles in capillary electrophoresis. Electrophoresis, 2000; 21:4112-4135.
    4. Rizzi A. Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis, 2001; 22:3079-3106.
    5. Ward T J. Chiral Separations. Anal. Chem., 2002; 74(12): 2863-2872.
    6. Tanaka Y, Yanagawa M, Terabe S. Separation of neutral and basic enantiomers by cyclodextrin electrokinetic chromatography using anionic cyclodextrin derivatives as chiral pseudo-stationary phases. J. High Resolut. Chromatogr., 1996; 19:421-433.
    7. Stalcup A M, Gahn K H. Application of sulfated cyclodextrins to chiral separations by capillary zone electrophresis. Anal. Chem., 1996; 68(8):1360-1368
    8. Zhu W, Vigh G. A Family of Single-Isomer, Sulfated γ-Cyclodextrin Chiral Resolving Agents for Capillary Electrophoresis. 1. Octakis(2,3-diacetyl-6-sulfato)- γ-cyclodextrin. Anal. Chem., 2000; 72:310-317.
    9. Zhu W, Vigh G. Separation selectivity patterns in the capillary electrophoretic separation of anionic enantiomers by octakis-6-sulfato-cyclodextrin. Electrophoresis, 2001; 22:1394-1398.
    10. Zhu W, Vigh, G., A family of single-isomer, sulfated -cyclodextrin chiral resolving agents for capillary electrophoresis: Octa(6-O-sulfo)—cyclodextrin. Electrophoresis, 2003; 24:130-138.
    11. Tanaka Y, Yanagawa M, Terabe S. Separation of neutral and basic enantiomers by cyclodextrin electrokinetic chromatography using anionic cyclodextrin derivatives as chiral pseudo-stationary phases. J. High Resolut.Chromatogr., 1996; 19:421-423.
    12. Terabe S. Electrokinetic chromatography: an interface between electrophoresis and chromatography. Trends Anal. Chem., 1989; 8:129-132.
    13. Nardi A, Eliseev A, Bocek P, Fanali S. Quantitative structure-retention relationship approach to prediction of linear solvation energy relationship coefficients: I. H-Bond acceptor capability of gas chromatography stationary phases in McReynolds data set. J. Chromatogr. A, 1993; 628:247-259.
    14. Tang W H, Muderawan I W, Ong T T, Ng S C. A family of single-isomer positively charged cyclodextrins as chiral selectors for capillary electrophoresis: Mono-6(A)- butylammonium -6(A)-deoxy-beta-cyclodextrin tosylate. Electrophoresis, 2005; 26 (16): 3125-3133.
    15. Boer T, Zeeuw R A, Jong G J, Ensing K. Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis, 2000; 21: 3220-3229.
    16. Melton L D, Slessor K N. Synthesis of monosubstituted cyclohexaamyloses. Carbonhydr. Res., 1971; 18:29-37.
    17. Matsui Y, Okimoto A. The Binding and Catalytic Properties of a Positively Cyclodextrin. Bull. Chem. Soc. Jpn., 1978; 51:3030-3034.
    18. Bonomo R P, Cucinotta V, D'Alessandro F, Impellizzeri G, Maccarrone G, Vecchio G, Rizzarelli E. Conformational Features and Coordination Properties of Functionalized Cyclodextrins. Formation, Stability, and Structure of Proton and Copper(I1) Complexes of Histamine-Bearing β-Cyclodextrin in Aqueous Solution. Inorg. Chem., 1991; 30:2703- 2713.
    19. Petter R C, Salek J S, Sikorski C T, Kumaravel G, Lin F T. Coorperative Binding by Mono-6-(alkylamino)-β-cyclodextrins. J. Am. Chem. Soc., 1990, 112: 3860-3868.
    20. Yan Z, Zhang S Y. Comparative study on the enantioseparations of eleven aromatic 1,2-diols by capillary electrophoresis with different CDs as chiral selectors, (submitted).
    21. Dalgliesh C E. Optical resolution of aromatic amino acids on paper chromatograms. J. Chem. Soc., 1952; 47:3940-3942.
    1. Wainer I W, Stiffin R M, Shibata T. Resolution of enantiomeric aromatic alcohols on a cellulose tribenzoate high-performance liquid chromatography chiral stationary phase : A proposed chiral recognition mechanism. J. Chromatogr., 1987; 411:139-151.
    2. Fukui Y, Ichida A, Shibata T, Mori K. Optical resolution of racemic compounds on chiral stationary phases of modified cellulose. J. Chromatogr., 1990; 515:85-90.
    3. Zhu W, Vigh G. A Family of Single-Isomer, Sulfated -Cyclodextrin Chiral Resolving Agents for Capillary Electrophoresis. 1. Octakis(2,3-diacetyl-6-sulfato)- -cyclodextrin. Anal. Chem., 2000; 72(2):310-317.
    4. Zhang, Y P, Lee K P, Kim S H, Choi S H, Gopalan A I, Yuan Z B. Comparative study on the chiral separation of phenyl alcohols by capillary electrophoresis and liquid chromatography. Electrophoresis, 2004; 25(16):2711-2719.
