用户名: 密码: 验证码:
副猪嗜血杆菌耐药性调查和耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副猪嗜血杆菌(Haemophilus parasuis, HPS)是引起猪的多发性浆膜炎、脑膜炎和关节炎的一种革兰氏阴性杆菌。副猪嗜血杆菌病又称为Glasser's病,给世界养猪业造成了巨大的经济损失。副猪嗜血杆菌具有15个血清型和不可分型菌株,有很强的宿主特异性,2周龄到4月龄的猪易感,尤其对早期断奶仔猪造成了严重的危害。目前主要通过灭活苗和抗生素来预防和控制副猪嗜血杆菌病,但单价疫苗免疫不能产生交叉保护作用,所以通过抗生素进行预防和治疗该病,仍是一种常见的方法。而抗生素的不合理使用导致越来越多的细菌对抗生素产生了耐药性,严重影响了抗生素的杀菌作用。近年来,许多国家都报道了副猪嗜血杆菌存在耐药现象,因此,有必要对副猪嗜血杆菌进行耐药性调查和耐药机制研究。本研究首先对临床菌株进行了耐药流行病学调查和内源性质粒的分离鉴定,然后分析青霉素结合蛋白的突变位点与氨苄青霉素耐药菌株和携带内源性质粒菌株之间的关系。同时,通过基因表达谱芯片研究副猪嗜血杆菌SH0165在亚抑制浓度和抑制浓度替米考星作用下的转录组学变化,揭示了亚抑制浓度和抑制浓度(0.25μg/mL和8μg/mL)替米考星的作用机制。现将主要研究结果报告如下:
     1.副猪嗜血杆菌的耐药流行病学调查和内源性质粒的分离鉴定
     本试验对2009年分离的92株副猪嗜血杆菌进行了10种常用抗生素的耐药流行病学调查,其中存在青霉素(21.74%)、氨苄青霉素(23.91%)、林可霉素(23.91%)、阿莫西林(15.22%)等耐药菌株,对头孢噻肟和氯霉素敏感的菌株,均为90.22%,而22种耐药基因检测存在氨基糖苷类耐药基因aadB有20株,四环素类耐药基因tetB有11株,磺胺类耐药基因sulll有8株。同时从92株副猪嗜血杆菌中分离出6株菌株携带有内源性质粒,并对其中5个内源性质粒进行了测序,质粒FZJ5839是隐性质粒,其余都是耐药质粒。质粒pHPS1019编码耐药基因tetB和复制蛋白rep;质粒FHN1020和质粒FZG1012是来自不同猪场的相同耐药质粒,编码了链霉素类耐药基因strA和磺胺类耐药基因sulll及MOB移动蛋白家族;质粒FJS5863编码了β-内酰胺类耐药基因blaRoB-1,氨基糖苷类双功能修饰酶基因aacA-aphD, MOB移动蛋白家族和复制蛋白rep,其中耐药基因aacA-aphD首次在副猪嗜血杆菌中报道。隐性质粒FZJ5839是测序中最大的质粒(11,812bp),编码了移动蛋白mobA_mobL,重组酶rec,复制蛋白rep和分裂蛋白parA。其中携带耐药质粒的菌株中只有耐药基因tetB不表现耐药表型,其余耐药基因均存在耐药表型。而对分离的内源性质粒进行耐药基因检测,其结果是不仅存在质粒编码的耐药基因,也存在耐药基因blaTEM和dhfrV等。通过对耐药质粒进行同源性分析发现与巴斯德菌属或嗜血杆菌属中耐药质粒进化关系较近。
     2.分析副猪嗜血杆菌青霉素结合蛋白的突变位点
     根据HPS SH0165的基因组信息,总结HPS青霉素结合蛋白(Penicillin-binding proteins, PBPs)的类型,主要包括6类PBPs,其中有4个HMM PBPs[2个A类PBPs (mrcA和pbp1B)和2个B类PBPs (ftsI和。ftsI-2)]和2个LMM PBPs (dacA和dacB)及1个多功能转糖酶mtgA和1个PBP3相关的羧基末端蛋白酶prc。通过琼脂稀释法对2009年选取的22株和2012年分离的34株HPS进行6种p-内酰胺类抗生素(青霉素,头孢噻肟,氨苄青霉素,苯唑西林,阿莫西林和克拉维酸)的耐药检测,存在氨苄青霉素和苯唑西林抗性的菌株达到95%以上,同时从2012年34株HPS中分离出2个内源性质粒。根据菌株是否对氨苄青霉素和苯唑西林耐药,是否携带内源性质粒来选取20株HPS进行PBPs的克隆测序(其中2009年和2012年各10株),参考菌株是HPS SH0165和HPS标准5型,测序结果PBPs基因是高度保守的。通过PBPs碱基序列的进化树关系,预测PBPs存在的突变位点,并在蛋白的三维结构上定位突变位点,分析发现PBPs肽基转移酶上的突变位点与p-内酰胺类抗生素耐药性有关,糖基转移酶上的突变位点与内源性质粒传递有关。在携带质粒FJS5863的菌株09FA17中发现mrcA基因在突变位点638处插入7个氨基酸ATENTTD,导致下游有11个突变位点,并在一定程度上改变了mrcA蛋白的三维结构,推测该突变与菌株携带质粒FJS5863编码的耐药基因blaROB-1有关。其中有8株菌的dacB基因在氨基酸C-端插入了199个氨基酸,推测与内源性质粒的传递有关。有5株菌的dacA基因在358氨基酸处突变为终止密码子。
     3.替米考星诱导副猪嗜血杆菌SH0165的转录组学研究
     为了揭示替米考星作用于]HPS SH0165的分子机制,根据HPS SH0165的基因组序列,设计了2052个探针合成基因表达谱芯片来研究不同浓度(亚抑制浓度0.25μg/mL和抑制浓度8μg/mL)的替米考星对HPS SH0165的转录组学变化,成功筛选到405个差异表达基因(p≤0.05,Fc≥1.5),这些基因涉及到热休克蛋白、核糖体蛋白、蛋白质的生物合成、细胞壁合成和细胞转运相关的过程。在0.25μg/mL和8μg/mL两种浓度组中既存在共同变化的基因也存在其特有的差异表达基因,其中共同上调表达的基因有56个和共同下调表达的基因有39个。在0.25μg/mL浓度组中检测出302个差异表达基因,在替米考星压力下正常的生长以调节ABC转运体和PTS系统中基因为特点,而在8μg/mL浓度组中检测出198个差异表达基因,因生长被完全抑制以下调表达RNA聚合酶和错配修复通路中基因为特点。芯片中差异表达基因的功能分析揭示了HPS SH0165主要通过调节蛋白的合成和胞膜转运来适应替米考星的作用,替米考星诱导HPS SH0165的转录谱可为研究细菌的生理功能提供新思路及为制定治疗策略提供新靶标。
Haemophilus parasuis is the causative agent of Glasser's disease in swine, charac-terized by fibrinous polyserositis, meningitis and polyarthritis, and it also caused great economic losses in the global pig industry.15H. parasuis serovars have been recognized based on immunodiffusion of heat-stable polysaccharide antigens, while some isolates are still non-type serovars. H. parasuis has strong host specificity. H. parasuis could easily infect the pigs ranging from2weeks to4months and can cause severe diseases to the pigs, especially for the early-weaned piglets. The prevention and control of H. parasuis disease can be achieved through vaccine immunization and antibiotics therapy. The vac-cines usually confer protection against challenge with homologous serovar, but the results of the cross-protection are variable. So antibiotics were used as the main prevention strategy. However abuse of antibiotics would encourage an increase in resistance to the antibiotics, decreasing the efficiency of them. In recent years, the drug resistance cases in H. parasuis have been reported in many countries. So research the resistance mechanism and investigating the drug resistance in H. parasuis is very important for us to control this disease. Firstly, this study investigated the epidemiology about the drug resistance, isola-tion and identification of endogenous plasmids in clinical isolates of H. parasuis. Sec-ondly, the mutation sites that penicillin binding proteins were analyzed to identify the mechanism of the resistance to ampicillin and the endogenous plasmids in clinical isolates. At the same time, a whole-genome DNA microarray was used to profile the transcription-al response of H. parasuis SH0165induced tilmicosin at sub-inhibitory and inhibitory concentrations.The principal results were presented as followed:
