用户名: 密码: 验证码:
三元共沸体系加盐萃取精馏的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对乙酸甲酯—乙醇—水三元共沸体系,提出了加盐萃取精馏的工艺过程,并对盐的选择和萃取剂的选择方法进行了研究。
     将Sander等提出的UNIQUAC模型扩展到三元共沸体系,采用Matlab软件编程,模拟了由离子Cl~-、Br~-、NO_3~-、CH_3COO~-、Li~+、Na~+、K~+和Ca~(2+)组成的16种盐对体系的影响。又以盐在溶剂中的溶解度为评定目标,选择合适的盐为醋酸钾。
     利用计算机分子设计,以基团贡献模型为基础,建立了一套溶剂选择优化的方法。再根据相对挥发度、相对分子摩尔质量、熔点、沸点、共沸和稳定判断等几个方面为指标进行分子设计,选择出了合适的萃取剂为乙二醇。
     本文还设计安装了一套实验室连续进料萃取装置进行工艺的验证实验,对萃取精馏和加盐萃取精馏工艺流程分别进行了验证,并对萃取剂的回收利用进行了实验,取得了良好的效果。实验结果表明,本工艺流程是切实可行的,可以将三元混和物完全分离提纯。
A new process of extraction distillation with salt was developed for the triple azeotropic system of methyl acetate-ethanol-water and the selective method of the solvent and salt were studied.
    The effect of the ions such as Cl CH3COO Na+ K+ and Ca2+ upon the phase equilibrium was simulated by Matlab, in which the UNIQUAC model put forward by Sander was extended to that is brought out by Sander is extended to the triple azeotropic system. KAC was the fit salt.
    A method of solvent selected and optimized on the base of Group Contribution Model was established, then according the relative volatility, relative molecular mole mass, melting point, boiling point, and so on to design the solvent molecular. Glycol was the fit solvent.
    One set of extractive experiment equipment with continuously feed was designed and established to validate the extractive distillation and extractive distillation with salt. Good results of the two technology processes and the extractive solvent recycling experiment were gained respectively. The results proved the process was feasible and the triple azeotropic system could be completely distillated.
引文
1.蒋维钧.新型传质分离技术.北京:化学工业出版社,1995.13
    2.Perry.R.化学工程手册(下册).北京:化学工业出版社,1993.13-84
    3.许其佑.有机化工分离工程.上海:华东化工学院出版社,1990.125
    4.史季芬.多级分离过程——蒸馏、吸收、萃取、吸附.北京:化学工业出版社,1991.126
    5.雷良桓,段占庭,徐永福.加盐萃取精馏的研究——叔丁醇纯化过程的开发。石油化工,1982,11:404
    6. Eckert, C. A., et al., AICHE.J. Measurement and Application of Limiting Activity Coefficients, 1981, (27),33-36.
    7.金克新,赵传钧,马沛生.化工热力学.天津:天津大学出版社,1990.137
    8. Elpinstill J, Winkle M. Prediction of infinite dilution activity coefficients for polar-polar binary systems. Ind. End. Chem. Process Des. Dev., 1968,7(2): 213
    9. Thomas E, Eckert C.. Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC. Ind. Eng. Chem. Process Des. Dev., 1984,23:194-209
    10. Reid R, Prausnitz J, Ploing B. The properties of gases and liquids. Thirded, MCGRW-HILL,New York, 1987
    11.斯坦利M.瓦拉斯,化工相平衡,北京:中国石化出版社,1991.193
    12. Fredenslund A, Johns R,Prausnitz J. Group-contribution estimation of activity coefficients in nonideal liquid mixture. AIChE J., 1975,21:1086
    13. Abrams D, Prausnitz J. Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems. AIChE J., 1975,21:116
    14.徐明忠.无限稀释活度系数的实验测定方法.许昌师专学报,1997,16(1):31
    15.顾正桂,赵维彭,郑英峨,等.用色谱筛选苯和噻吩萃取精馏分离的溶剂.化学工业与工程,1990,7(3):52
    16.郑英峨,赵连玉,赵维彭,等.C_9—DMP多元体系萃取蒸馏汽液平衡模型的研究.石油学报(石油化工),1991,7(4):77
    17. Berg L. Separation of ethylbenzene from p- and m- xylene by extractive distillation using mixture of oxygenated organic compounds. AIChE J. 1983, 29:694
    18. Berg L, Yeh A. Separation of m-xylene from o-xylene by extractive distillation. Chem. Eng. Comm. 1987,54:149