    5. Stalcup A M, Gahm K H.Application of Sulfated Cyclodextrins to Chiral Separations by Capillary Zone Electrophoresis. Anal. Chem., 1996; 68(8):1360-1368.
    6. Vaccher M P, Bonte J P, Vaccher C. Capillary electrophoretic resolution of enantiomers of aromatic amino-acids with highly sulfated alpha-, beta- and gamma-cyclodextrins. Chromatographia, 2006; 64(1-2): 51-55.
    7. Palmer M J, Wills M. Asymmetric transfer hydrogenation of C=O and C=N bonds. Tetrahedron: Asymmetry, 1999; 10:2045-2061.
    8. Hayes A M, Morris D J, Clarkson G J, Wills M. A class of ruthenium(II) catalyst for asymmetric transfer hydrogenations of ketones. J. Am. Chem. Soc., 2005; 127:7318-7319.
    9. Li YY, Zhang H, Chen J S, Liao X L, Dong Z R, Gao J X. A new efficient chiral iridium catalyst for asymmetric transfer hydrogenation of ketones. J. Molecular Catalysis A: Chemical, 2004; 218(2):153-156.
    10. 傅若农. 色谱分析概论,第二版. 北京,化学工业出版社,2005:225-227.
    11. Mechref Y, Ostrander G K, Rassi Z E. Capillary electrophoresis of carboxylated carbohydrates: IV. Adjusting the separation selectivity of derivatized carboxylated carbohydrates by controlling the electrolyte ionic strength at subambient temperature and in the absence of electroosmotic flow. J. Chromatogr. A , 1997; 792:75-82.
    12. Knox J H. Terminology and nomenclature in capillary electroseparation systems. J. Chromatogr. A , 1994; 680:3-13.
    13. He W, Zhang B L, Jiang R, Liu P, Sun X L, Zhang S Y. Novel recoverable catalysts for asymmetric transfer hydrogenation. Tetrahedron Letters, 2006; 47:5367–5370.
    1. Hyun M H, Jin J S, Lee W J. Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A, 1998; 822:155-161.
    2. Ding G S, Liu Y, Cong R Z, Wang J D. Chiral separation of enantiomers of amino acid derivatives by high-performance liquid chromatography on a norvancomycin-bonded chiral stationary phase. Talanta, 2004; 62 (5): 997-1003.
    3. Bertrand M, Chabin A, Brack A, Westall F. Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J. Chromatogr. A, 2008; 1180:131-137.
    4. Schurig V. Separation of enantiomers by gas chromatography. J. Chromatogr. A, 2001; 906:275-299.
    5. Prata C, Bonnafous P, Fraysse N, Treilhou M, Poinsot V, Couderc F. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis, 2001; 22:4129-4138.
    6. Issaq H J, Chan K C. Separation and detection of amino acids and their enantiomers by capillary electrophoresis: A review. Electrophoresis, 1995; 16:467-480.
    7. Wan H, Blomberg L G. Chiral separation of amino acids and peptides by capillary electrophoresis. J. Chromatogr. A, 2000; 875:43-88.
    8. Boer T, Zeeuw R A, Jong G J, Ensing K. Recent innovations in the use of chargedcyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. Electrophoresis, 2000; 21: 3220-3229.
    9. Lin X, Zhao M, Qi X, Zhu C, Hao A. Capillary zone electrophoretic chiral discri- mination using 6-O-(2-hydroxy-3-trimethylammoniopropyl)-β-cyclodextrin as a chiral selector. Electrophoresis, 2006; 27:872-879.
    10. Tang W H, Muderawan I W, Ong T T, Ng S C. Enantioseparation of dansyl amino acids by a novel permanently positively charged single-isomer cyclodextrin: Mono-6-N-allyla- mmonium-6-deoxy-β-cyclodextrin chloride by capillary electrophoresis. Anal. Chim. Acta, 2005; 546:119-125.
    11. Tang W, Muderawan I W, Ng S C, Chana H S O. Enantiomeric separation of 8 hydroxy,
    10 carboxylic and 6 dansyl amino acids by mono(6-amino-6-deoxy)-β-cyclodextrin in capillary electrophoresis. Anal. Chim. Acta, 2005; 554: 156-162.
    12. O’Keeffe F, Shamsi S A, Darcy R, Schwinte P, Warner I M. A Persubstituted Cationic β-Cyclodextrin for Chiral Separations. Anal. Chem., 1997; 69:4773-4782.
    13. 吴世晖,周景尧、林子森等编. 中级有机化学实验. 高等教育出版社,北京,1986;p 184-186.
    14. Feit P W. 1,4-Bismethanesulfonates of the Stereoisomeric Butanetetraols and Related Compounds. J. Med. Chem., 1964; 7:14-17.
    15. Armstrong D W, Ward T J, Armstrong R D, Beesley T E. Separation of drug stereoisomers by the formation of beta-cyclodextrin inclusion complexes. Science, 1986, 232:1132-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700