     1. Investigating epidemiology about the drug resistance in H. parasuis, isolation and identification of endogenous plasmids
     Our study investigated the epidemiology about the drug resistance in H. parasuis to ten kinds of common antibiotics, and the endogenous plasmids were also isolated and identified based on the92strains isolated in2009. The results revealed that20strains (21.74%) were resistance to penicillin,22strains (23.91%) were resistance to ampicillin,22strains were resistance to lincomycin and14strains (15.22%) were resistance to amoxicillin, while83strains (90.22%) were sensitive to cefotaxime and chloramphenicol. The detected22resistance genes of the strains were aadB gene, tetB gene and sulll gene which included20strains,11strains and8strains, respectively. At the same time, six en- dogenous plasmids of H. parasuis were identified, and the genomes of five of them were sequenced. Beside the plasmid FZJ5839is a recessive plasmid, the other plasmids were the resistant plasmids. Plasmid pHPS1019encoded the tetracycline resistance gene tetB and the replication protein rep. Plasmid FHN1020and FZG1012encoded the streptomy-cin resistance gene strA and the sulfasulfonamide resistance gene sulll, the movement proteins MOB family, but they are the different sources of resistance plasmids. Plasmid FJS5863carried β-lactam resistance gene blaROB-1and aminoglycoside modification bi-functional enzyme genes aacA-aphD, encoded the mobile family proteins and the replica-tion protein rep. The recessive plasmid FZJ5839is one of the biggest plasmids, which had been sequenced (11,812bp), encoded the movement protein mobA_mobL, recombinase rec, replication protein rep and splitting protein par A. Antimicrobial agents sensitivity profiling revealed that strains were resistant to the streptomycin, sulfadimidine, gentami-cin, kanamycin and ampicillin, beside of the tetracycline. The detected resistance genes of the endogenous plasmids were presents the resistant genes blaTEM, dhfrV, strA and sulll. Finally, the resistance plasmids of H. parasuis were analyzed by the phylogenetic tree, we found that have high similarity with the resistance plasmids in Pasteurella and the re-sistance plasmids in Haemophilus.
     2. Analysis of genes encoding PBPs in clinical isolates of H. parasuis
     Based on the genomic sequence of H. parasuis SH0165, we summarized the PBPs types, including six classes of PBPs, which has four HMM PBPs [two A classes (mrcA and pbp1B) and two B classes (ftsl and ftsI-2)], two LMM PBPs (dacA and dacB), one monofunctional transglycosylase mtgA and one peptidoglycan carboxy-terminal protease prc. We investigated the H. parasuis isolates (including22strains isolated in2009and34strains isolated in2010) resistance to β-lactam antibiotics (penicillin, ampicillin, oxacillin, ceftiofur, amoxicillin, clavulanic acid) and found that the resistance strains to ampicillin and oxacillin have reached95%. At the same time, two endogenous plasmids of H. para-suis were isolated in2012. PBPs genes of twenty strains (each of ten strains in2009and in2012) that resistance to ampicillin or carried endogenous plasmid were sequenced. Then we compared them with the PBPs gene sequence of the H. parasuis SH065and the standard H. parasuis serotype5, which had been found that the gene was highly con-served among the strains. Analysis of genes encoding PBPs through the relationship of the evolutionary tree, we predicted that the PBPs genes mutation sites of these strain and located the mutation sites on the three dimensional structure of the PBPs. We predicted that the mutation sites of the transpeptidase in PBPs have related to the (3-lactam antibiot-ics of the resistance, the mutation sites of the transglycosylase in PBPs have related to the transfer of the endogenous plasmid in the bacteria. The mrcA gene had inserted seven amino acids (ATENTTD) in the mutation sites638of the FJS5863plasmid of09FA17strain. It has7amino acids insertion and11mutation sites in the downstream of the mrcA gene and causes the changes in the3D structure of the mrcA protein. We speculated that these variations were related to the plasmid FJS5863carried the resistance gene blaвов-1. The dacB gene of the eight strains had199amino acids insertion in the downstream of the stop codon, that this difference was related to the endogenous plasmids. Others, the dacA gene of the five strains had changed the amino acid located in the sites of358to encode the termination codon.