    19. Fu-Ming Lee, Pahl R. Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Ind. End. Chem. Process Des. Dev, 1985, 24:168-172
    20. Fu-Ming Lee. Use of organic sulfones as the extractive distillation solvent for aromatics recovery. Ind. End. Chem. Process Des. Dev, 1986, 25:949-957
    
    
    21.杨振生.萃取精馏溶剂的计算机辅助分子设计研究:[硕士学位论文].保存地点:天津大学,1995
    22.胡爱平,段占庭.气提法用于分离剂的研究.天然气化工,1993,18(1):52
    23. Venkatasubramanian V. Computer-Aided Molecular Design Using Genetic Algorithms. Comput. Chem. Eng., 1994,18(9): 833
    24. Gani R, Brignole E. Molecular design of solvents for liquid extraction based on UNIFAC. Fluid Phase Equil, 1983, 13:331-340
    25. Derringer G, Markham R. A computer-based methodology for matching polymer structures with required properties. Journal of Applied Polymer Science, 1985, 30:4609-4617
    26. Gani R, Nielsen B, Fridenslund A. A Group Contribution Approach to computer-Aided Molecular Design. AIChE J, 1991, 37(9): 1318
    27.倪力军,张立国,倪进方,等.链烷烃分子结构设计(Ⅰ)分子构成基团的确定.计算机与应用化学,1998,15(5):298
    28. Mathias P, Cheng H, Cook S, etal. Molecular Modeling in Engineering Design and Material development. Fluid Phase Equilibria, 1996,116:225
    29. Evans L. Process modeling: what Lies Ahead. Chem. Eng. Progress, 1990,86:42
    30.黄子卿.电解质溶液理论导论.科学出版社,1964
    31. Frank J.Millero.The molal volumes of Electrolytes. Chemical Reviews, 1971, (2): 147-176
    32. W.L.Wu, Y.M.Zhang,et. Modification of the Furter equation and correlation of the vapor-liquid equilibrium for mixed-solvent electrolyte systems. Fluid Phase Equilibria, 1999(154): 301-310
    33. I-Min Shiah, Wen-Lu Weng, An activity coefficient model for predicting salt effects on vapor-liquid equilibria of mixed solvent systems. Fluid Phase Equilibria, 2000(70): 297-308
    34. Chau-Chyun Chen, H.I.Britt, etal. Lacal Composition Model for Excess Gibbs Energy of Electrolyte Systems. AIChE J, 1982,28(4): 588-596
    35. Rohini Badrayani, Anil Kumar. A Simple Model for Estimation of Activity Coefficient of Salts in Aqueous and Nonaqueous Solutions and Their Mixtures up to High Temperatures. Ind.Eng. Chem. Res.2001, 40:1996-2003
    36. T.C.TAN. Model For Predicting The Effect of Dissolved Salt On The Vapour Liquid Equilibrium Of Solvent Mixture. Chem Eng Res Des, 1987,65(7):355-366
    37.赵承卜,王守玉,韩丽君.汽液平衡盐效应的预测.化学工程,1986,1:71-78
    38.孙仁义,张顺利.醇—水—盐体系汽液平衡数据关联.化学工程,1993,21(3):59-63
    39.陈新志,侯虞钧.含电解质体系的相平衡研究—用溶剂化方法关联含盐体系的汽液平衡.塑料新闻,1989,40(2):203-212
    40. D Jaques, Furter W F. Salt Effects in Vapor-Liquid Equilibrium:Testing the Thermodynamic consistency of Ethanol-Water Saturated with Inorganic Salts. AIChE J, 1972,18:343-346
    41.赵承卜,李佛华,王守玉.环己烷—异丙醇含盐体系的汽液平衡.石油化工,1991,20(9):617~621
    42.王守玉,赵承卜.苯—正丙醇—氯化锂体系汽液平衡.化学工程,1991,19(2):72-76
    
    
    43.王守玉,蔡成良.乙酸甲酯—甲醇含盐体系汽液平衡.石油化工,1993,22(7):444-450
    44.王守玉.几种盐对氯仿—甲醇体系汽液平衡的效应.石油化工,1992,21(11):737-740
    45. Rousseau R W, Boone J E. Vapor-Liquid Equilibrium for Salt Containing Systems:Correlation of Binary Solvent Data and Prediction of Behavior in Multicomponent Solvents. AIChE J, 1978,24: 718-725
    46.陈霭璠,罗瑞贤.含电解质的丙酮—水溶液的汽液平衡的近似计算.高校化学工程学报.1989,3(4):28-33
    47.陆小华,张吕正等.电解质混和溶剂体系汽液平衡的推算.高校化学工程学报.1992,6(2):97-104
    48. D Schmit, A Vogelpohl. Prediction of the salt effect on the vapour-liquid equilibrium of binary mixtures. Fluid Phase Equil, 1982,9:167-173