     3. Transcription profile of H. parasuis SH0165response to tilmicosin
     Based on the genomic sequence of H. parasuis SH0165,2052probes were designed and synthesied in situ microarray chip. To gain a more detailed understanding of the mo-lecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165treated in vitro with sub-inhibitory (0.25μg/mL) and inhibitory (8μg/mL) con-centrations. Tilmicosin treatment induced differential expression of405genes (p≤0.05, Fc≥1.5), the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The sub-inhibitory and inhibitory con-centrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included302genes mainly involved in protein ex-port and the PTS system to sustain cell growth, and198genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of func-tions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets for future molecular therapeutic strate-gies.
引文
1. 曹芸.检测副猪嗜血杆菌的乳胶凝集试验及ERIC-PCR方法的建立与应用.[硕士学位论文].华中农业大学,2009.
    2. 陈利苹.副猪嗜血杆菌分离株内源性质粒的分离、分析及应用.[博士学位论文学位论文].2011.
    3. 贾爱卿.猪沙门氏菌的临床分离鉴定及耐药性消除研究.[硕士学位论文].华中农业大学,2006.
    4. 贾爱卿,李春玲,王贵平,杨冬霞.副猪嗜血杆菌ERIC-PCR指纹图谱多样性研究[J].中国兽医学报,2010(3):337-339.
    5.雷连成,韩文瑜,段艳.大肠杆菌耐药性抑制剂作用机制的初步研究[J].中国兽药杂志2004,38(2).
    6 .刘渠,白松涛.G+球菌及G-杆菌质粒消除方法研究[J].中国卫生检验杂志,1998,5(8):275-278.
    7. 汤细彪.猪源多杀性巴氏杆菌的分子流行病学与致病性研究.[博士学位论文].华中农业大学,2010.
    8. 王春梅,何启盖,操继跃.细菌多重耐药泵的研究进展[J].畜牧兽医学报,2011,42(4).
    9. 张媛.金黄色葡萄球菌PBP2a与松鼠葡萄球菌PBP4的功能相关性研究.[博士学位论文学位论文].天津医科大学,2009.
    10.周红,王浴王.用SDS消除耐阿洛西林绿脓杆菌质粒[J].中国搞生素杂志,1992(3):238-239.
    11.周侠.pbpla基因与肺炎链球菌对青霉素耐药的关系探讨.[硕士学位论文学位论文].重庆医科大学,2008.
    12. Aarestrup FM, Seyfarth AM, Angen 0. Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Vet Microbiol, 2004,101(2):143-146.
    13. Amano H, Shibata M, Kajio N, Morozumi T. Pathologic observations of pigs intranasally inoculated with serovar 1,4 and 5 of Haemophilus parasuis using immunoperoxidase method. J Vet Med Sci,1994,56(4):639-644.
    14. Angen 0, Oliveira S, Ahrens P, Svensmark B, Leser TD. Development of an improved species specific PCR test for detection of Haemophilus parasuis. Vet Microbiol,2007,119(2-4):266-276.
    15. Angen O, Svensmark B, Mittal KR. Serological characterization of Danish Haemophilus parasuis isolates. Vet Microbiol,2004,103(3-4):255-258.
    16. Bak H, Riising HJ. Protection of vaccinated pigs against experimental infections with homologous and heterologous Haemophilus parasuis. Vet Rec,2002,151(17): 502-505.
    17. Barlow M. What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol,2009,532:397-411.
    18. Baumann G, Bilkei G. Effect of vaccinating sows and their piglets on the development of Glasser's disease induced by a virulent strain of Haemophilus parasuis serovar 5. Vet Rec,2002,151(1):18-21.
    19. Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A,1973a,70(8):2276-2280.
    20. Biberstein EL, White DC. A proposal for the establishment of two new Haemophilus species. JMed Microbiol,1969,2(1):75-78.
    21. Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I. Stress-induced mutagenesis in bacteria. Science,2003,300(5624):1404-1409.
    .22. Blackall PJ, Rapp-Gabrielson VJ, Hampson DJ. Serological characterisation of Haemophilus parasuis isolates from Australian pigs. Aust Vet J,1996,73(3):93-95.
    23. Blau PM. Operationalizing a Conceptual Scheme:The Universalism-Particularism Pattern Variable. American Sociological Review,1962,27(2):159-169.
    24. Born P, Breukink E, Vollmer W. In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem,2006,281(37): 26985-26993.
    25. Boubakri H, de Septenville AL, Viguera E, Michel B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. Embo J, 2010,29(1):145-157.
    26. Breukink E, van Heusden H, Vollmerhaus P, Swiezewska E, Brunner L, Walker S, Heck A, Ben De K. Lipid II Is an Intrinsic Component of the Pore Induced by Nisin in Bacterial Membranes. J Biol Chem,2003,278:19898-19903.
    27. Bystrom AS, Bjork GR. Chromosomal location and cloning of the gene (trmD) responsible for the synthesis of tRNA (m1G) methyltransferase in Escherichia coli K-12. Mol Gen Genet,1982,188(3):440-446.
    28. Cai X, Chen H, Blackall PJ, Yin Z, Wang L, Liu Z, Jin M. Serological characteriza-tion of Haemophilus parasuis isolates from China. Vet Microbiol,2005,111(3-4): 231-236.
    29. Canton R. Antibiotic resistance genes from the environment:a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Micro-biol Infect,2009,15 Suppl 1:20-25.
    30. Caro L, Churchward G, Chandler M. Study of plasmid replication in vivo. Method Microbiol,1984(17):97-122.
    31. Cayo R, Rodriguez M C, Espinal P, Fernandez-Cuenca F, Ocampo-Sosa AA, Pascu-al A, Ayala JA, Vila J, Martinez-Martinez L. Analysis of genes encoding penicil-lin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother,2011,55(12):5907-5913.
    32. Chambers HF. Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis,1999,179 Suppl 2:S353-S359.
    33. Chang CF, Yeh TM, Chou CC, Chang YF, Chiang TS. Antimicrobial susceptibility and plasmid analysis of Actinobacillus pleuropneumoniae isolated in Taiwan. Vet Microbiol,2002,84(1-2):169-177.
    34. Charland N, D'Silva CG, Dumont RA, Niven DF. Contact-dependent acquisition of transferrin-bound iron by two strains of Haemophilus parasuis. Can J Microbiol, 1995,41(1):70-74.
    35. Chen LP, Cai XW, Wang XR, Zhou XL, Wu DF, Xu XJ, Chen HC. Characterization of plasmid-mediated lincosamide resistance in a field isolate of Haemophilus para-suis. J Antimicrob Chemother,2010,65(10):2256-2258.
    36. Chen P, Liu YY, Liu C, Zou HY, Wang Y, Li WT, Bi DR, He QG. Laboratory De-tection of Haemophilus parasuis with Decreased Susceptibility to Nalidixic Acid and Enrofloxacin Due to GyrA and ParC Mutations. Journal of Animal and Veterinary Advances,2011,10(21):2870-2873.
    37. Chen P, Liu YY, Wang Y, Li WT, Bi DR, He QG. Plasmid Mediated Streptomycin and Sulfonamide Resistance in Haemophilus parasuis. Journal of Animal and Vet-erinary Advances,2012,11(8):1106-1109.
    38. Choi H, Lee HJ, Lee Y. A mutation in QRDR in the ParC subunit of topoisomerase IV was responsible for fluoroquinolone resistance in clinical isolates of Streptococ-cus pneumoniae. Yonsei Med J,1998,39(6):541-545.
    39. CLSI. Institute, Clinical And Laboratory Standards. Performance standards for anti-microbial disk and dilution susceptibility tests for bacteria isolated from farm ani-mals; Approved Standard, second ed. CLSI (formerly National Committee of Clini-cal Laboratory Standards—NCCLS).940 West Valley Road, Suite 1400, Wayne, PA 19087, USA. Doc. M31-A2.22.,2002.
    40. Cong-Ran L, Xin-Yi Y, Ren-Hui L, Wei-Xin Z, Yue-Ming W, Min Y, Yi L, Hui-Zhen C, Bin H, Cheng-Hang S, Li-Xun Z, Zhuo-Rong L, Jian-Dong J, Xue-Fu Y. In Vitro Antibacterial Activity of Vertilmicin and Its Susceptibility to Modifi cations by the Recombinant AAC(6)-APH(2) Enzyme. Antimicrob Agents Ch, 2008,52(11):3875-3882.
    41. Corfield T. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology, 1992,2(6):509-521.
    42. Courtright JB, Turowski DA, Sonstein SA. Alteration of bacterial DNA structure, gene expression, and plasmid encoded antibiotic resistance following exposure to enoxacin. J Antimicrob Chemother,1988,21 Suppl B:1-18.
    43. Crandall I, Charuk J, Kain KC. Nonylphenolethoxylates as malarial chloroquine re-sistance reversal agents. Antimicrob Agents Chemother,2000,44(9):2431-2434.
    44. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature,1965,208(5007):239-241.
    45. D'Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic re-sistome. Science,2006,311(5759):374-377.
    46. de la Fuente AJ, Tucker AW, Navas J, Blanco M, Morris SJ, Gutierrez-Martin CB. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Vet Microbiol,2007,120(1-2):184-191.
    47. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Bio-phys Acta,2009,1794(5):808-816.
    48. Den Blaauwen T, Aarsman ME, Vischer NO, Nanninga N. Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol,2003,47(2):539-547.
    49. den Blaauwen T, de Pedro MA, Nguyen-Disteche M, Ayala JA. Morphogenesis of rod-shaped sacculi. Fems Microbiol Rev,2008,32(2):321-344.
    50. Dennis PP. Effects of chloramphenicol on the transcriptional activities of ribosomal RNA and ribosomal protein genes in Escherichia coli. J Mol Biol,1976,108(3): 535-546.
    51. Denome S, Elf P, Henderson T, Nelson D, Young K. Escherichia coli mutants lack-ing all possible combinations of eight penicillin binding proteins:viability, charac-teristics, and implications for peptidoglycan synthesis. J Bacteriol,1999,3981-3993(181).
    52. Dixon LG, Albritton WL, Willson PJ. An analysis of the complete nucleotide se-quence of the Haemophilus ducreyi broad-host-range plasmid pLS88. Plasmid,1994, 32(2):228-232.
    53. Duong F, Wickner W. The SecDF yajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. Embo J,1997,16(16): 4871-4879.
    54. Eagle H. Experimental approach to the problem of treatment failure with penicillin. I. Group A streptococcal infection in mice. Am JMed,1952,13(4):389-399.
    55. Fontana R, Aldegheri M, Ligozzi M, Lopez H, Sucari A, Satta G. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in En-terococcus faecium. Antimicrob Agents Chemother,1994,38(9):1980-1983.
    56. Francia M, Varsaki A, Garcillan-Barcia MP, Latorre A, Drainas C, de la Fernando C. A classification scheme for mobilization regions of bacterial plasmids. Fems Micro-biol Rev,2004,1(28):79-100.
    57. Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother,2006,50(6):2137-2145.
    58. Ghuysen J. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Micro-biol,1991(45):37-67.
    59. Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins:an enigmatic fam-ily of orthologs and paralogs. Microbiol Mol Biol Rev,1998,62(4):1079-1093.
    60. Gophna U, Ron EZ. Virulence and the heat shock response. Int J Med Microbiol, 2003,292(7-8):453-461.
    61. Guinane CM, Cotter P D, Ross RP, Hill C. Contribution of penicillin-binding protein homologs to antibiotic resistance, cell morphology, and virulence of Listeria mono-cytogenes EGDe. Antimicrob Agents Chemother,2006,50(8):2824-2828.
    62. Guo LL, Zhang JM, Xu CG, Zhao YD, Ren T, Zhang B, Fan HY, Liao M. Molecular characterization of fluoroquinolone resistance in Haemophilus parasuis isolated from pigs in South China. J Antimicrob Chemoth,2011,66(3):539-542.
    63. Held W, Nomura M. Escherichia coli 30S ribosomal proteins uniquely required for assembly. JBiol Chem,1975(250):3179-3184.
    64. Hernandez C, Olano C, Mendez C, Salas JA. Characterization of a Streptomyces an-tibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin in-activation. Gene,1993,134(1):139-140.
    65. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature,2007,446(7137):749-757.
    66. Holtje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev,1998,62(1):181-203.
    67. Ito H, Ishii H, Akiba M. Analysis of the complete nucleotide sequence of an Actino-bacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. Plasmid,2004,51(1):41-47.