    49. L-S Lee, Y-Z Tsao, B L M Yang. Improving Prediction of Salt Effect on VLE of Isopropyl Alcohol-H20-Salt and Methanol-H20-Salt system with Preferential Association. Can J Chem Eng, 1991, 69:788-793
    50.史季芬等.多级分离过程.北京:化学工业出版社.1991
    51. Renon H, Prausnitz J M. Local Composition in Thermodynamic Excess Function for Liquid Mixtures. AIChE J, 1968,14:135-144
    52.许志宏译.UNIFAC功能团法推算汽液平衡.北京:化学工业出版社,1982
    53. Larsen B,Rasmussen P, Fredensund P. A modified UNIFAC group-contribution model for predivtion of phase equilibria and heat of mixing. Ind. Eng. Chem. Res. 1987, 26:2274
    54. Weidlich U, Gmehling J. A modified UNIFAC model 1:Predication of VLE, h~E, and γ~∞. Ind. Eng. Chem. Res. 1987, 26:1372
    55. Gmehling J., M. Schiller. A Modified UNIFAC Model. 2.Present Parameter Matrix and Results for Different Thermodynamic Properties. Ind. Eng. Chem. Res., 1993,32:178
    56. Gmehling J., Lohmann J, Jakob A, et al. A Modified UNIFAC (Dortmund) Model. 3. Revision and Extension. Ind. Eng. Chem. Res., 1998,37:4876-4882
    57.张清奎,钱万成,蒋维钧,段占庭.加盐萃取精馏的研究(Ⅲ)含盐醇—水体系汽液平衡.石油化工,1984,1:1-9
    58. Rastogi A K, Dr Eng Sci Thesis:New Jersey Institute of Technology, 1981
    59. Chen, C.C.,Britt, H.I.,Boston,J.F. and Evans,L.B, Local composition model for Excess Gibbs Energy of Electrolyte System:Part(Ⅰ).Single solvent, Single completely dissociated electrolytes systems. AIChE J, 1982, 28:588-596
    60. Mock B, Evans L B, Chen C-C. Local composition model for excess Gibbs energy of Electrolyte system.: Part(Ⅱ).Electrolytes systems. AIChE J. 1986(32):444-523
    61. Rousseau R W, Boone J E. Vapor-Liquid equilibrium for salt cantaining system: correlation of binary solvent bata and prediction of behavior in multicomponent solvents. Ibid, 1978,24:718-725
    62. Glugla P G, Sax S M. Vapor liquid equilibrium for salt-containing systems: A correlation of vapor pressure depression and prediction of muiticomponent systemslbid, 1985, 31:1911
    
    
    63. Sander B, Fredenslund A, Rasmussen P. Calculation of vapour-liquid equilibria in mixed solvent/salt system using an extended UNIQUAC equation. Chem Eng Sci, 1986, 41:1171-1183
    64. Macedo E A, Skovberg P, Rasmussen P. Calculation of phase equilibria for solvent s of strong electrolytes in solvent -water mixture.Chem Eng Sci, 1990,45:875-882
    65. Michelsen M L. A modified huron-bidal mixing rule for cubic equations of state. Fluid Phase Equil, 1990,60:213-219
    66.傅吉全.特殊体系的相平衡和精馏模拟计算。中国石化出版社,2002.133
    67.赵承卜,朱滋生等.丙烯醇-水体系汽液平衡关系的盐效应.化学工程,1983,3:48-51
    68.孙仁义.化学工程,异丙醇-水体系的汽液平衡关系盐效应.1985,(2):204-213
    69.付举孚,金彰礼等.正丁醇-异丁醇-水体系液液,汽液相平衡的研究.化工学报,1980,(3):282
    70.刘文彬,朱建军,卢锦梭.含盐二元系等温汽液平衡的研究.化工学报,1990,3:372-377
    71. Taher A AI, Nawal J J.J Vapor-Liquid equilibrium of the acetone-water-salt system. Chem Eng Data, 1993,38(4): 522-526
    72.高树藩,吴长美,徐嫔.精细与专用化学品,1998,(2):1-2
    73.程能林.溶剂手册(第二版).[M]北京:化学工业出版社,295,536
    74. BOSANDER, AACE FREDENSLUNDand PETERRASMUSSEN. Chemical Engineering Science. Vol. 41. No. 5: 1171-1183, 1986.
    75.温元凯,邵俊.离子极化导论。合肥:安徽教育出版社,1985
    76.刘虎威.气相色谱方法及应用.北京:化学工业出版社.2000:133
    77.李佛华,赵承卜,韩世荣.用气液色谱法测定三元系中挥发组分有限浓度时活度系数的研究.高校工程学报,1992,6 (1):34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700