    68. Jin H, Wan Y, Zhou R, Li L, Luo R, Zhang S, Hu J, Langford PR, Chen H. Identifi-cation of genes transcribed by Haemophilus parasuis in necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environ Microbiol, 2008,10(12):3326-3336.
    69. Kang M, Zhou R, Liu L, Langford P R, Chen H. Analysis of an Actinobacillus pleu-ropneumoniae multi-resistance plasmid, pHB0503. Plasmid,2009,61(2):135-139.
    70. Kehrenberg C, Salmon SA, Watts JL, Schwarz S. Tetracycline resistance genes in isolates of Pasteurella multocida, Mannheimia haemolytica, Mannheimia glucosida and Mannheimia varigena from bovine and swine respiratory disease:intergeneric spread of the tet(H) plasmid pMHT1. J Antimicrob Chemother,2001,48(5): 631-640.
    71. Kehrenberg C, Schulze-Tanzil G, Martel J, Chaslus-Dancla E, Schwarz S, Schwarz. Antimicrobial resistance in Pasteurella and Mannheimia:epidemiology and genetic basis. Vet. Res,2001(32):323-339.
    72. Kehrenberg C, Schwarz S. Nucleotide sequence and organization of plasmid pMVSCSl from Mannheimia varigena:identification of a multiresistance gene cluster. JAntimicrob Chemother,2002,49(2):383-386.
    73. Kielstein P, Rapp-Gabrielson VJ. Designation of 15 serovars of Haemophilus para-suis on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Mi-crobiol,1992,30(4):862-865.
    74. Korsak D, Vollmer W, Markiewicz Z. Listeria monocytogenes EGD lacking penicil-lin-binding protein 5 (PBP5) produces a thicker cell wall. Fems Microbiol Lett,2005, 251(2):281-288.
    75. Kosowska K, Jacobs MR, Bajaksouzian S, Koeth L, Appelbaum PC. Alterations of penicillin-binding proteins 1A,2X, and 2B in Streptococcus pneumoniae isolates for which amoxicillin MICs are higher than penicillin MICs. Antimicrob Agents Chemother,2004,48(10):4020-4022.
    76. Kuzin AP, Liu H, Kelly JA, Knox JR. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. Biochemistry-Us,1995,34(29):9532-9540.
    77. Lancashire JF, Terry TD, Blackall PJ, Jennings MP. Plasmid-encoded TetB tetracy-cline resistance in Haemophilus parasuis. Antimicrob Agents Chemother,2005, 49(5):1927-1931.
    78. Lange C, Werckenthin C. Molecular analysis of the plasmid-borne aacA/aphD re-sistance gene region of coagulase-negative staphylococci from chickens. J Antimi-crob Chemoth,2003(51):1397-1401.
    79. Lee S, Sowa ME, Watanabe YH, Sigler PB, Chiu W, Yoshida M, Tsai FT. The structure of ClpB:a molecular chaperone that rescues proteins from an aggregated state. Cell,2003,115(2):229-240.
    80. Levin BR, Rozen DE. Non-inherited antibiotic resistance. Nat Rev Microbiol,2006, 4(7):556-562.
    81. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs,2004,64(2): 159-204.
    82. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria:an update. Drugs, 2009,69(12):1555-1623.
    83. Lichtensteiger CA, Vimr ER. Neuraminidase (sialidase) activity of Haemophilus parasuis. Fems Microbiol Lett,1997,152(2):269-274.
    84. Livrelli VO, Darfeuille-Richaud A, Rich CD, Joly BH, Martel JL. Genetic determi-nant of the ROB-1 beta-lactamase in bovine and porcine Pasteurella strains. Antimi-crob Agents Chemother,1988,32(8):1282-1284.
    85. Livrelli V, Peduzzi J, Joly B. Sequence and molecular characterization of the ROB-1 beta-lactamase gene from Pasteurella haemolytica. Antimicrob Agents Chemother, 1991,35(2):242-251.
    86. Llano-Sotelo B, Azucena EJ, Kotra LP, Mobashery S, Chow CS. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribo-somal aminoacyl-tRNA site. Chem Biol,2002,9(4):455-463.
    87. Lovering AL, de Castro LH, Lim D, Strynadka NC. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science,2007,315(5817): 1402-1405.
    88. Lovgren JM, Bylund GO, Srivastava MK, Lundberg LA, Persson OP, Wingsle G, Wikstrom PM. The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits. Rna,2004, 10(11):1798-1812.
    89. Lovgren JM, Wikstrom PM. Hybrid protein between ribosomal protein S16 and RimM of Escherichia coli retains the ribosome maturation function of both proteins. JBacteriol,2001,183(18):5352-5357.
    90. Macedo NR, Oliveira SR, Lage AP, Santos JL, Araujo MR, Guedes RM. ERIC-PCR genotyping of Haemophilus parasuis isolates from Brazilian pigs. Vet J,2011, 188(3):362-364.
    91. MacInnes JI, Paradis MA, Vessie GH, Slavic L, Watson S, Wilson JB, Aramini JJ, Dick CP. Efficacy of prophylactic tilmicosin in the control of experimentally in-duced Haemophilus parasuis infection in pigs. J Swine Health Prod,2003(11): 174-180.
    92. Maclean IW, Slaney L, Juteau JM, Levesque RC, Albritton WL, Ronald AR. Identi-fication of a ROB-1 beta-lactamase in Haemophilus ducreyi. Antimicrob Agents Chemother,1992,36(2):467-469.
    93. Maguire BA, Beniaminov AD, Ramu H, Mankin AS, Zimmermann RA. A protein component at the heart of an RNA machine:the importance of protein L27 for the function of the bacterial ribosome. Mol Cell,2005,20(3):427-435.
    94. Margolin W. Sculpting the bacterial cell. Curr Biol,2009,19(17):R812-R822.
    95. Marshall CG, Lessard IA, Park I, Wright GD. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother,1998, 42(9):2215-2220.
    96. Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother,2000,44(7):1771-1777.
    97. Martinez JL, Baquero F, Andersson DI. Predicting antibiotic resistance. Nat Rev Mi-crobiol,2007,5(12):958-965.
    98. Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sanchez MB. A global view of antibiotic resistance. Fems Microbiol Rev,2009, 33(1):44-65.
    99. Matic V, Bozdogan B, Jacobs MR, Ubukata K, Appelbaum PC. Contribution of be-ta-lactamase and PBP amino acid substitutions to amoxicillin/clavulanate resistance in beta-lactamase-positive, amoxicillin/clavulanate-resistant Haemophilus influenzae. JAntimicrob Chemother,2003,52(6):1018-1021.
    100. Matsuyama S, Fujita Y, Mizushima S. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. Embo J, 1993,12(1):265-270.
    101. Meberg BM, Paulson AL, Priyadarshini R, Young KD. Endopeptidase penicil-lin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. JBacteriol,2004,186(24):8326-8336.
    102. Medeiros AA, Levesque R, Jacoby GA. An animal source for the ROB-1 be-ta-lactamase of Haemophilus influenzae type b. Antimicrob Agents Chemother,1986, 29(2):212-215.
    103. Mendez C, Jose AS. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol,2001,,152(3-4):341-350.
    104. Mendez C, Salas JA. ABC transporters in antibiotic-producing actinomycetes. Fems Microbiol Lett,1998,158(1):1-8.
    105. Morikoshi T, Kobayashi K, Kamino T, Owaki S, Hayashi S, Hirano S. Characteriza-tion of Haemophilus parasuis isolated in Japan. Nihon Juigaku Zasshi,1990,52(3): 667-669.
    106. Morozumi T, Nicolet J. Morphological variations of Haemophilus parasuis strains. J Clin Microbiol,1986,23(1):138-142.
    107. Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y, Heifets L, Pieters J, Schoolnik G, Thompson CJ. Ancestral antibiotic re-sistance in Mycobacterium tuberculosis. Proc Natl Acad Sci, U S A,2005,102(34): 12200-12205.
    108. Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G. ClpP of Bacil-lus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol,1998,27(5): 899-914.
    109. Nagasawa H, Sakagami Y, Suzuki A, Suzuki H, Hara H, Hirota Y. Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli.JBacteriol,1989,171(11):5890-5893.
    110. Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T. Detec-tion and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem,1993, 65(15):2036-2039.
    111.Nelson DE, Young KD. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. JBacteriol,2000,182(6):1714-1721.
    112. Nelson D, Young K. Contributions of PBP 5 and DD-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol, 2001(183):3055-3064.
    113. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem,2009,78:119-146.
    114. Ohnishi H, Mizunoe Y, Takade A, Tanaka Y, Miyamoto H, Harada M, Yoshida S. Legionella dumoffii DjlA, a member of the DnaJ family, is required for intracellular growth. Infect Immun,2004,72(6):3592-3603.
    115. Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am J Vet Res,2003, 64(4):435-442.
    116. Oliveira S, Galina L, Pijoan C. Development of a PCR test to diagnose Haemophilus parasuis infections. J Vet Diagn Invest,2001,13(6):495-501.
    117. Oliveira S, Pijoan C. Haemophilus parasuis:new trends on diagnosis, epidemiology and control. Vet Microbiol,2004,99(1):1-12.
    118. Olliver A, Valle M, Chaslus-Dancla E, Cloeckaert A. Overexpression of the multi-drug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluo-roquinolones. Antimicrob Agents Chemother,2005,49(1):289-301.
    119. Olvera A, Segales J, Aragon V. Update on the diagnosis of Haemophilus parasuis infection in pigs and novel genotyping methods. Vet J,2007,174(3):522-529.
    120. Pallen MJ, Wren BW. The HtrA family of serine proteases. Mol Microbiol,1997, 26(2):209-221.
    121. Pan H, Ming Y, Anding Z, Jiayan W, Bo C, Yafeng H, Jun Y, Huanchun C, Jingfa X, Meilin J. Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain. PLos One,2011,6(9): e24988.
    122. Pederson KJ, Carlson S, Pierson DE. The ClpP protein, a subunit of the Clp protease, modulates ail gene expression in Yersinia enterocolitica. Mol Microbiol,1997,26(1): 99-107.
    123. Persson BC, Bylund GO, Berg DE, Wikstrom PM. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. J Bacteriol,1995,177(19):5554-5560.
    124. Piette A, Fraipont C, Den Blaauwen T, Aarsman ME, Pastoret S, Nguyen-Disteche M. Structural determinants required to target penicillin-binding protein 3 to the sep-tum of Escherichia coli. J Bacteriol,2004,186(18):6110-6117.
    125. Plumbridge J. Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS. Mol Microbiol,1998,27(2): 369-380.
    126. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phos-photransferase systems of bacteria. Microbiol Rev,1993,57(3):543-594.
    127. Prowedi R, Boldrin F, Falciani F, Palu G, Manganelli R. Global transcriptional re-sponse to vancomycin in Mycobacterium tuberculosis. Microbiology+,2009,155(Pt 4):1093-1102.
    128. Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Mi-crobiol Rev,1993,57(1):50-108.
    129. Qiu J, Zhou D, Han Y, Zhang L, Tong Z, Song Y, Dai E, Li B, Wang J, Guo Z, Zhai J, Du Z, Wang X, Yang R. Global gene expression profile of Yersinia pestis induced by streptomycin. Fems Microbiol Lett,2005,243(2):489-496.
    130. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem,2002, 71:635-700.
    131.Rafiee M, Bara M, Stephens CP, Blackall PJ. Application of ERIC-PCR for the comparison of isolates of Haemophilus parasuis. Aust Vet J,2000,78(12):846-849.
    132. Rapp-Gabrielson VJ, Gabrielson DA. Prevalence of Haemophilus parasuis serovars among isolates from swine. Am J Vet Res,1992,53(5):659-664.
    133. Rodrigue S, Prowedi R, Jacques PE, Gaudreau L, Manganelli R. The sigma factors of Mycobacterium tuberculosis. Fems Microbiol Rev,2006,30(6):926-941.
    134. Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother,2002,46(3):769-777.
    135. Rosenau A, Labigne A, Escande F, Courcoux P, Philippon A. Plasmid-mediated ROB-1 beta-lactamase in Pasteurella multocida from a human specimen. Antimicrob Agents Chemother,1991,35(11):2419-2422.
    136. Rouch DA, Byrne ME, Kong YC, Skurray RA. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus:expres-sion and nucleotide sequence analysis. J Gen Microbiol,1987,133(11):3039-3052.
    137. Rubies X, Kielstein P, Costa L, Riera P, Artigas C, Espuna E. Prevalence of Hae-mophilus parasuis serovars isolated in Spain from 1993 to 1997. Vet Microbiol, 1999,66(3):245-248.
    138. Ruiz A, Oliveira S, Torremorell M, Pijoan C. Outer membrane proteins and DNA profiles in strains of Haemophilus parasuis recovered from systemic and respiratory sites. JClin Microbiol,2001,39(5):1757-1762.
    139. San Millan A, Escudero JA, Catalan A, Nieto S, Farelo F, Gibert M, Moreno MA, Dominguez L, Gonzalez-Zorn B. Beta-lactam resistance in Haemophilus parasuis Is mediated by plasmid pB1000 bearing blaROB-1. Antimicrob Agents Chemother, 2007,51(6):2260-2264.
    140. San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, Llagostera M, Dominguez L, Gonzalez-Zorn B. Multiresistance in Pasteurella multocida is medi-ated by coexistence of small plasmids. Antimicrob Agents Chemother,2009,53(8): 3399-3404.
    141. San Millan A, Garcia-Cobos S, Escudero JA, Hidalgo L, Gutierrez B, Carrilero L, Campos J, Gonzalez-Zorn B. Haemophilus influenzae clinical isolates with plasmid pB1000 bearing blaROB-1:fitness cost and interspecies dissemination. Antimicrob Agents Chemother,2010,54(4):1506-1511.
    142. San Millan A, Giufre M, Escudero JA, Hidalgo L, Gutierrez B, Cerquetti M, Gonza-lez-Zorn B. Contribution of ROB-1 and PBP3 mutations to the resistance phenotype of a beta-lactamase-positive amoxicillin/clavulanic acid-resistant Haemophilus in-fluenzae carrying plasmid pB1000 in Italy. J Antimicrob Chemother,2011,66(1): 96-99.
    143. Sandegren L, Lindqvist A, Kahlmeter G, Andersson DI. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J Antimicrob Chemother,2008, 62(3):495-503.
    144. Sauvage E, Herman R, Petrella S, Duez C, Bouillenne F, Frere JM, Charlier P. Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins. JBiol Chem,2005,280(35):31249-31256.
    145. Sauvage E, Kerff F, Fonze E, Herman R, Schoot B, Marquette JP, Taburet Y, Prevost D, Dumas J, Leonard G, Stefanic P, Coyette J, Charlier P. The 2.4-A crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Entero-coccus faecium in complex with benzylpenicillin. Cell Mol Life Sci,2002,59(7): 1223-1232.
    146. Sauerbier J, Maurer P, Rieger M, Hakenbeck R. Streptococcus pneumoniae R6 in-terspecies transformation:genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol,2012,86(3):692-706.
    147. Sauvage E, Kerff F, Terrak M, Ayala J A, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. Fems Microbiol Rev,2008,32(2): 234-258.
    148. Scheffers DJ. Dynamic localization of penicillin-binding proteins during spore de-velopment in Bacillus subtilis. Microbiology,2005,151(Pt 3):999-1012.
    149. Scheffers DJ, Errington J. PBP1 is a component of the Bacillus subtilis cell division machinery. JBacteriol,2004,186(15):5153-5156.
    150. Schouten JA, Bagga S, Lloyd AJ, de Pascale G, Dowson CG, Roper DI, Bugg TD. Fluorescent reagents for in vitro studies of lipid-linked steps of bacterial peptidogly-can biosynthesis:derivatives of UDPMurNAc-pentapeptide containing d-cysteine at position 4 or 5. Mol Biosyst,2006,2(10):484-491.
    151. Scriver SR, Walmsley SL, Kau CL, Hoban DJ, Brunton J, McGeer A, Moore TC, Witwicki E. Determination of antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae and characterization of their beta-lactamases. Canadian Haemophilus Study Group. Antimicrob Agents Chemother,1994,38(7):1678-1680.
    152. Segal R, Ron EZ. Regulation and organization of the groE and dnaK operons in Eu-bacteria. Fems Microbiol Lett,1996,138(1):1-10.
    153. Segales J, Domingo M, Solano GI, Pijoan C. Immunohistochemical detection of Haemophilus parasuis serovar 5 in formalin-fixed, paraffin-embedded tissues of ex-perimentally infected swine. J Vet Diagn Invest,1997,9(3):237-243.
    154. Seminati C, Mejia W, Mateu E, Martin M. Mutations in the quinolone-resistance de-termining region (QRDR) of Salmonella strains isolated from pigs in Spain. Vet Mi-crobiol,2005,106(3-4):297-301.
    155. Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone:current status. Adv Cancer Res,2006,95:323-348.
    156. Shaw K J, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying en-zymes. Microbiol Rev,1993,57(1):138-163.
    157. Shelly M, Douglas E. Plasmid Evolution and Interaction between the Plasmid Ad-diction Stability Systems of Two Related Broad-Host-Range IncQ-Like Plasmids. J Bacteriol,2004,7(186):2123-2133.
    158. Shibata T, Hishida T, Kubota Y, Han YW, Iwasaki H, Shinagawa H. Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coli. Genes Cells,2005,10(3):181-191.
    159. Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol, 2004,48(1):67-73.
    160. Silber KR, Sauer RT. Deletion of the prc (tsp) gene provides evidence for additional tail-specific proteolytic activity in Escherichia coli K-12. Mol Gen Genet,1994, 242(2):237-240.
    161. Solano GI, Segales J, Collins JE, Molitor TW, Pijoan C. Porcine reproductive and respiratory syndrome virus (PRRSV) interaction with Haemophilus parasuis. Vet Microbiol,1997,55(1-4):247-257.
    162. Solano-Aguilar GI, Pijoan C, Rapp-Gabrielson V, Collins J, Carvalho LF, Winkel-man N. Protective role of maternal antibodies against Haemophilus parasuis infec-tion. Am J Vet Res,1999,60(1):81-87.
    163. Spies M, Kowalczykowski SC. Homologous recombination by RecBCD and RecF pathways, microbiology.ucdavis.edu,2005.
    164. Spratt BG, Strominger JL. Identification of the major penicillin-binding proteins of Escherichia coli as D-alanine carboxypeptidase IA. J Bacteriol,1976,127(1): 660-663.
    165. Spratt BG, Zhou J, Taylor M, Merrick MJ. Monofunctional biosynthetic peptidogly-can transglycosylases. Mol Microbiol,1996,19(3):639-640.
    166. Stanisich A.2 Identification and Analysis of Plasmids at the Genetic Level. Method Microbiol,1984,17:5-32.
    167. Sun H, Li S, Xie Z, Yang F, Sun Y, Zhu Y, Zhao X, Jiang S. A novel multidrug re-sistance plasmid isolated from an Escherichia coli strain resistant to aminoglyco-sides. JAntimicrob Chemother,2012,67(7):1635-1638.
    168. Tadjine M, Mittal KR, Bourdon S, Gottschalk M. Development of a new serological test for serotyping Haemophilus parasuis isolates and determination of their preva-lence in North America. J Clin Microbiol,2004,42(2):839-840.
    169. Tipper DJ, Strominger JL. Mechanism of action of penicillins:a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A, 1965,54(4):1133-1141.
    170. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome. Mi-crobiol Mol Biol Rev,2000,64(3):515-547.
    171. Turni C, Pyke M, Blackall PJ. Validation of a real-time PCR for Haemophilus para-suis. JAppl Microbiol,2010,108(4):1323-1331.
    172. Vahle JL, Haynes JS, Andrews JJ. Experimental reproduction of Haemophilus par-asuis infection in swine:clinical, bacteriological, and morphologic findings. J Vet Diagn Invest,1995,7(4):476-480.
    173. Vahle JL, Haynes JS, Andrews JJ. Interaction of Haemophilus parasuis with nasal and tracheal mucosa following intranasal inoculation of cesarean derived colostrum deprived (CDCD) swine. Can J Vet Res,1997,61(3):200-206.
    174. VanNieuwenhze MS, Mauldin SC, Zia-Ebrahimi M, Winger BE, Hornback WJ, Sa-ha SL, Aikins JA, Blaszczak LC. The first total synthesis of lipid Ⅱ:the final mono-meric intermediate in bacterial cell wall biosynthesis. J Am Chem Soc,2002,124(14): 3656-3660.
    175. Vanterpool E, Roy F, Fletcher HM. Inactivation of vimF, a putative glycosyltrans-ferase gene downstream of vimE, alters glycosylation and activation of the gingi-pains in Porphyromonas gingivalis W83. Infect Immun,2005,73(7):3971-3982.
    176. Vashist J, Vishvanath, Kapoor R, Kapil A, Yennamalli R, Subbarao N, Rajeswari M R. Interaction of nalidixic acid and ciprofloxacin with wild type and mutated quino-lone-resistance-determining region of DNA gyrase A. Indian J Biochem Biophys, 2009,46(2):147-153.
    177. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. Fems Microbiol Rev,2008,32(2):149-167.
    178. Vollmer W, Holtje JV. The architecture of the murein (peptidoglycan) in gram-negative bacteria:vertical scaffold or horizontal layer(s). J Bacteriol,2004, 186(18):5978-5987.
    179. Webber MA, Talukder A, Piddock LJ. Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli isolates. Antimicrob Agents Chemother,2005,49(10):4390-4392.
    180. Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol,1999,181(2):508-520.
    181. Wilke MS, Lovering AL, Strynadka NC. Beta-lactam antibiotic resistance:a current structural perspective. Curr Opin Microbiol,2005,8(5):525-533.
    182. Wissing A, Nicolet J, Boerlin P. The current antimicrobial resistance situation in Swiss veterinary medicine. Schweiz Arch Tierheilkd,2001,143(10):503-510.
    183. Wright CL, Strugnell RA, Hodgson AL. Characterization of a Pasteurella multocida plasmid and its use to express recombinant proteins in P. multocida. Plasmid,1997, 37(1):65-79.
    184. Wright GD. The antibiotic resistome:the nexus of chemical and genetic diversity. Nat Rev Microbiol,2007,5(3):175-186.
    185. Xie Q, Jin H, Luo R, Wan Y, Chu J, Zhou H, Shi B, Chen H, Zhou R. Transcription-al responses of Haemophilus parasuis to iron-restriction stress in vitro. Biometals, 2009,22(6):907-916.
    186. Xu CG, Zhang JM, Zhao ZQ, Guo LL, Zhang B, Feng SX, Zhang LY, Liao M. An-timicrobial Susceptibility and PFGE Genotyping of Haemophilus parasuis Isolates from Pigs in South China (2008-2010). J Vet Med Sci,2011,73(8):1061-1065.
    187. Xu L, Marians KJ. PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell,2003,11(3):817-826.
    188. Yeh PJ, Hegreness MJ, Aiden AP, Kishony R. Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol,2009,7(6):460-466.
    189. Yura T, Ishihama A. Genetics of bacterial RNA polymerases. Annu Rev Genet,1979, 13:59-97.
    190. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. Fems Microbiol Rev,2008,32(2):361-385.
    191. Zhang J, Xu C, Guo L, Shen H, Deng X, Ke C, Ke B, Zhang B, Li A, Ren T, Liao M. Prevalence and characterization of genotypic diversity of Haemophilus parasuis iso-lates from southern China. Can J Vet Res,2012,76(3):224-229.
    192. Zhang XX, Zhang T, Fang HH. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol,2009,82(3):397-414.
    193. Zhou XL, Xu XJ, Zhao YX, Chen P, Zhang X, Chen HC, Cai XW. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Vet Microbiol,2010,141(1-2):168-173.
    194. Zouine M, Beloin C, Ghelis C, Le Hegarat F. The L17 ribosomal protein of Bacillus subtilis binds preferentially to curved DNA. Biochimie,2000,82(1):85-91.
    195. Zucker BA, Baghian A, Traux R, O'Reilly KL, Storz J. Detection of strain-specific antigenic epitopes on the lipo-oligosaccharide of Haemd philus parasuis by use of monoclonal and polyclonal antibodies. Am J Vet Res,1996,57(1):63-67.
    196. Zuniga M, Comas I, Linaje R, Monedero V, Yebra MJ, Esteban CD, Deutscher J, Perez-Martinez G, Gonzalez-Candelas F. Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol Biol Evol,2005,22(8):1673-1685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700